]

(c) 2010 PER-ERIK FORSSEN



LECTURE 5B: CALIBRATED
MULTI-VIEW GEOMETRY

% The 5-point Algorithm
w* P3P

¢ Bundle Adjustment
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TOOLS FOR IMAGE-
BASED 3D MODELS

¢ E.g. Photo Tourism from University of
Washington. (has a web demo)

Photo Tourism

Exploring photo collections in 3D
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TOOLS FOR IMAGE-
BASED 3D MODELS




PLANAR DEGENERACY

N

3¢ In the uncalibrated case, two view geometry
is encoded by the fundamental matrix

x1 Fxs = 0
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Al

5 In the uncalibrated case, tWo view geometry
is encoded by the fundamental matrix

x; Fxy = 0

s If all scene points lie on a plane, or if the
camera has undergone a pure rotation (no
translation), we also have:

X1 =— HX2
% Big trouble!



Al

w1t x1 = Hxo, then the epipolar constraint
becomes xiFx,=x FH 'x; =0

% For M = FH !, this is true whenever M is
skew-symmetric, 1.e.



Al

w1t x1 = Hxo, then the epipolar constraint
becomes xiFx,=x FH 'x; =0

% For M = FH !, this is true whenever M is
skew-symmetric, 1.e.

RSN — - = M = [m|

% Thus F = [s]xH where s may be chosen
freely!

Sy

¢ A two-parameter family of solutions.

- I I= = = I | ==



Al

¢ Recap from last weeks lecture...

A
== =

2 In the calibrated case, epipolar geometry 1s
encoded by the eswential matrix, E according to:

/\T A
x; Exo = (



¢ Recap from last weeks lecture...

== =

2 In the calibrated case, epipolar geometry 1s

encoded by the eswential matrix, E according to:

/\T A
x; Exo = (

2 In the calibrated setting there are just two
possibilities if a plane 1s seen. See
Negahdaripour, Closed-form relationship between
the two tnterpretations of a moving plane. JOSA9(
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*E can be estimated from 5 corresponding
points (see today’s paper).

¢ A small sample 1s usetul for RANSAC (le 3).

-

¢ The plane degeneracy 1s essentially avoided.

Al

3¢ There are however up to 10 solutions for E to
test.



¢ If we have the calibrated two view geometry,
and want to add another view to the model.

% Or, 1n general from N views to N+1 views...

¢ First triangulate image points % in two views

to get 3D points X

¢ Then relate X to image points in the new view

y ~ [R]t]X



PERSPECTIVE 3-POINT
PROBLEM

¢ Each correspondence }A’ o5 [R‘t]X

gives us 2 equations.

\!

* We have 6 unknowns.

\

¢ => at least 3 points are needed

-
=
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% Each correspondence ¥ ~ |R|t]|X

gives us 2 equations.
3% We have 6 unknowns.
7 => at least 3 points are needed

¢ It we have outliers, we want to use

RANSAC, with a minimal sample set.
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Instead of determining R, t directly one
typically computes the distances to the 3D
points X from the new camera centre given
the side lengths of the 3D triangle, and the

projections 1n the image. X,




¢ Recall the law of cosines:
2 b

B A
C

c“ = a* + b° — 2abcosy

16



Al

5% Recall the law of cosines:

B A
C

c“ = a* + b° — 2abcosy

* By expressing the angles via scalar products,
we get 3 equations with 3 unknowns.

Pt o% N | -
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2 Define angles between LS as e

“¢and the side lengths as: [l = || X, — X

2 2 b

5% o s% — 25189 €COSY1g = Z%Q
s+ 85 —2s183¢c08y13 = s
3% —— 5% e 28283 COS ’}/23 e l%g
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¢ Define angles between rays as:

oS e

“¢and the side lengths as: [l = || X, — X

2 2 Sl D
s% = 5% — 28189 COS8 Y19 = l%2
ST + 83 —2s183co8v13 = I3
3% 3% — 25983 COS Y93 = l%3

A

¢ This can be converted into a fourth degree
polynomial, which 1s then solved.
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¢ Numerical 1ssues when solving the 4th degree
polynomial.

¢ Various approaches compared by Haralick et
al. Analysis and Solutions of the Three Point
Perspective Pose FEstimation Problem, 1JCV94

A

% P3P has up to four real solutions that have to
be checked inside RANSAC.



\V/

# Once we have solved P3P we have 3D points
in the new camera.

¢ By relating these to the known 3D points 1n
the world coordinate system, R, t are

uniquely defined.



BUNDLE ADJUSTMENT

* We can now build a decent 3D model by

incrementally adding new cameras using P3P.

S
¢ But...
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* We can now build a decent 3D model by

incrementally adding new cameras using P3P.

accumulate. R, t

Rs G 2




* BA 1s essentially ML over all image
correspondences given all cameras, and all

35D points.

R & X' — arg min d(x;, KR [t]1X;)?
{ } L 2 (xk1, KRy |tr] X)



/

* BA 1s essentially ML over all image
correspondences given all cameras, and all
3D points. (Optionally also intrinsics.)

R & X' — arg min d(x;, KR [t]1X;)?
{ } g{RtX}kl (xk1, KRy |tr] X)

* Needs initial guess. (Obtained by RANSAC
on 5-point method and P3P)

#* Open source SBA, by M. Lourakis et al.
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* The choice of parametrisation of 3D points,
and camera rotations 1s important.

.

¢ If both near and far points are seen, 1t might
be better to use X = [X, X5, X3, X4]T
than X = [X17 X27 X37 1]T

-
= =

5t Good choices for rotations are unit
quarternions, and axis-angle (see le 7)
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¢ Descent on the cost function 1s typically done
using a regularized Newton method, such as

Levenberg-Marquardt

min Z(X}d X, S
o

> (% — F(Xi, St 4+ 01))* ~ Y (i — f( Xk, St) + Tdy)?

k.l k.l

% Block structure. Should be utilised for speed!



BUNDLE ADJUSTMENT

% Block structure. Should be utilised for speed!
Ap D E 123 4 KiKs

A-E features

1-4 cameras

Ki,K9 1ntrinsics

-

C10E0
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* Too many details to mention.

\I2
1

* See the paper: Triggs et al., Bundle Adjustment -
A Modern Synthesis, LNCS Book chapter, 2000



DISCUSSION

¢ Discussion of the paper:
David Nistér, An Efficient Solution to the Five-
Point Relative Pose Problem, CVPR’03
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¢ Quan Invariants of Six Points and Projective
Recondstruction From Three Uncalibrated Images

PAMI'95. Sec 1-3

¢ Ondrej Chum and Jir1 Matas, Matching with
PROSAC — Progressive Sample Convensu,
CVPR'05



