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LECTURE 7/B:
ROTATION INTERPOLATION
AND SMOOTHING

s Interpolation of SO(3)
* Smoothing of SO(3)
#SO(3) and SE(3)

% Discussion of SILERP article
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A

-« Computer Graphics Animations

% After SEM you might want a smoother camera
trajectory.

* Video stabilisation.

A

¢ Augmented reality.



#SO(3) 1s the group of 3D rotations (3dof)
SO(3) = {R e RP’R'R =1,det(R) =1}



#SO(3) 1s the group of 3D rotations (3dof)
SO(3) = {R e RP’R'R =1,det(R) =1}

Al

¢ An element in SO(3) can be represented by

three elements from the matrix logarithm of R

0 el 9o
logm(R) = | ns 0 —n
_—TLQ T 1 0 i

-
—

2 Or by the 4-elements 1n a unit quaternion
( il )
— (cos —,sin —n
q 2 ) 2



three elements from the matrix logarithm of R

0 el 9o
logm(R) = | ng O =il e sad
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2 Or by the 4-elements 1n a unit quaternion
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*SLERP (see today’s paper) dictates that we
should interpolate two rotations by applying
parts of the intermediate rotation, followed by
the first rotation

SLERP(qq,q2,w) = Q1(Q1_1qZ)w

Al

3¢ Or 1if we use rotation matrices

SLERP(R1, Rz, w) = Riexp(wlog(R] R2))



¢ The SLERP construction 1s
a geodedic on SO(3),

1.e. a walk along the
shortest path, on the
manifold, between the two

rotations.




2¢ The SLERP construction is
a geodesic on SO(3),

1.e. a walk along the
shortest path, on the
manifold, between the two

rotations.

¢ If we use unit quaternions, Eolls L L sphere

the geodesic lies on a 4D
sphere.



.
[

¢ We can interpolate between key rotations on
SO(3) using Bézier curves as 1in today’s

paper.

¢ Another alternative 1s to define cubic splines
directly on the rotation group as described 1n:
Park and Ravani, Smooth Invariant

Interpolation of Rotations, ACM
Transactions on Graphics 1997.
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INTERPOLATION ON SO(3)

A

* A natural cubic spline on R" has the form
ek

Tite by

y(t):az-73—|—bﬂ2—|—cfﬂ—|—di, i —
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Al

AN

¢ A natural cubic spline on R™ has the form

3 i
Lot =Ly
¢ On SO(3) we instead get the expression

Y(t):aiTS—l—biT2—|—CiT—|—di, T =

Al

—

AR fi
R(t) = R;_jeldT T el o _
tit1 — b

“¢b corresponds to angular acceleration, and ¢
1s angular the velocity.

Az
7

¢ Imtialise bg and ¢o by setting them to 0
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Al

“¢a;,bi,ci can be computed recursively, from the
previous values: a;.1,bi.1,ci.1

2

s¢ Park and Ravani’s scheme 1s more efficient
than the Bézier curves of Shoemake'’s

Al

¢ The Spline approximately minimises
integrated angular acceleration of the curve.
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ROTATION SMOOTHING

* Problem: We have a sequence of noisy
rotations, and want a smoother trajectory.

Axis—angle parameters before and after smoothing
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* For each temporal window, this can be solved

by ML as:
R* = . d €0 R7 R :
b Rerggl(s) = seol 2
5% Where

1
dgeo(Rla R2)2 TE §||1Ogm(Rcer2)H?ro



* For each temporal window, this can be solved

by ML as:
R* — ’ do R B
s Rerggl(s) = seol 2
2% Where

1
dgeo(Rla R2)2 TE §||1Ogm(Rcer2)H?ro

RV
7

' Iterative search. Maybe too slow :-(

P
—

 There are fast and nearly as good
alternatives :-)



% For a sequence of unit quaternions
dr » dk+1 5 dk+2
O Op

q, = (cos ~ > sin ?nk)

 Note that q, and — qi represent the
same rotation (double folding property)

5¢ We need to first ensure that q; - q; > 0

— -

* Now we can simply average them!
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Al

¢ It we have a sequence of unit quaternions

qr > dk+1 5, 9dk+2
O i

q; = (cos ~ »Sin ?nk)

NA

* Apply a temporal convolution, followed by a
normalisation to unit length.

2
4= > wiars, =@/ B+ B+ E+E
=r=7)



Al

3 If we have a sequence of rotation matrices

Rk 9 Rk—l—l ? Rk—I—Z ’

We could apply a temporal convolution,

followed by an ogthogonalisation.

el — E wi R g4
Jaiih

UDV?T = svd(R;), Ry =UVT
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P

% Both versions can be shown to be 2nd order

QUA

Taylor approximations of the geodesic distance.

Gramkow, On Averaging Rotations, IJCV01

P
P

* Gramkow also compares both against ML.
Both are very accurate (<6% relative error at

40deg)

A
P

¢ Quaternion variant 1s slightly closer to the ML
solution, and also significantly faster.



ROTATION SMOOTHING

¢ Result (both methods indistinguishable)

Axis—angle parameters before and after smoothing
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e SO(S) is the group of 3D rotations (Sdof)
SO(3) = {R e R”’R'R =1,det(R) = 1}
5 SE(S) is the group of Euclidean rigid body

transformations (3D rotation+3Dtranslation)
(6dof)
SE(3) = SO(3) x R*

* For SE(3) we can similarly define an

exponential map and a log map.



¢ An element G € SE(3) has the matrix form

G:Rt

_O 1_

A

G = exp(£0)

R €S0O(3), t R’

£ =

It 1s the exponential of a twist

logm(R)

0

vV

O_

0 cR
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¢ An element G € SE(3) has the matrix form

S
ke, R €S0O(3), t R’

-
— -

2 It 1s the exponential of a twist

G =exp(£) £ = logng(R) g 0 cR

P
[ e

¢ One could do smoothing and interpolation of
rigid body motions using the geodesic distance

on SE(3) (via the log map). However...
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Al

% It turns out that physically meaningtul
motions do not follow geodesics in SE(3).
Rather (if no external force):

1. The centre of mass moves linearly

2. Rotation happens about the centre of mass

A

¢ Thus we should represent R(t) in object
centered coordinates, and interpolate R(t)
and t(t) separately.



SO(3) AND SE(3)

% A very good treatment of SO(3) and SE(3)
can be tound 1n the book:
Murray et al. A Mathematical Introduction to

Robotic Manipulation, CRC Press. 1994

¢ http://www.cds.caltech.edu/~murray/mlswiki/
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DISCUSSION

¢ Discussion of the paper:
Ken Shoemake, Animating rotation with

quaternion curves, ACM SIGGRAPH'85
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FOR NEXT WEEK...

#* Forssén and Ringaby, Rectifying rolling
shutter video from hand-beld devices, CVPR’10
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