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and wavelet theory [9, 10]. While pyramids and wavelets speedup the compu-
tation of linear operators and transforms, non-linear scale-space methods are
widely used, e.g. for image enhancement. Non-linear scale-space is based on a
non-stationary or anisotropic di�usivity function [11, 12].

More recently, non-linear methods have been introduced which are less di-
rectly connected to linear scale-space space and di�usion, but allow for faster
processing and partially superior results [13, 14]. The former method is based on
wavelets, whereas the latter one is based on the channel representation [15] and is
called channel smoothing. Combining the channel representation with a system-
atic decimation of spatial resolution, similar to the pyramid approach, has been
applied in blob-detection [16] and in channel-coded feature maps (CCFM) [17,
18], a density representation in spatio-featural domain, see also [19].

In this paper, we propose a new spatio-featural scale-space approach includ-
ing an image reconstruction algorithm, which generates images from CCFMs.
The CCFM scale-space is generated by applying the principles of linear scale-
space to the spatial resolution of CCFMs and simultaneously increasing the res-
olution of feature space. By subsampling this space and subsequent reconstruc-
tion, image evolutions are generated which are very similar to those generated by
iterative methods. We show some examples and propose a scale-selection scheme
based on a new uncertainty relation: the spatio-featural uncertainty relation.

In the Section 2, we introduce lesser known relevant techniques: channel
representation, channel smoothing, CCFMs. In Section 3 we propose the novel
reconstruction algorithm, define the linear scale-space of CCFMs, and formulate
a scale-selection scheme based on a spatio-featural uncertainty relation. In Sec-
tion 4 we present experimental results and in Section 5 we give some concluding
remarks.

2 Required Methods

2.1 The channel representation

Channel coding, also called population coding [20, 21], is a biologically inspired
data representation, where features are represented by weights assigned to ranges
of feature values [22, 15], see Fig. 1. Similar feature representations can also be
found in the visual cortex of the human brain, e.g. in the cortical columns.

The closer the current feature value f to the respective feature interval center
n, the higher the channel weight cn:

cn(f) = k(f � n) , (1)

where k(·) is a suitable kernel function and where f has been scaled such that it
has a suitable range (note that we chose to place the channel centers at integers).
By introducing z as a continuous feature coordinate, kn(z) = k(z � n), and
�f (z) = �(z � f) denoting the Dirac-delta at f , the encoding can be written as
a scalar product

cn(f) = ⇥�f |kn⇤ =
�

�f (z)kn(z) dz (2)
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Encode values in K-D channel vector

xk = Fk( f )      k = 1,…, K

Motivated from population coding, sparse coding
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B-Spline Encoding

• The value of the k-th channel is obtained by 
xk( f ) = B2( f - k)        k = 1…K
( f  is shifted and rescaled
such that the channels
are at integer positions)
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B-Spline Encoding

• The value of the k-th channel is obtained by 
xk( f ) = B2( f - k)        k = 1…K
( f  is shifted and rescaled
such that the channels
are at integer positions)

k = round( f )
x[k-1] = ( f-k-0.5)2/2
x[k] = 0.75-( f-k)2

x[k+1] = (k-f-0.5)2/2
x[1...k-2] = x[k+2...K] = 0
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Channels are ...
• soft histograms
• frame vector

projections
• different from

Parzen window/
kernel density
estimators (not
located at
samples)

0 5 10 15 20
0

1

2
Histogram

0 5 10 15 20
0

2

4
Channel Representation

0 5 10 15 20
0

2

4
Parzen Window Estimator
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Kernel Density Estimation

• Estimate pdf from samples by convolving with 
a kernel function

• Expectation of estimate:

€ 

˜ p f( ) =
1
N

k f − fn( )
n=1

N

∑

€ 

Ε ˜ p f( ){ } = k f − $ f ( ) p $ f ( )∫ d $ f = k ∗ p( ) f( )
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Relation to Channels

• Adding channel representation of samples = 
sampled kernel density estimation

€ 

E 1
N

uk fn( )
n=1

N

∑
# 
$ 
% 

& 
' 
( 

= E ˜ p f( ){ }
f = k

= B2 ∗ p( ) f( ) f = k
k =1...K
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Problem: Image Denoising

• Real data is noisy and discontinuous

• Inlier noise

• Salt&Pepper 
noise

• Image 
discontinuities
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Channel Smoothing
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Decoding
• Normalized convolution of the channel 

vector

• Choice of k0:
–Largest denominator (3-box filter)
–Additional: local maximum€ 

fk0 =
uk0 +1( f ) − uk0−1( f )

uk0−1( f ) + uk0 ( f ) + uk0 +1( f )
+ k0
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LS & Robust Optimization

• Minimize error functional:

• Idea of robust error norm:
–saturated for outliers
–quadratic near the origin

• in Bayesian sense
€ 

E f0( ) = f − f0( )∫
2
p f( ) df

f0 = argminE f0( ) ρ

f - f0
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LS & Robust Optimization

• Minimize error functional:

• Idea of robust error norm:
–saturated for outliers
–quadratic near the origin

• in Bayesian sense

Robust error norm

€ 

E f0( ) = ρ f − f0( )∫ p f( ) df

f0 = argminE f0( ) ρ

f - f0
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LS & Robust Optimization

• Necessary condition:

• Robust influence:
–zero for outliers
–no direct solution

ψ

f - f0

€ 

0 = f − f0( )∫ p f( ) df

f0 = f p f( ) df∫



Computer Vision Laboratory

LS & Robust Optimization

• Necessary condition:

• Robust influence:
–zero for outliers
–no direct solution

Influence function

€ 

0 = ψ f − f0( )∫ p f( ) df

ψ = ρ& ψ

f - f0

Efficient methods required!
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Influence Function of C.R.

€ 

ψ f( ) = B2 f −1( ) − B2 f +1( )

Obtained from linear
decoding:

€ 

fk0 =
uk0 +1( f ) − uk0−1( f )

uk0−1( f ) + uk0 ( f ) + uk0 +1( f )
+ k0
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Error Norm of C.R.

€ 

ρ f( ) = 2B3
1
2
# 

$ 
% 
& 

' 
( − B3 f +

1
2
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$ 
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' 
( − B3 f − 1

2
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$ 
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' 
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Obtained by integrating the influence function:
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Quantization Effect
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Quantization Effect

Not available in 
multiple 

dimensions!
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Channel Smoothing



Computer Vision Laboratory

Image Denoising
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Random Sample 

• Real data is incomplete
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Orientation Estimation
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Disparity Estimation
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Disparity Estimation
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Drawback
• no coherence enhancing filtering possible
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Channel Matrix
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Experiment
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enhancing diffusion

anisotropic
channel smoothing
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Corner Detection
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Motivation CCFM
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CCFMs

• point-wise encoding

5

The entire CCFM algorithm can be summarized into a single encoding equa-
tion according to (1):

cl,m,n(f(x, y)) = kf (f(x, y)� n)kx(x� l)ky(y �m) , (11)

where kf , kx, ky are the 1D kernels in feature domain and spatial domain re-
spectively. Note that x and y are scaled such that they suit the integer spatial
channel centers l, m. Note further, that the previous definition of CCFMs as-
sumes separable kernels, but we could easily use non-separable kernels, e.g. in
the case of orientation data. Similar to (1), the encoding (11) cane be written
as a scalar product in 3D function space or as a 3D convolution:

cl,m,n(f(x, y)) = ⌅⇥0(z � f(x, y))|kf (z � n)kx(x� l)ky(y �m)⇧ (12)

=
⇥⇥⇥

⇥0(z � f(x, y))kf (z � n)kx(x� l)ky(y �m) dz dy dx

= ⇥0(z � f(x, y)) ⇥ kf (�z) ⇥ kx(�x) ⇥ ky(�y)
���
z=n,y=m,x=l

.(13)

The final formulation is the starting point of our new method.

3 A Novel Scale-Space

In this section, we introduce our novel considerations and methods based on
CCFMs computed from grey-scale images, i.e., we consider b : R2 ⇤ R+ instead
of a more general feature function f .

3.1 Channel-Coded Feature Maps and Linear Scale-Space Theory

The starting point is to embed the image b(x, y) as a 3D surface according to

B(x, y, z; 0) = ⇥0(z � b(x, y)) . (14)

Generate a 3D � scale-space (Gaussian as a special case � = 1):

B(x, y, z; s) = k�(x, y, z; s) ⇥B(x, y, z; 0) (15)

Downsampling in all dimensions: CCFM!
Relation to wavelets
Discussion of sampling densities - but pushed to next section

3.2 Image Reconstruction from CCFMs

algorithm
examples
properties (non-linear scale-space)
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Object Recognition
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COIL-100 Objects
• All 100 objects
• 12 / 60 view for training / evaluation
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New Linear Scale-Space
• simultaneously increasing scale in spatial 

domain and feature domain is
obviously wrong

• from a statistical point of
view it makes sense to
increase feature
resolution with
decreasing spatial 
resolution
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In channel representations features are represented by
weights assigned to ranges of feature values, similar to his-
tograms but exploiting smooth bins. The closer the current
feature value � to the respective feature interval center n,
the higher the channel weight fn:

fn(�) = k(� � n) n ⇧ N , (9)

where k(·) is a symmetric, unimodal kernel function and
where � has been scaled such that it has a suitable range
(note that we chose to place the channel centers at integers).

In what follows, we have been using quadratic B-splines
as kernel function, since they are smooth and easy to for-
mulate in the z-domain [7]:

B2(�) =

�
⌅⌅⌅⇤

⌅⌅⌅⇥

(� + 3/2)2/2 �3/2 < � ⌅ �1/2
3/4� �2 �1/2 < � ⌅ 1/2
(� � 3/2)2/2 1/2 < � < 3/2
0 otherwise

(10)

Comparing (9) with a kernel density estimator, the only
difference is that the kernel function is placed at equidistant
positions and not on the samples drawn from the distribu-
tion. Since the kernel is symmetric, the estimated coeffi-
cient at the discrete position is the same in both cases and
the distribution of �, p�, is approximated by fn in expecta-
tion sense [7]:

E{fn(�)} = (p� ⇤ k)(n) = (p� ⇤B2)(n) . (11)

A multi-dimensional channel representation is formed
for a set of features by taking the Cartesian product of the
respective one-dimensional representations. If the spatial
coordinates are contained in the feature set, a channel-coded
feature map (CCFM) [15] is generated, representing the
spatio-featural density. For instance one might consider lo-
cal orientation, hue, and saturation as local image features,
resulting in a 5D CCFM. For practical (computational ef-
fort) and statistical (significance) reasons, the number of
spatial and featural channels is not independent, but should
be chosen reciprocally. This is also confirmed by a theoreti-
cal lower bound for the uncertainty product of feature value
and spatial location [6].

2.3. Spatio-Featural Hierarchies in Object Recog-
nition

As motivated in the introduction section, many ob-
ject recognition approaches require a hierarchical spatio-
featural representation, e.g., a pyramid of CCFMs. As
a concrete example, let us consider the example of an
orientation-based CCFM scale-space. At the finest spatial
resolution, we have a minimum number of orientation chan-
nels (three) which directly corresponds to orientation esti-
mation using the structure tensor [8]. At the next level, we
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Figure 1. Going upwards in the spatio-featural pyramid reduces
spatial resolution and increase feature resolution. Going down-
ward increases spatial resolution and reduces feature resolution.

halve the spatial resolution and double the orientation res-
olution. Thus, we can distinguish two different local ori-
entations, i.e., we can estimate curvature or detect corners.
Alternatively, we can start with four orientation channels,
representing positive and negative responses of a Gaussian
derivative. On the second level, we obtain eight orienta-
tion channels, which, if combined with four by four spa-
tial channels, yields a structure similar to the SIFT descrip-
tor [16], although with quadratic histogram bins instead of
linear ones.

The interpretation of feature resolutions at higher hier-
archy levels (and lower spatial resolutions) is usually ob-
tained by means of machine learning, e.g., support vector
machines. Basically, one could also try to interpret higher
feature resolutions analytically or one could use machine
learning at lower levels. Independently of the further pro-
cessing at different levels, we need a generic feature de-
scription at all levels and density estimates are such an op-
tion, since probability theory allows to combine different
entities. However, it is impractical to compute CCFMs or
other density estimate separately at all levels of the pyra-
mid and one would like to have a staged process that builds
the pyramid successively. However, this means that higher-
resolution feature density estimates have to be estimated
from several lower-resolution estimates when traversing the
pyramid towards lower spatial resolutions, c.f. Fig.1. If
such a method is at hand, it can also be used to traverse
the hierarchy in the opposite direction by increasing spatial
resolution while reducing feature resolution. Together with
masking or filtering the densities before downsampling, this
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Algorithm 7 CCFM smoothing algorithm.
Require: f ⌅ [1.5;N�0.5]
Require: x = (x,y)T ⌅ [1.5;X�0.5]⇥ [1.5;Y �0.5]
1: C⇤ CCFM(x,y, f )
2: for all x do
3: c f ⇤ interpolate(C,x)
4: [f(x) E(x)]⇤ decode(c f )
5: i(x)⇤ argmaxn En(x)
6: [ f̂ (x) Ê(x)]⇤ [ fi(x)(x) Ei(x)(x)]
7: end for

9 Conclusion

In this review paper, we have given a compact and concise overview over the field of
channel-based filtering. Research on this topic is still in progress and more results
on the efficient computation and other types of features are to be expected in the
near future. Code for most of the presented work is available at the authors website.
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