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Introduction

This computer exercise has four parts:

1. A chapter with preparatory exercises that should be completed before
you arrive at the lab session. This is a crucial for understanding of the
lab and not optional.

2. A second part where you will investigate how to rectify stereo images,
using a fundamental matrix computed from known camera matrices.
Rectification is done via rectifying homographies that transform image
coordinates. After applying the rectification to the two images, corre-
sponding points in the images are found at the same row coordinate.

3. In practice the camera matrices are not known, instead the fundamen-
tal matrix is estimated directly from the image data. This is done in
the third part of the exercise.

4. In the fourth part, you will investigate the problem of triangulation,
where 3D points are computed from their corresponding image coor-
dinates.

Extra Tasks marked with an “Extra” box may be temporarily skipped and com-
pleted when the other tasks are finished.
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1 Preparatory exercises

Before coming to the computer session it is necessary to read through the
course material related to lecture D on stereo geometry; the lecture notes,
the specified chapters in the compendium [3] (or the book by Hartley and
Zisserman [1]), and the paper by Loop & Zhang [2]1. It is not necessary that
you understand all details of the paper, but at least have an idea of which
problem is addressed and in principle how it is solved. In the following you
will find a number of home exercises to be answered before the session.

1. Let H1 and H2 be a pair of rectifying homographies and let F21 be the
fundamental matrix between image 1 and image 2, before the homogra-
phies are applied. Which relation must H1 and H2 satisfy in order to be
rectifying homographies?

ANSWER:

2. If the camera matrices are known, the fundamental matrix that relates
corresponding points in image 1 and 2 can be computed from the cameras.
How? Which information do you need and how do you compute it from
the camera matrices?

ANSWER:

3. In Section 3.1, the fundamental matrix is used to map points in one
image to epipolar lines in the other image, inside a for-loop. Which com-
putations take place inside the for-loop? Why?

ANSWER:

1Equation (17) in this paper is incorrect, the upper left 2× 2 sub-matrix should have
the opposite sign.
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4. If you do an SVD of F: F = USVT , what characteristic property do
you expect to find for S in this case that F is a fundamental matrix? As a
consequence, what information do you expect to find in the third column
of U and V, respectively?

ANSWER:

5. How can you compute the epipolar points from the matrix F21 repre-
senting the fundamental matrix?

ANSWER:

6. Given the two epipoles, the Matlab function LoopZhangDistortion

computes the error within a certain interval for λ and plots the error and
its approximate derivative. Look at the code of this function (useMatlab
command type) and verify that it performs the computations described
in section 5.1 of the paper [2]. Does it?

ANSWER:

7. In Section 3.2, the homographies Hp1, Hp2, Hr1 and Hr2 are computed in
accordance with the rectification method of Loop and Zhang. Verify that
the Matlab code works in accordance with [2]. In particular, verify that
these calculations correspond to equations (16) and (17) in the paper2.
Do they?

ANSWER:
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8. In Section 3.3, the homographies H1 and H2 are used to rectify the two
images, by applying them onto the pixel coordinates. Describe how the
resulting homography T depends on H1 and H2.

ANSWER:

9. A possible solution to the problem of estimating rectifying homogra-
phies is to produce rectified images that are both upside down compared
to what you expect. What transformation matrix on the homogeneous
coordinates will flip vertical coordinates?

ANSWER:

10. In Section 4, the fundamental matrix is estimated from image data.
The computations are found in the Matlab function fmatrix n8pa. Ex-
amine the file fmatrix n8pa and identify where in the function each step
is implemented. Can you do that?

ANSWER:

11. What does it mean for the solution of the problem of estimating the
fundamental matrix if there is more than one small singular value?

ANSWER:
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12. In Section 5 you will need to compute the coordinates of a 3D point
given its image coordinates in two images, y1 and y2, and the correspond-
ing camera matrices C1 and C2. Write a Matlab function that computes
the 3D coordinates xb from the image points and camera matrices, using
one of the linear methods described in the lecture.

ANSWER:
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2 Starting Matlab and setting things up

Start Matlab and add the path to the Matlab functions that are used in
these exercises:

addpath /site/edu/bb/MultidimensionalSignalAnalysis/ExerciseD/

2.1 Useful Matlab functions

These functions are useful in the exercise:

• null() computes the (right) null space of a matrix.

• svd() computes the singular value decomposition of a matrix.

• drawline() draws a line in the current figure, the line is represented
in dual homogeneous coordinates.

• liu crossop() computes the 3× 3 cross product matrix.

• image resample() resamples an image using a homography.

• map points() transforms 2D coordinates using a homography.

• fmatrix nn8pa() an implementation of the 8-point algorithm. See
also fmatrix n8pa().

• vgg get nonhomg() computes normalised coordinates from homoge-
neous coordinates of points in 2D or 3D.

Look at the Matlab code (with type) to see which arguments the functions
use and how they are implemented.

3 Rectifying homographies

In this exercise, a pair of rectifying homographies will be determined accord-
ing to the method described in the paper by Loop & Zhang [2]. This method
determines three homographies for each image, a projective homographyHp,
a similarity homography Hr, and a shearing homography Hs. The resulting
homography H is given by the combination H = HsHrHp. Both Hp and Hs

are determined such that they minimize the resulting geometric distortion
produced by H, while Hr is determined to make the epipolar lines parallel.
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Hs can initially be set to the identity mapping, and the resulting homo-
graphies will rectify the images, but not with minimal geometric distortion.
The final step of determining Hs is left as an extra exercise.

3.1 Introduction

In this exercise, we will try to rectify two images of a dinosaur (included
in the standard image sequence from Oxford University). Load the images
and the corresponding camera matrices, and display the images:

im1=imread(’dinosaur0.png’);

im2=imread(’dinosaur5.png’);

load(’dino_Ps’,’P’);

figure(1);image([im1 im2]);

C1=P{1}; % The camera matrix corresponding to image 1

C2=P{6}; % The camera matrix corresponding to image 2

Use the expression for the fundamental matrix that you derived in prepara-
tory exercise 2:

F21 = ...

This matrix satisfies yT
2 F21y1 = 0 for corresponding points (in the ideal case

with no noise).

Use the correspondences select() function to get coordinates of 4–5 cor-
responding image points. Make sure to maximize the window to get accu-
rate correspondences. Do not select points that all lie in a common
plane:

[y1,y2]=correspondences_select(im1,im2);

Then append a row of ones to your coordinate arrays, e.g.: y1(end+1,:)=1;

QUESTION: With what accuracy can you determine the coordinates of
corresponding points in these images?

ANSWER:

The fundamental matrix maps a point in one image to an epipolar line in
the other image:
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l2=F21*y1;

l1=F21’*y2;

for ix=1:size(y1,2),

l1(:,ix)=-l1(:,ix)/norm(l1(1:2,ix))*sign(l1(3,ix));

l2(:,ix)=-l2(:,ix)/norm(l2(1:2,ix))*sign(l2(3,ix));

end

Plot the points and the lines:

figure(2);clf;

subplot(1,2,1);image(im1);hold on;

subplot(1,2,2);image(im2);hold on;

for k=1:size(y1,2),

subplot(1,2,1);plot(y1(1,k),y1(2,k);drawline(l1(:,k));

subplot(1,2,2);plot(y2(1,k),y2(2,k);drawline(l2(:,k));

end

QUESTION: What are the Cartesian coordinates of the two epipoles?
Where are they in the images?

ANSWER:

QUESTION: Do the epipolar lines intersect with the corresponding
points? Are the epipolar lines in each of the two images parallel? Is
this result consistent with the positions of the epipoles?

ANSWER:

Compute the distances between the epipolar lines in an image and the cor-
responding points:

8



abs(sum(y1.*l1))

abs(sum(y2.*l2))

QUESTION: Are the distances of the same order as the estimated accu-
racy?

ANSWER:

Use the Matlab code that you produced in preparatory exercise 5 to de-
termine the two epipoles:

...

e12 = ...

e21 = ...

QUESTION: Did you get epipolar points that are consistent with your
observed epipolar lines?

ANSWER:

3.2 The Loop & Zhang method

Given that we now have a fundamental matrix and the corresponding epi-
poles, we can compute the rectifying homographies H1 and H2. This is done
by minimizing a geometric distortion, eq. (11), over z = (λ 1)T . In [2], it
is described how to minimize this distortion based on iterative methods.
Here, we will instead minimize the distortion by plotting the distortion as a
function of λ and estimate which λ gives the minimal distortion.

At the computer exercise, use this function to plot the error for different
intervals for λ and VERIFY that you can determine the minimum of eq. (11),
at least to some degree of accuracy. Hint: The optimal λ lies in the range
−5 < λ < 5. Use the zoom-tool of Matlab’s figure window and Matlab
function diff to get approximation of derivatives. Functions min and find

may also be useful. Examples:

w=720;h=576; % Image width and height

lambda = start:step:stop; %Replace with the interval you choose

dist = LoopZhangDistortion(e12,e21,w,h,lambda);

figure(...);plot(lambda,dist);

set(gca,’YScale’,’log’);grid on;

lmin = lambda(dist==min(dist)) %Print minimum lambda
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QUESTION: How did you verify that you have found the minimum?

ANSWER:

QUESTION: What value of λ gives the minimal error?

ANSWER:

Compute the projective homographies for the two images given by this λ:

lambda = ... % Insert your value here

w1=liu_crossop(e12)*[lambda 1 0]’;

w1=w1/w1(3);

w2=F21*[lambda 1 0]’;

w2=w2/w2(3);

Hp1=[1 0 0;0 1 0;w1’];

Hp2=[1 0 0;0 1 0;w2’];

With the projective homographies determined, the similarity homographies
can be computed directly. This computation includes a free parameter vcp,
that can be set to zero:

vcp=0;

Hr1=[F21(3,2)-w1(2)*F21(3,3) w1(1)*F21(3,3)-F21(3,1) 0;

F21(3,1)-w1(1)*F21(3,3) F21(3,2)-w1(2)*F21(3,3) F21(3,3)+vcp;

0 0 1];

Hr2=[w2(2)*F21(3,3)-F21(2,3) F21(1,3)-w2(1)*F21(3,3) 0;

w2(1)*F21(3,3)-F21(1,3) w2(2)*F21(3,3)-F21(2,3) vcp;

0 0 1];

According to the paper, H1 = Hr1Hp1 and H2 = Hr2Hp2 are rectifying
homographies.

QUESTION: Given the homographies that you now have computed, how
can you verify this relation? Does it work?

ANSWER:
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3.3 Rectifying the images

Now that we have a pair of rectifying homographies, we can transform the
two images accordingly and verify that the result is correct. This is done
by computing where each image point (pixel) in the RESULTING image is
found in the original image. In general this position is not at an integer
coordinate, so we need to interpolate (linear interpolation) a pixel value at
that point which then is used in the resulting image.

In order to produce a useful image we must also take care about which
coordinate system the resulting image uses. Each image is transformed by
its own general homography which means that the resulting images may
end up in arbitrary positions and orientations relative the origin. Thus, we
transform both images with a common translation and scaling to assure that
both images fit inside the same width and height as the original images:

oldcorners=[1 w w 1;1 1 h h];

newcorners1=map_points(H1,oldcorners);

newcorners2=map_points(H2,oldcorners);

mincol=min([newcorners1(1,:) newcorners2(1,:)]);

minrow=min([newcorners1(2,:) newcorners2(2,:)]);

T=[1 0 -mincol+1;0 1 -minrow+1;0 0 1]

newcorners1=map_points(T*H1,oldcorners);

newcorners2=map_points(T*H2,oldcorners);

maxcol=max([newcorners1(1,:) newcorners2(1,:)]);

maxrow=max([newcorners1(2,:) newcorners2(2,:)]);

T=inv(diag([maxcol/w maxrow/h 1]))*T

QUESTION: How can you see that T is a scaling and translation trans-
formation?

ANSWER:

Finally, transform the images and display the result

imr1=image_resample(double(im1),T*H1,h,w);

imr2=image_resample(double(im2),T*H2,h,w);

figure(3);image(uint8([imr1 imr2]));
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Transform the points that were initially chosen. These should now lie (ap-
proximately) on the same row in both images. Verify this:

map_points(T*H2,y2(1:2,:))

map_points(T*H1,y1(1:2,:))

QUESTION: Do the transformed images and points appear rectified?

ANSWER:

If you get images that are upside down, use the flip transformation you de-
rived in preparatory exercise 9 to turn them the right way. In this case multi-
ply the flip transformation matrix onto H1 and H2 and redo the calculations
in this section. In particular, you should apply this transformation
before computing the transformation T.

Extra Determine also the shearing homographies Hs1 and Hs2 which reduce the
total geometric error even more while keeping the resulting homographies
rectified. See section 7 of the paper. Verify your results.

4 The fundamental matrix and
the 8-point algorithm

In this task, we will go through the steps of the 8-point algorithm for estima-
tion of the fundamental matrix F. The algorithm has its name from the fact
that at least 8 pairs of corresponding points are required for determining the
fundamental matrix with this method.

Given a set of N ≥ 8 corresponding point pairs {y1k,y2k}, the 8-point
algorithm consists of the following steps:

1. Form a data matrix A from the image coordinates.

2. Let Fvec be the right singular vector corresponding to the smallest
singular value, alternatively the eigenvector of ATA corresponding to
the smallest eigenvalue.

3. Reshape Fvec to a matrix F.

4. Enforce the constraint detF = 0 which gives F0.

Use the same images as in the previous task. Identify 8 corresponding points
in the two images and insert the homogeneous coordinates in the columns
of matrices y1 and y2:
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y1 = [ ... ];

y2 = [ ... ];

Now use the function F = fmatrix nn8pa(y1,y2) to estimate the funda-
mental matrix. The function prints the singular values of the data matrix
A and, ideally, there should be a only one of them that is significantly
smaller than the others.

QUESTION: Is this the case?

ANSWER:

If you do not get a well-defined solution, it may be that the points you
have chosen are positioned in 3D space approximately in a plane. Such a
configuration of the 3D points results in degeneracies in the estimation. In
this case, you may need to select some of the points differently such
that they are not in a plane, alternatively add more corresponding
image points.

Compare this new estimate of the fundamental matrix to the matrix F21

determined in the previous section.

QUESTION: How can you do this comparison?

ANSWER:

A good way to determine the quality of a fundamental matrix is to see how
points in one image are mapped to epipolar lines in the other image and how
close these lines are to the corresponding points. Use some Matlab code
from the previous task to compute the epipolar lines, display the points and
lines, and compute the distances from the lines to the points:
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figure(1);clf;

subplot(1,2,1);image(im1);hold on;

subplot(1,2,2);image(im2);hold on;

l2=F*y1;

l1=F’*y2;

for k=1:size(y1,2),

l1(:,k)=-l1(:,k)/norm(l1(1:2,k))*sign(l1(3,k)); %Normalise dual

l2(:,k)=-l2(:,k)/norm(l2(1:2,k))*sign(l2(3,k)); %homog. coord.

end

for k=1:size(y1,2),

subplot(1,2,1);plot(y1(1,k),y1(2,k),’or’);drawline(l1(:,k));

subplot(1,2,2);plot(y2(1,k),y2(2,k),’or’);drawline(l2(:,k));

end

abs(sum(y1.*l1))

abs(sum(y2.*l2))

QUESTION: Is F a better or worse estimate of the fundamental matrix
compared to F21? Why?

ANSWER:

Extra In the following, some of the details of the 8-point algorithm are examined
more closely. This can be done by

• Examine how the quality of the estimated F changes when the number
of corresponding points pairs, N , increases. How does the smallest
singular value of the data matrix change when N increases?

• Examine how the quality of the estimated fundamental matrix changes
if no enforcement of the constraint detF = 0 is made.

This can be done be modifying the function fmatrix nn8pa(), but remem-
ber to keep the original file as a copy.

Extra Compute F using the 8-point algorithm together with the Hartley-normal-
isation, using fmatrix n8pa(). Investigate how the quality of the estimated
F changes compared to the non-normalised case.
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5 Triangulation

Triangulation or reconstruction includes methods for determining the 3D
point x given its projection onto two image points y1 ∼ C1x and y2 ∼ C2x.
In this case, we assume that the image points y1 and y2 are known together
with the camera matrices C1 and C2.

This exercise can be applied to a data set that consists of 450 3D points and
their projections onto two images and the corresponding camera matrices.
The 3D coordinates in x have units in millimeters, and the 2D coordinates
in y1 and y2 are in pixels. The two images and the camera matrices are also
included:

load(’tridata’,’x’,’y1’,’y2’,’im1’,’im2’,’C1’,’C2’);

The image points y1 and y2 have been extracted from the images automat-
ically using an interest point detector. They are adjusted for lens distortion
but the images are not resampled to the adjusted coordinates. Thus, the
extracted image coordinates do not fall exactly onto point features in the
images.

figure(1);image([im1 im2]);

colormap(gray(256));hold on;

for k=1:size(y1,2),

plot(y1(2,k),y1(1,k),’ro’);

plot(y2(2,k)+size(im1,2),y2(1,k),’ro’);

end

hold off;

Use the function that you have written in preparatory exercise 12 to trian-
gulate the 3D points.

xrec=[];

for ix=1:length(y1),

recpoint = ...;

xrec=[xrec recpoint];

end

Plot the 3D coordinates and verify that the reconstructed points appear as
they should:

figure(3);plot3(xrec(1,:),xrec(2,:),xrec(3,:),’o’);

QUESTION: Do they?

ANSWER:

15



QUESTION: Compute the error in the reconstructed 3D coordinates rel-
ative to the true 3D coordinates in x (units in mm). What is the mean of
the error, and what is its standard deviation?

ANSWER:

QUESTION: Compute the reprojection error by projecting the estimated
3D points into each of the two images and computing the error relative to
the given image coordinates in y1 and y2 (units in pixels). What is the
mean and standard deviation?

ANSWER:

Extra In the following, the triangulation method is investigated more closely. This
can be done by implementing two different triangulation methods and in-
vestigate how their 3D errors and reprojection errors differ.

Extra Test estimation of the 3D points using Hartley normalization. How much
do the positions of the 3D points differ with and without normalization?
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