

Tutorial on Channel Representations

Michael Felsberg

Computer Vision Laboratory Linköping University, Sweden

What are channels ?

- distribution functions (Granlund, 1973)
- channel coding (Snippe/Koenderink, 1992)
- bandpass channels (Howard/Rogers, 1995)
- population coding (Zemel et al., 1998)
- channel representation (Granlund, 2000)
- channel filtering (Felsberg/Granlund, 2003)
- channel smoothing (Felsberg et al., 2006)
- "bilateral filtering" (Paris/Durand, 2006)
- orientation scores (Duits et al., 2007)
- channel coded feature maps (Jonsson/ Felsberg, 2007)
- distribution fields (Sevilla-Lara/Learned-Miller, 2012)

- distribution functions (Granlund, 1973)
- channel coding (Snippe/Koenderink, 1992)
- bandpass channels (Howard/Rogers, 1995)
- population coding (Zemel et al., 1998)
- channel representation (Granlund, 2000)
- channel filtering (Felsberg/Granlund, 2003)
- channel smoothing (Felsberg et al., 2006)
- "bilateral filtering" (Paris/Durand, 2006)
- orientation scores (Duits et al., 2007)
- channel coded feature maps (Jonsson/ Felsberg, 2007)
- distribution fields (Sevilla-Lara/Learned-Miller, 2012)

Channel Representation

Encode values in K-D channel vector

$$x_k = F_k(f) \qquad k = 1, \dots, K$$

Motivated from population coding, sparse coding

Channel Representation

Motivated from population coding, sparse coding

Channel Representation

Motivated from population coding, sparse coding

B-Spline Encoding

• The value of the *k*-th channel is obtained by $x_k(f) = B_2(f-k)$ k = 1...K(*f* is shifted and rescaled such that the channels are at integer positions)

B-Spline Encoding

• The value of the *k*-th channel is obtained by $x_k(f) = B_2(f - k)$ k = 1...K(*f* is shifted and rescaled such that the channels are at integer positions)

$$k = \text{round}(f)$$

$$x[k-1] = (f-k-0.5)^2/2$$

$$x[k] = 0.75 - (f-k)^2$$

$$x[k+1] = (k-f-0.5)^2/2$$

$$x[1...k-2] = x[k+2...K] = 0$$

Channels are ...

- soft histograms
- frame vector projections
- different from ⁰ Parzen window/4 kernel density ² estimators (not ⁰ located at samples)

Kernel Density Estimation

 Estimate pdf from samples by convolving with a kernel function

$$\tilde{p}(f) = \frac{1}{N} \sum_{n=1}^{N} k(f - f_n)$$

• Expectation of estimate:

$$\mathbf{E}\left\{\tilde{p}(f)\right\} = \int k(f - f')p(f') df' = (k * p)(f)$$

Relation to Channels

 Adding channel representation of samples = sampled kernel density estimation

$$E\left\{\frac{1}{N}\sum_{n=1}^{N}u_{k}(f_{n})\right\} = E\left\{\tilde{p}(f)\right\}\Big|_{f=k}$$
$$= \left(B_{2}*p\right)\left(f\right)\Big|_{f=k} \qquad k=1...K$$

Problem: Image Denoising

- Real data is noisy and discontinuous
 - Inlier noise
 - Salt&Pepper noise
 - Image discontinuities

Decoding

• Normalized convolution of the channel vector

$$f_{k_0} = \frac{u_{k_0+1}(f) - u_{k_0-1}(f)}{u_{k_0-1}(f) + u_{k_0}(f) + u_{k_0+1}(f)} + k_0$$

- Choice of k_0 :
 - –Largest denominator (3-box filter)–Additional: local maximum

 $f - f_0$

LS & Robust Optimization

- Minimize error functional: $E(f_0) = \int (f - f_0)^2 p(f) df$ $f_0 = \arg \min E(f_0)$ • Idea of robust error norm:
 - –saturated for outliers
 –quadratic near the origin
- in Bayesian sense

LS & Robust Optimization

• Minimize error functional: $E(f_0) = \int \rho(f - f_0) p(f) df$

$$f_0 = \arg\min E(f_0)$$

- Idea of robust error norm: -saturated for outliers
 -quadratic near the origin
- in Bayesian sense

LS & Robust Optimization

• Necessary condition: $0 = \int (f - f_0) p(f) df$ $f_0 = \int f p(f) df$ • Robust influence: -zero for outliers -no direct solution

tΨ

LS & Robust Optimization

Necessary condition:

$$0 = \int \psi(f - f_0) p(f) \, df$$

$$\psi = \rho'$$
 Influence function

- Robust influence:
 - -zero for outliers
 - –no direct solution

Efficient methods required!

Influence Function of C.R.

Obtained from linear decoding:

$$\psi(f) = B_2(f-1) - B_2(f+1)$$

$$f_{k_0} = \frac{u_{k_0+1}(f) - u_{k_0-1}(f)}{u_{k_0-1}(f) + u_{k_0}(f) + u_{k_0+1}(f)} + k$$

Error Norm of C.R.

Obtained by integrating the influence function:

$$\rho(f) = 2B_3\left(\frac{1}{2}\right) - B_3\left(f + \frac{1}{2}\right) - B_3\left(f - \frac{1}{2}\right)$$

Quantization Effect

Quantization Effect

Channel Smoothing

Algorithm 1 Channel smoothing algorithm.

Require:
$$f \in [1.5; N - 0.5]$$

1: for $n = 1$ to N do
2: $c_n \leftarrow B_2(f - n)$
3: $c_n \leftarrow g_\sigma * c_n$
4: end for
5: $[\hat{f}, \hat{\rho}] \leftarrow \text{decode}(\mathbf{c})$

Image Denoising

Random Sample

Real data is incomplete

Orientation Estimation

Disparity Estimation

Disparity Estimation

Drawback

no coherence enhancing filtering possible

Channel Matrix

Channel Matrix

2

Experiment

coherence enhancing diffusion channel smoothing

anisotropic

Experiment

coherence enhancing diffusion channel smoothing

anisotropic

Corner Detection

Motivation CCFM

frame#: 103 resolution: 78 x 78 channels: 19

CCFMs

point-wise encoding

 $c_{l,m,n}(f(x,y)) = k_f(f(x,y) - n)k_x(x - l)k_y(y - m)$

Object Recognition

COIL-100 Objects

- All 100 objects
- 12 / 60 view for training / evaluation

New Linear Scale-Space

- simultaneously increasing scale in spatial domain and feature domain is obviously wrong
- from a statistical point of view it makes sense to increase feature resolution with decreasing spatial resolution

CCFM Smoothing

Algorithm 7 CCFM smoothing algorithm.

Require: $f \in [1.5; N - 0.5]$ **Require:** $\mathbf{x} = (x, y)^T \in [1.5; X - 0.5] \times [1.5; Y - 0.5]$ 1: $\mathbf{C} \leftarrow \text{CCFM}(x, y, f)$

- 2: for all x do
- 3: $\mathbf{c}_f \Leftarrow \operatorname{interpolate}(\mathbf{C}, \mathbf{x})$
- 4: $[\mathbf{f}(\mathbf{x}) \mathbf{E}(\mathbf{x})] \Leftarrow \operatorname{decode}(\mathbf{c}_f)$
- 5: $i(\mathbf{x}) \Leftarrow \arg \max_n E_n(\mathbf{x})$
- 6: $[\hat{f}(\mathbf{x}) \, \hat{E}(\mathbf{x})] \Leftarrow [f_{i(\mathbf{x})}(\mathbf{x}) \, E_{i(\mathbf{x})}(\mathbf{x})]$
- 7: end for

frame#: 103 resolution: 78 x 78 channels: 19

CCFM Smoothing

Algorithm 7 CCFM smoothing algorithm.

Require: $f \in [1.5; N - 0.5]$ **Require:** $\mathbf{x} = (x, y)^T \in [1.5; X - 0.5] \times [1.5; Y - 0.5]$ 1: $\mathbf{C} \leftarrow \text{CCFM}(x, y, f)$

- 2: for all x do
- 3: $\mathbf{c}_f \Leftarrow \operatorname{interpolate}(\mathbf{C}, \mathbf{x})$
- 4: $[\mathbf{f}(\mathbf{x}) \mathbf{E}(\mathbf{x})] \Leftarrow \operatorname{decode}(\mathbf{c}_f)$
- 5: $i(\mathbf{x}) \Leftarrow \arg \max_n E_n(\mathbf{x})$
- 6: $[\hat{f}(\mathbf{x}) \, \hat{E}(\mathbf{x})] \Leftarrow [f_{i(\mathbf{x})}(\mathbf{x}) \, E_{i(\mathbf{x})}(\mathbf{x})]$
- 7: end for

frame#: 103 resolution: 78 x 78 channels: 19