Name:

ID number: LiU-ID:

Passed: Date:

Extra

TSBB06 Computer Exercise F
Over-sampling and
the Discrete Wavelet Transform

Developed by Klas Nordberg

Computer Vision Laboratory, Linkoping University, Sweden

October 31, 2018

Introduction

In the first part of this exercise you will work with various aspects of over-
sampling and observe that over-sampling is a technique that, when properly
implemented, can help reduce the reconstruction noise that originates from
the sampling noise (quantization noise). In the second part you will work
with the discrete wavelet transform, and in the end see how it can be used
for a simple methods that compress a signal.

Sections marked with an “Extra” box may be temporarily skipped and com-
pleted when the other exercises are finished and if there is time left.




1 Preparatory exercises

Preparatory exercises

Before coming to the computer exercise it is necessary that you have a clear
picture of the material related to frames (lecture 2F) and of the continuous
and discrete wavelet transform (lecture 2F to 2H). Below, you will find a
number of preparatory exercises to be answered before the session in order
to save time for you, the assisting teacher, and your fellow students. You
need to read and understand the specific tasks of the rest of the guide in
order to answer some of the preparatory exercises.

1. What is the expected appearance of the Fourier transform of the down-
sampled signal in relation to the Fourier transform of the original signal
sbl in Section 3.17

ANSWER:

2. What is the expected appearance of the reconstructing filter in this
case, in the signal domain and in the frequency domain?

ANSWER:

3. How close do you expect the reconstructed signal in Section 3.1 to be
relative to the original signal? Why

ANSWER:

4. In order to predict the results of adding noise to the samples, you need
to assume two critical properties of this noise. Which two properties?
Hint: se lecture 2F!

ANSWER:




5. What mean and standard deviation do you expect for the error in the
reconstructed signal sblrec8n in Section 3.27

ANSWER:

6. What is the expected appearance of the reconstructing filter in Section
3.3, in the signal domain and in the frequency domain? How does it differ
from the previous one?

ANSWER:

7. What mean and standard deviation do you expect to get when you
reconstruct the signal in Section 3.37 Why?

ANSWER:

8. In Section 3.3, the reconstructing functions form a basis of some sub-
space of the signal space. What subspace of the signal space does this
basis span? Hint: What is their bandwidth in the frequency domain?

ANSWER:




9. How can you use SVD to verify if a matrix that holds a set of vectors
in its column corresponds to a subspace basis or to a subspace frame?

ANSWER:

10. What mean and standard deviation of the reconstruction error do you
expect in Section 3.47 Why?

ANSWER:

11. What is the difference between variance and standard deviation? Are
you sure about how you formulated the answer of the previous question?

ANSWER:

12. In Section 3.4, the reconstructing functions form a frame of some
subspace of the signal space. What subspace of the signal space does this
frame span? Hint: What is their bandwidth in the frequency domain?

ANSWER:

13. If you get a finite number, k, of samples from a noise source that
has zero mean, does this automatically imply that the average of the k
samples is equal to zero?

ANSWER:




14. Given one of the filters in Section 4, e.g., hy, how are the other three
filters related to hy in an orthogonal filter bank? Assume that the filters
are real and give the relation between the filters in the signal domain.

ANSWER:

15. Make an illustration of the complete processing structure that is used
in Section 4.2 similar to the figure of two-channel filter bank above. The
figure should specify what filters are used, and where you find the input
and output signals as well as the signals a1, d;, a2, d2 and aqyec.

ANSWER:




16. Examine the code marked (A) in Section 4.2 and describe what infor-
mation you will find in the vector ad for each iteration of the for-loop.

ANSWER:

17. Examine the code marked (B) in Section 4.2 and describe what infor-
mation you will find in the vector ad for each iteration of the for-loop.

ANSWER:




2 Starting and setting things up

In order to simplify the exercises, you should write the Matlab code that you
use into a script file that can be executed in order to generate all results that
are requested. This script file should be placed in your own home directory,
so you need to add it to your path (if it is not already there). Start Matlab
and change directory to the folder that is used in these exercises, and add
your own local directory to the path:

cd /site/edu/bb/MultidimensionalSignalAnalysis/ExerciseF/
addpath ...

3 Noise reduction by over-sampling

In this task you will investigate how over-sampling can be used to reduce the
effects of the noise that is inevitable in sampling. According to the sampling
theorem you can sample a band-limited signal s(t) of a continuous (time)
variable t to a discrete signal s[k] and reconstruct s(¢) from s[k] by means
of a linear combination with integer shifted sinc-functions. With s(t) being
2m-band-limited and a sampling interval = 1, the reconstruction is done as:

s(t) =Y s[k] sinc(t — k) (1)

k

This corresponds to convolution between the samples (multiplied with Dirac-
impulses at the corresponding sample position) and the sinc-function.

In this exercise you will instead work only with discrete signals s[k], which by
definition have a 2mw-periodic Fourier transform when the sample interval is
= 1. This signal can then be assumed to be the samples of a time-continuous
function s(t) that you will never observe explicitly, but at least you will be
able to observe its samples and a period of its Fourier transform.

This assumption also implies that s(¢) is 27-bandlimited, i.e., its Fourier
transform is = 0 outside the interval [—m,7]. This property includes the
case that s(t) is further band-limited to a smaller interval and, consequently,
s(t) can be sampled with a longer interval in this case. For example, if s(t)
is band-limited to [—7, 5] it can be sampled with the interval 2 rather than
1. This means that we can remove half of the samples in s[k]

solk] = s[2k] (2)

and still be able to reconstruct both s(t), as well as s[k] from sg[k]. In this
exercise you will reconstruct s[k| from sg[k].



Furthermore, the discrete signals that you will work with in this exercise
have to be of finite length. To make the convolutions with the reconstructing
filters work properly, without any edge effects, you can assume that also s(t)
is periodic, leading to a periodic convolution. The perioic assumption is in
practice often incorrect, but if the length of the signal is long, the effect of
making a circular extension of a finite signal can often be neglected at some
distance from the ”edges”.

3.1 Down-sampling and reconstruction of a discrete signal

To see how the down-sampling and reconstruction of discrete signals works,
start by creating a discrete signal of 1024 random samples, which in addition
is band-limited to [-%, §]:
| s=randn(1024,1);
S=fftshift (fft(s));
u=(-512:511)>*pi/512;
Rect8=(abs (u)<pi/8);
Sbl=S.*Rect8; %Create a pi/4-band-limited transform
sbl=ifft(ifftshift(Sbl));
figure (1) ;subplot(2,1,1);plot(0:1023,sbl);
title(’band-limited signal’);
subplot(2,1,2);plot(u,abs(Sbl));
title(’Fourier transform of band-limited signal’);

The time discrete signal sbl has its origin (k = 0) at the first element, the
Fourier transform has its origin (u = 0) at the center position which in this
case is at element 513. It is sbl that is your signal in what follows, it lies
in the signal space of bandlimited signals to the interval [—7/8, 7/8].

Since the signal is 7-band-limited it can be down-sampled by a factor 8, i.e.,

we can create a new signal that consists of every 8-th sample from sbl:

7} downsampl8=sbl(1:8:end);

This is a discrete signal of length 128 samples. To make it more comparable
to the original signal, we can up-sample it to the same time scale by inserting
7 samples if value ”0” between each sample in downsample8:

upsampl8=zeros(1024,1);
upsampl8(1:8:end)=downsampl8;

figure(2) ;subplot(2,1,1);plot(0:1023,upsamply);
title(’The signal down-sampled with a factor 8’);
subplot(2,1,2) ;plot(u,abs(fftshift (fft (upsampl8))));
title(’Fourier transform of down-sampled signal’);




You are now going to reconstruct the discrete signal sbl from downsampl8
or upsampl8. As seen from the Fourier transforms of these two signal, the
former is given by taking the latter and multiply it by the previously defined
rectangular function Rect8 and then multiply by 8. Alternatively, this op-
eration can be implemented in the signal domain by (circularly) convolving
upsampl8 with the reconstructing filter rect8. This operation, in turn, is
equivalent to forming the linear combination of the samples in downsampl8
and the functions generated from rect8 with multiples-of-8-shifts:

rect8=ifft(fftshift (8*Rect8));

figure(3);
subplot(2,1,1);plot(-512:511,ifftshift(rect8d));
title(’Reconstructing filter rect8’);
subplot(2,1,2) ;plot(u,abs(fftshift(fft(rect8d))));

Compute the reconstructing functions and plot a few of them:

for ix=0:127,

B8(:,ix+1)=circshift (rect8,8*ix) ;
end
figure(4);plot(0:1023,B8(:,[1 2 3]1));

QUESTION: What do the reconstructing functions look like? Are they in
accordance with your expectations described in preparatory exercise 27

ANSWER:

Compute the reconstructed signal and compare it to the original signal:

sblrec8=B8*upsampl8(1:8:end);

figure(5);

subplot(2,1,1);plot(0:1023,sblrec8);

title(’Reconstructed signal from factor 8 down-sampled signal’);
subplot(2,1,2);plot(u,abs(fftshift (fft(sblrec8))));

title(’Fourier transform of reconstructed signal’);

fprintf (’Reconstruction from factor 8 down-sampled signal (no noise)\n’);
fprintf (’Reconstruction error: %e\n’,norm(sbl-sblrec8));

QUESTION: What amount of noise do you get (mean and standard de-
viation)? Is it consistent with your answer to preparatory exercise 37

ANSWER:




Notice: the number of dimensions that are spanned by the basis in B8 it is
127. This is because the frequencies +7/8 are excluded from rect8.

3.2 Sampling noise

You repeat the last exercise, but now each sample generated by the down-
sampling process has some amount of noise added to it.

Add Gaussian noise with standard deviation ¢ = 0.1 to the down-sampled
sequence, and then up-sample it in the same as previously:

sigma=0.1;

downsampl8n=sbl(1:8:end)+sigma*randn(128,1);
upsampl8n=zeros(1,1024) ;

upsampl8n(1:8:end)=downsampl8n;

figure(6);

subplot(2,1,1) ;plot(0:1023,upsampl8n) ;

title(’The signal down-sampled with a factor 8 with noise’);
subplot(2,1,2);plot(u,abs(fftshift (fft (upsampl8n))));
title(’Fourier transform of down-sampled signal with noise’);

Reconstruct the discrete signal in the same way as before, and compute the
mean and standard deviation between the original discrete signal and the
reconstructed one:

sblrec8n=B8*downsampl8n;

figure(7);subplot(2,1,1);plot(0:1023,sblrec8n);

title(’Reconstructed signal from factor 8 down-sampled signal with noise’);
subplot(2,1,2);plot(u,abs(fftshift (£ft(sblrec8n))));

title(’Fourier transform of reconstructed signal with noise’);
err=sbl-sblrec8n;

fprintf (’Reconstruction from factor 8 down-sampled signal with noise\n’);
fprintf (’Reconstruction error: mean %f std %f\n’,mean(err),std(err));

Run this code snippet several times to see how the error varies!

QUESTION: What amount of noise do you get (mean and standard de-
viation)? Is it consistent with your answer to preparatory exercise 57

ANSWER:

10



3.3 Over-sampling, reconstruction with a basis

You are now going to do the same thing again, but now down-sample the
original signal with a factor 4 instead of 8. This means that you have twice
as many samples to reconstruct from; you over-sample the signal with a
factor 2. Since the sampling is made at every fourth sample of the original
signal, the sampling theorem states that you can reconstruct the signal with
a basis of sinc-functions that are scaled by a factor of 2 relative to the
previous reconstructing functions.

Use the same type of noise on each sample as before:

downsampl4n=sbl(1:4:end)+sigma*randn(256,1) ;
upsampl4n=zeros(1,1024) ;

upsampl4n(1:4:end)=downsamplén;

figure(8);

subplot(2,1,1) ;plot(0:1023,upsamplén) ;

title(’The signal down-sampled with a factor 4 with noise’);
subplot(2,1,2);plot(u,abs(fftshift (fft (upsampldn))));
title(’Fourier transform of down-sampled signal with noise’);

You are down-sampling the signal with a factor 4, and should then be able
to reconstruct the signal by multiplying the Fourier transform of the signal
with a rectangle that cuts out the frequency range [—7, 7

Rect4=(abs(u)<=pi/4);

rect4=ifft (fftshift (4*Rectd));

figure(9);
subplot(2,1,1);plot(-512:511,ifftshift(rectd));
title(’Reconstructing filter rect4’);
subplot(2,1,2) ;plot(u,abs(fftshift(fft(rect4))));

Compute the reconstructing functions, they are multiples-of-4-shifts of rect4,
and plot a few of them:

for ix=0:255,
B4(:,ix+1)=circshift (rect4,4x*ix);
end

figure(10);plot(0:1023,B4(:,[1 2 3])’);

QUESTION: What do the reconstructing functions look like in this case?
Are they as you expected?

ANSWER:

11



Reconstruct the signal and compute the reconstruction error:

sblrec4b=B4*downsampl4n;

figure(11) ;subplot(2,1,1);plot(0:1023,sblrecdb);

title(’Reconstructed signal from factor 4 down-sampled signal (basis)’);
subplot(2,1,2);plot(u,abs(fftshift (fft(sblrecdb))));

title(’Fourier transform of reconstructed signal (basis)’);
err=sbl-sblrecédb;

fprintf (’Reconstruction from factor 4 down-sampled signal (basis)\n’);
fprintf (’Reconstruction error: mean %f std %f\n’,mean(err),std(err));

QUESTION: What amount of noise do you get (mean and standard de-
viation)? Is it consistent with your answer to preparatory exercise 77

ANSWER:

Use the Matlab code that you wrote in preparatory exercise 9 to check that
B, is a basis.

QUESTION: Does it give you the expected answer?

ANSWER:

3.4 Over-sampling, reconstruction with a frame

As an alternative to the reconstruction in the last exercise, you can make
use of the fact that the original signal is g-bandlimited, i.e., it can be recon-
structed from suitably shifted versions of the function rect8. More precisely,
they should be shifted by multiples-of-4 in order to correspond to the fact
that the original signal in this case is down-sampled with a factor 4. Because
of the over-sampling, however, this will in the ideal case (no noise) produce
the original times 2, which is why you need to divide these reconstructing
functions by 2 in order to get the expected result. Start by computing the
reconstructing functions, and plotting a few of them:

for ix=0:255,
F8(:,ix+1)=circshift(rect8,4*ix);

end

figure(13);plot(0:1023,F8(:,[1 2 3]1)?);

12



QUESTION: What do these functions look like? How do they differ from
the reconstructing functions in the previous exercise? Compare!

ANSWER:

Reconstruct the signal:

sblrec4f=0.5*F8*downsampl4n;

figure(15);

subplot(2,1,1);plot(0:1023,sblrecdf) ;

title(’Reconstructed signal from factor 4 down-sampled signal (frame)’);
subplot(2,1,2) ;plot(u,abs(fftshift (fft(sblrecdf))));

title(’Fourier transform of reconstructed signal (frame)’);
err=sbl-sblrecé4f;

fprintf (’Reconstruction from factor 4 down-sampled signal (frame)\n’);
fprintf (’Reconstruction error: mean %f std %f\n’,mean(err),std(err));

QUESTION: Did you get a noise level in accordance with preparatory
exercise 107

ANSWER:

In this case, the reconstructing functions form a frame of some subspace of
the signal space. Do the same check as you did in the last exercise, now to
confirm that F8 holds a proper frame rather than a basis in its columns.

QUESTION: Is it a proper frame?

ANSWER:
Ext Try to reduce the reconstruction noise even further by using half of the
Xtra original sampling points (over-sampling with a factor 4) or even all of them
(over-sampling with a factor 8), with the same sampling noise added as
before.
Ext Add some noise that does not comply with the assumed properties and see
Xtra what happens. Do you still get the same type of reduction of the recon-

struction noise as before?

13



o —l— 941

Figure 1: A two-channel filter bank

4 DWT of 1D signals

In this part of the exercise you are going to investigate properties of the
discrete wavelet transform (DWT) applied to 1D signals. The basic compu-
tational steps related to the DWT are illustrated in Figure 1.

This is the two-channel filter bank, where on the left side a discrete input
signal s is analysed by two filters, here denoted hg and gy and then down-
sampled by a factor 2. This produces two signals, a and d, each containing
half as many samples as the input signal per time unit. The new signals
can then be process or compress in various way but we assume that they
can more or less undistorted be fed into the right half of the filter bank,
were they are up-sampled and then filtered by the reconstructing filters h
and g; and then added to form the output signal s’. The basic principle
behind constructing a filter bank is that the signal s’ should be equal to the
signal s (possibly with some time delay) and that a and d possibly can be
compressed or processed in different way.

The requirement that the input and output signals should be equal intro-
duces some constraints on the four filters hg, ho, go, g1. In this exercise we
will not consider how to design these filters, and instead make use of estab-
lished methods that can produce useful filters, e.g., based on wavelet theory.
There is a family of well-known filters called Daubechies filters that you will
use in this exercise, but there are also other filters described in the litera-
ture that can be used for these filter banks. The Daubechies filters define a
conjugate mirror filter bank, an orthogonal filter bank.

4.1 The two-channel filter bank

You will now look at how to work with the two-channel filter bank in prac-
tice. Start by generating a signal in a similar way as in the previous task;
it has random values and is band-limited:

14



1=256;

u=((-1/2): (1/2-1))*2*pi/1;
sO=rand(1,1);

SO=fftshift (fft(ifftshift(s0)));
S=S0.* (abs (u)<pi/4);

s=real (ifftshift (ifft(fftshift(8))));
figure(1);plot(0:255,s);

title(’ Input signal’);

Matlab has a toolbox of functions that can be used for computing wavelet
transforms. For example, there is a function wfilters that can produce the
two analysing filters and the two reconstructing filters for a specific wavelet
family. Try the family called db3:

[hO g0 hl gll=wfilters(’db3’)

The coefficients of the filters are printed in the Matlab window, and you can
also look at their Fourier transforms:

flength=length(hO) ;

ul=((-flength/2): (flength/2-1))*2*pi/flength;

figure(2);
subplot(4,1,1);plot(ul,abs(fftshift(£ft(h0))));title (’FT of h0’);
subplot(4,1,2);plot(ul,abs(fftshift(££t(g0))));title (’FT of g0’);
subplot(4,1,3);plot(ul,abs(fftshift(£fft(h1))));title CFT of hi1’);
subplot(4,1,4);plot(ul,abs(fftshift(£fft(gl))));title(’FT of gi’);

QUESTION: How would you characterise the filters in terms of their fre-
quency response functions?

ANSWER:

QUESTION: Are the filter coefficients related to each other in the way
you expected?

ANSWER:

Due to the properties of the filters and the fact that they are designed from
wavelets, we call the signal a an approrimation of the input signal and d is
referred to as the details of the input signal. Signal a is an approximation
of the input signal at half the scale of the input signal, and d represent the
details that are missing in this approximation.

15



The Matlab function dwt can compute the two down-sampled signals a and
d given the filters hg and gg. To simplify the computation and the analysis
of the results, we will use the same type of periodic extension of the signal
as in the previous task:

dwtmode (’per’); %Set periodic mode of filtering operations
[a d]=dwt(s,h0,g0);

figure(3);

subplot(2,1,1);plot(a);title(’a’);
subplot(2,1,2);plot(d);title(’d’);

QUESTION: How would you characterise the two signals a and d?

ANSWER:

You can now feed these two signals into the reconstruction step of the right
hand side of the filter bank. This is done by means of Matlab function idwt:

srecl=idwt(a,d,hl,gl);
figure(4);plot(0:255,srecl);
title(’Reconstructed signal’);

QUESTION: The reconstructed signal should be equal to the input signal.
Verify this. Are they equal?

ANSWER:

Notice: the signals a and d each have half as many samples as the input
signal s, and together they represent the same amount of data as s. Instead
of plotting a and d one on top of the other, as in figure 3, they can be
represented as the concatenation [a d] which is a signal of the same length
as the input signal. This form will be used in the following task.

4.2 Multi-level filter bank

In the previous task you analysed a signal using a wavelet based filter bank.
The result are two signals: an approximation of the input signal at a coarser
scale (a), and the details needed to reconstruct the input signal from this
approximation (d). This analysis can be repeated, now on the approximation
a; we compute an approximation of a at the next coarser level, producing a
new approximation and the corresponding details. The approximation and
the details can then be fed into the proper reconstruction processing (right

16



hand side of a filter bank) to reconstruct the approximation a.

To simplify this discussion, let a; and d; denote the approximation and de-
tails of the processing made in the previous task. We are now discussing
the possibility of using a; as input signal to a new filter bank that decom-
poses it into a new approximation as and details ds. The reconstructing
part of the filter bank can then produce a; again which, together with d,
can reconstruct the input signal s. The analysis can be done like this:

[al d1]=dwt(s,h0,g0);

[a2 d2]=dwt(al,h0,g0);

figure(5);
subplot(3,1,1);plot(a2);title(’a2’);
subplot(3,1,2);plot(d2);title(’d2’);
subplot(3,1,3);plot(dl);title(’d1’);

Here is the reconstruction:

alrec=idwt(a2,d2,hl,gl);
srec2=idwt (alrec,dl,hl,gl);
figure(6) ;plot(srec2);title(’Reconstructed signal’);

QUESTION: Verify that the reconstructed signal equals the input signal.
Are they equal?

ANSWER:

The idea of applying a new two-channel filter bank onto the approximation
component can be iterated as many times as is practically possible. Let N
be the number of iterations. The analysis/decompositon of the input signal
can be done as:

% Code snippet (A)
N=5;ad=s;p=length(s) ;figure(7);
for cnt=1:N,
[a d]=dwt(ad(1:p),h0,g0);
ad(1:p)=[a d];
subplot (N+1,1,N+2-cnt);
plot(d);title(sprintf(’details level %d’,cnt));
p=p/2;
end
subplot (N+1,1,1) ;plot(a);
title(sprintf (’approximation level %d’,cnt));
figure(8);plot(ad);
title(’Concatenated approximation and details’);

17



Similarly, the reconstruction can be done as:

% Code snippet (B)

for cnt=1:N,
ad(1: (2*p))=idwt(ad(1l:p),ad((p+1):(2%p)),hl,gl);
p=2%p;

end

figure(9);plot(ad);title(’Reconstructed signal’);

QUESTION: Is the reconstructed signal in figure 9 equal to the input
signal, figure 17

ANSWER:

Try different values for N and look at the results!

4.3 Simple signal compression

So far you have only seen that a filter bank can decompose a signal into
an approximation and a set of detail signals which in turn can be used to
reconstruct the input signal again. No real benefit from using the filter bank
has been demonstrated. In this task you are going to apply a very simple
type of compression onto the approximation and detail signals by quantising
them into a number of bits that can be different for different components of
the signal.

QUESTION: If you use some reasonable value for N and consider the
approximation and detail signals, how would you implement such a quan-
tisation? Which components seem to need more bits than others?

ANSWER:

You are now going to repeat the multi-level analysis and reconstruction as
in the previous task, but now quantise the approximation and detail sig-
nals. This will introduce some quantisation noise that will propagate to the
reconstructed signal. However, if the quantisation is made with some care,
the reconstruction noise will be reasonably small. Define a matrix q of size

18



(N 4+ 1) x 2. Each row of q describes a quantisation of a specific channel
such that the first element b is the number of bits and the second element is
the range r of the values that are quantised, i.e., each channel is quantised
in the range [—7, 7] in steps of (2r)27°. For a specific N there is one approxi-
mation channel and N detail channels, each with its individual quantisation
parameters. The first row of q are the parameters of the approximation
channels, the second for the details at level N, the third for the details at
level N — 1, etc.

Run the previous multi-level decomposition for N = 3 but only the analysis
part that produces the vector ad. Set up the quantisation parameters in
q with many quantisation levels, e.g., 16 bits for all channels and ranges
that are adapted to what you see in the plots. Finally, use the function
quantisead for performing the quantisation according to q. For example:

q = [16 3;16 2;16 1;16 0.1]; Y%Change this if needed
[ad bps] = quantisead(ad,q); %Replace the channels with quantised values

quantisead produces also an average number of bits per sample, that here
ends up in bps.

Run the reconstruction part of the filter bank as before, and plot the original
signal, the reconstructed signal, and the difference between the two, and
compute the signal to noise ratio (SNR):

figure(100);

subplot(3,1,1);plot(s);title(’Original signal’);
subplot (3,1,2) ;plot(ad);title(’Reconstructed signal’);
subplot(3,1,3);plot(s-ad);title(Difference’);
SNR=1log10(max(s)/std(ad-s))*20

bps

QUESTION: What SNR do you get? What is the average number of bits
per sample?

ANSWER:

19



Extra

You are responsible to developing an application where SNR=30 is consid-
ered acceptable. You have a number of free parameters: the number of levels
N, the number of bits that each of the N + 1 channels as specified by the
matrix g, and you can also change from the ’db3’ filter set to some other
set if you want to. Try to find a good choice of parameters that gives you
a filter bank with a quantization that meets the specification, while at the
same time has as low average number of bits (& 2) per sample.

IMPORTANT NOTE: You should not tune your parameters to a specific
random input signal. Make sure that it works for any random input signal
that can be generated by your code.

IMPORTANT NOTE: Do not use more than 7 levels. Set number of bits to
an integer value > 0.

IMPORTANT NOTE: It not sufficient to demonstrate that you achieve the
stipulated SNR and bitrate for a single signal. Therefore, run the script
several times for each setting of your parameters and observe the mean
values of SNR and bitrate!

QUESTION: What parameter do you use, what is the resulting SNR and
average bits per sample?

ANSWER:

Try to implement the same type of compression scheme on 2D images.
Choose some image that has equal height and width and which is an even
multiple of 2, e.g., 256 x 256 pixels. How many bits per pixel do you need
without introducing too much noise? How does this compression scheme
differ from the one you worked with in the PCA exercise?

20



