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Lecture 7b:
Rotation Interpolation 

and smoothing

Interpolation of SO(3)

Smoothing of SO(3)

SO(3) and SE(3)

Discussion of SLERP article
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Motivation

Computer Graphics Animations

After SfM you might want a smoother camera 
trajectory.

Video stabilisation.

Augmented reality.
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SO(3)

SO(3) is the group of 3D rotations (3dof)
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SO(3) =
�
R ∈ R3×3|RT R = I,det(R) = 1

�
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SO(3)

SO(3) is the group of 3D rotations (3dof)

An element in SO(3) can be represented by 
three elements from the matrix logarithm of R

Or by the 4-elements in a unit quaternion
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SLERP

SLERP (see today’s paper) dictates that we 
should interpolate two rotations by applying 
parts of the intermediate rotation, followed by 
the first rotation

Or if we use rotation matrices

7

SLERP(q1,q2, w) = q1(q−1
1 q2)w

SLERP(R1,R2, w) = R1exp(wlog(RT
1 R2))
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SLERP

The SLERP construction is 
a geodesic on SO(3),
i.e. a walk along the 
shortest path, on the 
manifold, between the two 
rotations.
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Geodesic on the sphere



( c )  2 0 1 0  P e r - E r i k  F o r s s é n

SLERP

The SLERP construction is 
a geodesic on SO(3),
i.e. a walk along the 
shortest path, on the 
manifold, between the two 
rotations.

If we use unit quaternions, 
the geodesic lies on a 4D 
sphere. 
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Geodesic on the sphere
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Interpolation on SO(3)

We can interpolate between key rotations on 
SO(3) using Bézier curves as in today’s 
paper.

 Another alternative is to define cubic splines 
directly on the rotation group as described in:
Park and Ravani, Smooth Invariant 
Interpolation of Rotations, ACM 
Transactions on Graphics 1997.
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Interpolation on SO(3)

A natural cubic spline on       has the form
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Rn

y(t) = aiτ
3 + biτ

2 + ciτ + di , τ =
t− ti

ti+1 − ti
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Interpolation on SO(3)

A natural cubic spline on       has the form

 On SO(3) we instead get the expression

b corresponds to angular acceleration, and c 
is angular the velocity.

Initialise b0 and c0 by setting them to 0 
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Rn

y(t) = aiτ
3 + biτ

2 + ciτ + di , τ =
t− ti

ti+1 − ti

R(t) = Ri−1e
[aiτ

3 + biτ
2 + ciτ ]× , τ =

t− ti
ti+1 − ti
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Interpolation on SO(3)

ai,bi,ci can be computed recursively, from the 
previous values: ai-1,bi-1,ci-1

Park and Ravani’s scheme is more efficient 
than the Bézier curves of Shoemake’s

The Spline approximately minimises 
integrated angular acceleration of the curve. 
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rotation smoothing

Problem: We have a sequence of noisy 
rotations, and want a smoother trajectory.
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rotation smoothing
For each temporal window, this can be solved 
by ML as:

Where
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R∗ = arg min
R∈SO(3)

�

k

dgeo(R,Rk)2

dgeo(R1,R2)2 =
1
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||logm(RT
1 R2)||2fro
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rotation smoothing
For each temporal window, this can be solved 
by ML as:

Where

Iterative search. Maybe too slow :-(

There are fast and nearly as good 
alternatives :-)
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rotation smoothing

For a sequence of unit quaternions

Note that                              represent the 
same rotation (double folding property) 

We need to first ensure that

Now we can simply average them! 
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rotation smoothing

If we have a sequence of unit quaternions

Apply a temporal convolution, followed by a 
normalisation to unit length.
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rotation smoothing

If we have a sequence of rotation matrices

We could apply a temporal convolution, 
followed by an orthogonalisation.
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Rk , Rk+1 , Rk+2 , . . .

R̃k =
2�

l=−2

wlRk+l

UDVT = svd(R̃k) , R̂k = UVT
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rotation smoothing

Both versions can be shown to be 2nd order 
Taylor approximations of the geodesic distance. 
Gramkow, On Averaging Rotations, IJCV01

Gramkow also compares both against ML.
Both are very accurate (<5% relative error at 
40deg)

 Quaternion variant is slightly closer to the ML 
solution, and also significantly faster.
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rotation smoothing

Result (both methods indistinguishable)
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SO(3) and SE(3)

SO(3) is the group of 3D rotations (3dof)

SE(3) is the group of Euclidean rigid body 
transformations (3D rotation+3Dtranslation)
(6dof)

For SE(3) we can similarly define an 
exponential map and a log map.
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SE(3) = SO(3)× R3

SO(3) =
�
R ∈ R3×3|RT R = I,det(R) = 1

�
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SO(3) and SE(3)

An element                   has the matrix form

It is the exponential of a twist
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G ∈ SE(3)

G =
�
R t
0 1

�
R ∈ SO(3) , t ∈ R3

G = exp(ξ̂θ) ξ̂ =
�
logm(R) v

0 0

�
θ ∈ R
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SO(3) and SE(3)

An element                   has the matrix form

It is the exponential of a twist

One could do smoothing and interpolation of 
rigid body motions using the geodesic distance 
on SE(3) (via the log map). However...
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G ∈ SE(3)
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SO(3) and SE(3)

It turns out that physically meaningful 
motions do not follow geodesics in SE(3). 
Rather (if no external force):

1. The centre of mass moves linearly

2. Rotation happens about the centre of mass

Thus we should represent R(t) in object 
centered coordinates, and interpolate R(t) 
and t(t) separately.
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SO(3) and SE(3)

A very good treatment of SO(3) and SE(3) 
can be found in the book:
Murray et al. A Mathematical Introduction to 
Robotic Manipulation, CRC Press. 1994

http://www.cds.caltech.edu/~murray/mlswiki/
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Discussion

Discussion of the paper:
Ken Shoemake, Animating rotation with 
quaternion curves, ACM SIGGRAPH’85
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for next week...

Forssén and Ringaby, Rectifying rolling 
shutter video from hand-held devices, CVPR’10
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