
Computer Vision Laboratory

Robot Vision Systems
Exercise 2: Adding functionality to 

sparse matrices in OpenCV

Michael Felsberg

michael.felsberg@liu.se

mailto:michael.felsberg@liu.se


Preliminaries

• Test all functions for a correct result by 

casting to dense matrices and comparing the 

results

• Use a timer to get the timing of your function 

if you want to compare several 

implementations

• Use CV_Assert or exceptions for ensuring 

requirements



Scalar product

• There is no scalar product on 1D sparse 

matrices (sparse vectors)

• Task: implement an efficient function for two 

vectors of type float/double

• Optional: complex and or quaternion

• Hint1: use example from documentation 

(core)

• Hint2: exploit properties of class Scalar



ND-1D product

• There is no matrix-vector product or 

generalized ND-array-vector product

• Task: implement a product between an ND-

array and a vector, where contraction is 

done in the last dimension of the array

• Same data type as for task1

• Optional: an additional parameter 

determines the index to be contracted

• Hint: run one single iterator of the array



ND-MD Product

• Two multi-dim arrays A and B can be 

multiplied in the same way as in the previous 

task, if the index set of B is a subset of the 

one of A

• Task: write a function for contracting A with 

B, given that the index set of B is equal to 

the last M indices in A

• Optional: give an association vector (similar 

to mixchannels) for contracting over an 

arbitrary subset



Specialized functions

• For certain cases, the above defined 

functions have known names, e.g. Frobenius

product.

• Task: define wrappers for matrix-vector 

product, Frobenius product of matrices, and 

Frobenius norm of a matrix



Questions

• What makes it difficult to implement an 

efficient sparse general matrix product?

• How could the previously defined matrix-

vector product be used for the general 

product? Which preprocessing is required?

• Optional: write a function for the general 

matrix product

• Optional2: write an outer product function 

(Kronecker product)


