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Lecture 5b: calibrated 
multi-view geometry

The 5-point Algorithm

P3P

Bundle Adjustment
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Tools for image-
based 3d models

E.g. Photo Tourism from University of 
Washington. (has a web demo)
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Tools for image-
based 3d models

E.g. Pons et al. at Inria Sophia-Antipolis CVPR’09
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Planar degeneracy

In the uncalibrated case, two view geometry 
is encoded by the fundamental matrix
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Planar degeneracy

In the uncalibrated case, two view geometry 
is encoded by the fundamental matrix

If all scene points lie on a plane, or if the 
camera has undergone a pure rotation (no 
translation), we also have:

Big trouble!
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Planar degeneracy

If                   , then the epipolar constraint 
becomes

For                      , this is true whenever M is 
skew-symmetric, i.e.
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Planar degeneracy

If                   , then the epipolar constraint 
becomes

For                      , this is true whenever M is 
skew-symmetric, i.e.
  

Thus                       where s may be chosen 
freely!

A two-parameter family of solutions.
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The 5-point algorithm

Recap from last weeks lecture...

In the calibrated case, epipolar geometry is 
encoded by the essential matrix, E according to:
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The 5-point algorithm

Recap from last weeks lecture...

In the calibrated case, epipolar geometry is 
encoded by the essential matrix, E according to:

In the calibrated setting there are just two 
possibilities if a plane is seen. See 
Negahdaripour, Closed-form relationship between 
the two interpretations of a moving plane. JOSA90
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The 5-point algorithm

E can be estimated from 5 corresponding 
points (see today’s paper).

A small sample is useful for RANSAC (le 3).

The plane degeneracy is essentially avoided.

There are however up to 10 solutions for E to 
test.
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Perspective 3-point 
problem

If we have the calibrated two view geometry, 
and want to add another view to the model.

Or, in general from N views to N+1 views...

First triangulate image points    in two views 
to get 3D points X

Then relate X to image points in the new view
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x̂

ŷ ∼ [R|t]X
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Perspective 3-point 
problem

Each correspondence
gives us 2 equations.

We have 6 unknowns.

       at least 3 points are needed
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ŷ ∼ [R|t]X
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Perspective 3-point 
problem

Each correspondence
gives us 2 equations.

We have 6 unknowns.

       at least 3 points are needed

If we have outliers, we want to use 
RANSAC, with a minimal sample set.
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ŷ ∼ [R|t]X

⇒
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Perspective 3-point 
problem

Instead of determining R, t directly one 
typically computes the distances to the 3D 
points X from the new camera centre given 
the side lengths of the 3D triangle, and the 
projections in the image.
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Perspective 3-point 
problem

Recall the law of cosines:
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c2 = a2 + b2 − 2ab cos γ
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Perspective 3-point 
problem

Recall the law of cosines:

By expressing the angles via scalar products, 
we get 3 equations with 3 unknowns.
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c2 = a2 + b2 − 2ab cos γ
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Perspective 3-point 
problem

Define angles between rays as:

and the side lengths as:
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Perspective 3-point 
problem

Define angles between rays as:

and the side lengths as:

This can be converted into a fourth degree 
polynomial, which is then solved.
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Perspective 3-point 
problem

Numerical issues when solving the 4th degree 
polynomial.

Various approaches compared by Haralick et 
al. Analysis and Solutions of the Three Point 
Perspective Pose Estimation Problem, IJCV94

P3P has up to four real solutions that have to 
be checked inside RANSAC.
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Perspective 3-point 
problem

Once we have solved P3P we have 3D points 
in the new camera.

By relating these to the known 3D points in 
the world coordinate system, R, t are 
uniquely defined.
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Bundle adjustment

We can now build a decent 3D model by 
incrementally adding new cameras using P3P.

But...
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Bundle adjustment

We can now build a decent 3D model by 
incrementally adding new cameras using P3P.

But for long trajectories, errors will start to 
accumulate.
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Bundle adjustment

BA is essentially ML over all image 
correspondences given all cameras, and all 
3D points.

24

{R∗, t∗,X∗} = arg min
{R,t,X}

�

k,l

d(xkl,K[Rk|tk]Xl)2
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Bundle adjustment

BA is essentially ML over all image 
correspondences given all cameras, and all 
3D points. (Optionally also intrinsics.)

Needs initial guess. (Obtained by RANSAC 
on 5-point method and P3P)

Open source SBA, by M. Lourakis et al.
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{R∗, t∗,X∗} = arg min
{R,t,X}

�

k,l
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Bundle adjustment

The choice of parametrisation of 3D points, 
and camera rotations is important.

If both near and far points are seen, it might 
be better to use
than

Good choices for rotations are unit 
quarternions, and axis-angle (see le 7)
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X = [X1, X2, X3, X4]T

X = [X1, X2, X3, 1]T
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Bundle adjustment

Descent on the cost function is typically done 
using a regularized Newton method, such as 
Levenberg-Marquardt

Block structure. Should be utilised for speed!
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min
�

k,l

(xkl − f(Xk,Sl))2

�

k,l

(xkl − f(Xk,Sl + δl))2 ≈
�

k,l

(xkl − f(Xk,Sl) + Jklδl)2
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Bundle adjustment

Block structure. Should be utilised for speed!
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A-E   features
1-4     cameras

K1,K2  intrinsics
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Bundle adjustment

Too many details to mention.

See the paper: Triggs et al., Bundle Adjustment - 
A Modern Synthesis, LNCS Book chapter, 2000
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Discussion

Discussion of the paper:
David Nistér, An Efficient Solution to the Five-
Point Relative Pose Problem, CVPR’03
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for next week...

Quan Invariants of Six Points and Projective 
Reconstruction From Three Uncalibrated Images 
PAMI’95. Sec 1-3

Ondrej Chum and Jiri Matas, Matching with 
PROSAC – Progressive Sample Consensus, 
CVPR’05
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