s Uy,
o Tt

C++: Classes

Fundamentals

Giulia Meneghetti

Department of Electrical Engineering
Linkoping University

May 11, 2015

LiU EXPANDING REALITY

Classes and Objects

e A class is a set of objects that share structure (variables) and behaviours
(function).

o An object is an instantiation of a class.

o Definition of a class:

claas cla3a name {
access gpecifier 1:
memberl;
access gpecifier 2:
member?;

} object names;

LiU EXPANDING REALITY

class versus struct

o A class can be defined with the struct keyword: its members are public by
default.

struct person

{
string name;
int age;

o A class defined with the class keyword has private members by default.

class person
{
public:
string name;
int age;

LiU EXPANDING REALITY

Access Specifiers

These keywords determine how the members of the class can be accessed:

e private members are accessible only from within other class members or
"friends”. (object-structure related data)

o protected members are accessible from within the same class (or from
their "friends”), but also from members of their derived classes.
(inheritance)

o public members are accessible where the object is visible. (manipulate the
object)

class Rectangle |
int width, height;
public:
void set _wvaluea (int,int);
int area {woid):
1} rect:

LiU EXPANDING REALITY

Example |

// classes example
#include <iostream>
using namespace std;

class Rectangle {
int width, height;
public:
void set values (int,int);
int area() {return width*height;}
He

void Rectangle::set values (int x, int y) {
width = x;
height = y:

}

int main () {
Rectangle rect;
rect.set values (3,4):
cout << "area: " << rect.areal):
return 0;

LiU EXPANDING REALITY

Exmaple |

// classes example
#include <iostream>
using namespace std;

class Rectangle {
int width, height;
public:
void set values (int,int);
int area() {return width*height;}

void Rectangle::set values (int x, int y)
width = x;
height = y:

}

int main () {
Rectangle rect;

. 7 M R

cout << "area: " << rect.area():
return 0;

LiU EXPANDING REALITY

~

Constructor

The constructor initializes
member variables or allocate
storage.

Constructors are only executed
once, when a new object of that
class is created.

A constructor can also be
overloaded with different versions
taking different parameters.

More recently, C+-+ introduced
the possibility of constructors to
be called using uniform
initialization (use braces {}
instead of parentheses ()).

@O W e

1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
38
31
32

overloading class constructors

#include <iostream>
using namespace std;

class Rectangle {
int width, height;
public:

Rectangle ();

Rectangle (int x, int y)

width(x), height(y) {};

~Rectangle();

int area (void) {return (width*height);}

b

Rectangle::Rectangle () {
width =

height

H

Rectangle::~Rectangle () {

cout << "Rectangle destroied" <<

¥

int main () {
Rectangle rect (3,4);
Rectangle rectb;
Rectangle rectc {2,6};
cout << “rect area: “ <
cout << “rectb area:

cout << “rectc area: " <<
return 8;

endl;

rect.area() <<
< rectb.area() << endl;
rect.area() <<

endl;

endl;

LiU EXPANDING REALITY

Destructor

o A destructor frees up the
memory taken up by the private
variables of the class.

e Anything else?

1
2
3
4
B
6
7
8
9

24

/1 overloading class constructors

#include <iostream>
using namespace std;

- class Rectangle {
int width, height;
public:
Rectangle ();

Rectangle (int x, int y) : width(x), height(y) {};

ectangle(

int area (void) {return (width*height);}
I8
- Rectangle::Rectangle () {
widgth
height = 6;
¥
-[Rectangle::-Rectangle () {
cout << "Rectangle destroied” << endl;
1
- int main () {

Rectangle rect (3,4)
Rectangle rectb;

Rectangle rectc {2,6};
" <« rect.area() << endl;

cout << “"rect area:
cout << “"rectb area:
cout << "rectc area:
return 8;

<< rectb.area() << endl;
<< rect.area() << endl;

LiU EXPANDING REALITY

Pointers to classes - Exmaple |l

int main() {
Rectangle obj (3, 4);
Rectangle * foo, * bar, * baz;
foo = &obj;
bar = new Rectangle (5, 6&);
baz = new Rectangle[2] { {2,5}, {3,6} };
cout << "gbj's area: " << obj.area() << '\n's
cout << "*foo's area: " << foo-rarea() << '\n';
cout << "*bar's area: " << bar->area() << '\n';
cout << "baz[0]'s area:" << baz[0].area() << '\n';
cout << "baz[1l]'s area:" << baz[l].area(} << "\n';
delete bar;
delete[] baz;

return 0;

}
expr i can be read as
*x pointed to by x
&x address of x
X.y member y of object x
X—>y member y of object pointed to by x
(*x) .y member y of object pointed to by x (equivalent to the previous one)
x[0] first object pointed to by x
x[11 second object pointed to by x
x[n] (n+1)th object pointed to by x

LiU EXPANDING REALITY

Overloading operators

Here is a list of all the operators that can be overloaded:

Overloadable operators
+ - * / = < > += = ¥= = << >>
<<= = == = <= = ++ — & & ~ ! |
~ &= o= |= && Il &= [1 () . =% > new
delete newl] delete[]

LiU EXPANDING REALITY

Overloading operators - Example Ill

1// overloading operators example
Z #include <iostream>
3 using namespace std;

5 class CVector {
5| public:

int x,y;

CVector () {}-

CVector (int a,int b) : x(a), y(b) {}
10 CVector operator + (const CVectors):
1113;
13 CVector CVector: :operator+ (const CVector& param) {
14 CVector temp:

15 temp.x = X + param.x;
16 temp.y = y + param.y;
1 return temp:

Jint main () {

CVector foo (3,1):;

CVector bar (1,2);

CVector result:

result = foo + bar;

cout << result.x << ',' << result.y << '\n';
return 0:

B B B3 B3 B BRI BRI B}
]

LiU EXPANDING REALITY

The keyword this - Example |V

The keyword this represents a pointer to the object whose member function is
being executed.

// example on this
#include <iostream>
using namespace std;

class Dummy {
public:
bool isitme (Dummy& param);
bi

bool Dummy::isitme (Dummy& param)
{
if (¶m == this) return true;
else return false;

}

int main () {
Dummy a;
Dummy* b = &a;
if (b->isitme(a))
cout << "yes, &a is b\n";
return 0;

}

LiU EXPANDING REALITY

static member

e static members can be either
data or functions and can exist
only one instance of these
members.

e A static member is shared by all
objects of the class. It is typically
used in an object counter.

What is the output of the
example?

// static members in classes
#include <iostream>
using namespace std;

class Dummy {
public:
static int n;
Dummy () { n++; };
hE

int Dummy: :n=0;

int main () {
Dummy a;
Dummy b[5];
cout << a.n << '\n';
Dummy * c = new Dummy;
cout << Dummy::n << "\n';
delete c;
return 0;

LiU EXPANDING REALITY

const member

o The access to a const members from outside the class is restricted to
read-only.

e The constructor is still allowed to initialize and modify static members.

e The member functions of a const object can only be called if they are
themselves specified as const members.

// constructor on const object
#include <iostream>
using namespace std;

class MyClass {
public:
int x:
MyClass (int val) : x(val) {}
int get() {return x;}
h

int main() {
const MyClass foo(10);

// foo.x = 20; // not valid: x cannot be modified
cout << foo.x << '\n'; // ok: data member x can be read
return 0;

LiU EXPANDING REALITY

Overload constness

o A class may have two member functions with identical signatures except
that one is const and the other is not-const.

o In this case, the const version is called only when the object is itself const,
and the non-const version is called when the object is itself non-const.

// overloading members on constness
#include <iostream>
using namespace std;

class MyClass {
int x;
public:
MyClass (int wval) : x(val) {}
const int& get() const {return x;}
int& get() {return x:;}
br

int main() {
MyClass foo (10);
const MyClass bar (20);
foo.get () = 15; // ok: get() returns intk
// bar.get() = 25; // not valid: get() returns const ints
cout << foo.get() << '\n';
cout << bar.get() << '\n';

return 0;

t

LiU EXPANDING REALITY

Reference

This presentation is based on the C+-+ Tutorial - Classes | and Il :
http://www.cplusplus.com/doc/tutorial/classes/

Next:

Classes (templates and namespaces)

LiU EXPANDING REALITY

http://www.cplusplus.com/doc/tutorial/classes/

’}{‘ Link6ping University

e €Xpanding reality

