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TSBB06 Multi-Dimensional Signal Analysis, Solutions 2020-10-24

1. (a) The distance between x and p1 is given by

d1 = |(normP x)⊤(normD p1)| = |(−2, 1, 3, 1) ⋅
−1
3
(1, −2, −2, 3)| = 7

3
,

and the distance between x and p2 is given by

d2 = |(normP x)⊤(normD p2)| = |(−2, 1, 3, 1) ⋅
1

√5
(2,0, −1, −2)| = 9

√5
.

Since d1 < d2, x lies closer to p1 than to p2.

Answer: The point x lies closer to p1 than to p2.

(b) The horizon line of a plane is the intersection of the plane and the ideal plane
p∞ = (0,0,0, 1). The dual Plücker coordinates of a line can be formed using any
two (distinct) planes that contain the line, so in this case we have

L̃ = p1p
⊤
∞ − p∞p

⊤
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−2
−2
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
􏿴0 0 0 1􏿷 −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
􏿴1 −2 −2 3􏿷 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
0 0 0 −2
0 0 0 −2
−1 2 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Answer: The dual Plücker coordinates are L̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
0 0 0 −2
0 0 0 −2
−1 2 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(c) All planes parallel to p1 are of the form p(s) = (1, −2, −2, s) for some s ∈ ℝ. By
computing the horizon line of p(s) in the same way as we did for p1 in (b), we see
that

p(s)p⊤∞ − p∞p(s)⊤ = … ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
0 0 0 −2
0 0 0 −2
−1 2 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In other words, we obtain the same horizon line irrespective of the value of s.

2. (a) A rotation matrix in 3D is an orthogonal matrix with determinant equal to one.

To satisfy the length requirement for the first two columns, it is clear that the only
possibilities for λ are λ = ± 1

3
.
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To satisfy the orthogonality requirement, it is clear that

(a, b, c) ∼ (2,2, −1) × (−1,2,2) = (6, −3,6),

and the length requirement now gives (a, b, c) = ±(2, −1,2).
Finally, the determinant requirement. For (a, b, c) = (2, −1,2) we obtain

1 = detR = λ3
|
|

2 −1 2
2 2 −1
−1 2 2

|
|
= 27λ3 ⟺ λ = 1

3
.

In the same way, for (a, b, c) = (−2, 1, −2) we obtain instead

1 = detR = λ3
|
|

2 −1 −2
2 2 1
−1 2 −2

|
|
= −27λ3 ⟺ λ = − 1

3
.

Answer: The two possibilities are (a, b, c, λ) = ±􏿴2, −1,2, 1
3
􏿷.

(b) If we let (n̂,α) denote an axis–angle representation, we have seen in the lectures
that

sinα [n̂]× =
R −R⊤

2
and cosα = trR − 1

2
.

Let us use the rotation matrix R obtained using (a, b, c, λ) = 􏿴2, −1,2, 1
3
􏿷, i.e.

R = 1

3

⎛
⎜⎜⎜⎜⎜⎝
2 −1 2
2 2 −1
−1 2 2

⎞
⎟⎟⎟⎟⎟⎠ .

We compute

sinα [n̂]× =
R −R⊤

2
= 1

6

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
2 −1 2
2 2 −1
−1 2 2

⎞
⎟⎟⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎜⎜⎝
2 2 −1
−1 2 2
2 −1 2

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ =

1

2

⎛
⎜⎜⎜⎜⎜⎝
0 −1 1
1 0 −1
−1 1 0

⎞
⎟⎟⎟⎟⎟⎠ ,

which gives n̂ = 1

√3
(1, 1, 1) and sinα = √3

2
. To determine α we also compute

cosα = trR − 1
2

=
1

3
(2 + 2 + 2) − 1

2
= 1

2
.

The point (cosα, sinα) = 􏿴 1
2
, √3
2
􏿷 now determines α = π

3
(plus an arbitrary integer

multiple of 2π).

Answer: The rotation matrix obtained using (a, b, c, λ) = 􏿴2, −1,2, 1
3
􏿷 performs

a rotation the angle α = π

3
around the axis n̂ = 1

√3
(1, 1, 1).

(The other possible rotation matrix, where (a, b, c, λ) = 􏿴−2, 1, −2, − 1

3
􏿷, gives n̂ = 1

√11
(−1, 1, −3), and

(cosα, sinα) = 􏿴 − 5

6
, √11

6
􏿷. This determines the angle α in the second quadrant, but it is not given

by a nice expression in this case.)
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3. (a) Answer: A general element T ∈ 𝒢 is of the form

T = 􏿶
R(αk) t
0⊤ 1􏿹 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosαk − sinαk tx

sinαk cosαk ty

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where αk =
kπ

2
for some k ∈ ℤ.

(b) Considering the geometric action of the transformation, it is clear that the rotation
part must be either a rotation an angle α = 0 or α = π. Furthermore, if α = 0
the translational part must be t = 0, since T2 in this case will have translational
part 2t. On the other hand, if α = π, the translation will cancel itself out regardless
of what t is.
This can of course also be verified algebraically, since

I = T2 = 􏿶
R t
0⊤ 1􏿹 􏿶

R t
0⊤ 1􏿹 = 􏿶

R2 Rt + t
0⊤ 1 􏿹 .

It follows thatR2 = I ⟺ R = ±I (sinceR is a rotation). IfR = I, we see that the
translational part becomes Rt + t = 2t, so t must be zero. If R = −I, we see that
the translational part becomes Rt + t = 0, irrespective of t.

Answer: The only T ∈ 𝒢 which satisfy T2 = I are T = I or

T = 􏿶
−I t
0⊤ 1􏿹

for arbitrary translations t.

(c) To show that 𝒢 is a group with respect to composition, we need to show closure,
associativity, existence of identity, and existence of inverse.

Closure: Let

T1 = 􏿶
R(αk) t1
0⊤ 1 􏿹 and T2 = 􏿶

R(αℓ) t2
0⊤ 1 􏿹

be two transformations in 𝒢 . We now verify that

T1T2 = 􏿶
R(αk) t1
0⊤ 1 􏿹 􏿶

R(αℓ) t2
0⊤ 1 􏿹 = 􏿶

R(αk)R(αℓ) R(αk)t2 + t1
0⊤ 1 􏿹 =

= 􏿶
R(αk + αℓ) t3

0⊤ 1 􏿹 = 􏿶
R(αk+ℓ) t3
0⊤ 1 􏿹 ∈ 𝒢 ,

since αk+ℓ =
(k+ℓ)π

2
is an allowed angle.

Associativity: This follows from the associativity of matrix multiplication.
Existence of identity: The identity transformation Tid = I is in 𝒢 (it corre­

sponds to α0 =
0π

2
= 0 and t = 0).

Existence of inverse: For a general rigid transformation Tgeneral, we have

Tgeneral = 􏿶
R t
0⊤ 1􏿹 ⟺ T−1

general
= 􏿶

R⊤ −R⊤t
0⊤ 1 􏿹 .

The same expression for the inverse will work for T ∈ 𝒢 too, since if αk is an
allowed angle forR, the angle forR⊤ will be −αk = α−k, which is also allowed.
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4. (a) We rewrite the relation xk ∼ CXk using the cross product, and obtain

xk ∼ CXk ⟺ xk × CXk = 0 ⟺ [xk]×CXk = 0 ⟺ 􏿴X⊤
k
⊗ [xk]×􏿷 vecC = 0.

As usual, the cross product matrix makes the three rows linearly dependent, so
that rank 􏿴X⊤

k
⊗ [xk]×􏿷 = 2, and we can let Ak ∈ ℝ2×12 be the first two rows of this

matrix. We can then form the data matrix

A =

⎛
⎜⎜⎜⎜⎜⎝
A1
⋮
An

⎞
⎟⎟⎟⎟⎟⎠ ∈ ℝ

2n×12.

This rank of this matrix is at most r = rankA = min(2n, 12). If n < 6 we are
therefore guaranteed to have an infinite number of solutions (the null space will
at least two­dimensional).

Answer: The smallest number of point correspondences needed to determine
C uniquely (up to scale) is n = 6.

Note: For n = 6 the null spacewill in general be zero­dimensional (i.e. consist only
of 0), so here we would most likely need the best one­dimensional approximate
null space.

(b) Answer: We could sum the squares of the point­to­point distances between xk
and the projected point CXk, as

εG(C) =
n

􏾜
k=1
􏿎normP xk − normP(CXk)􏿎

2
.

5. (a) The function f1 is a scalar product since the matrix

G0 =

⎛
⎜⎜⎜⎜⎜⎝
2 1 0
1 2 1
0 1 2

⎞
⎟⎟⎟⎟⎟⎠

is symmetric and positive definite.

The positive definiteness of G0 can easily be verified directly from the definition,
as for u = (u1,u2,u3) ≠ 0, we have

u⊤G0u = 􏿴u1 u2 u3􏿷

⎛
⎜⎜⎜⎜⎜⎝
2 1 0
1 2 1
0 1 2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
u1
u2
u3

⎞
⎟⎟⎟⎟⎟⎠ = 􏿴u1 u2 u3􏿷

⎛
⎜⎜⎜⎜⎜⎝

2u1 + u2
u1 + 2u2 + u3
u2 + 2u3

⎞
⎟⎟⎟⎟⎟⎠ =

= 2u21 + u1u2 + u1u2 + 2u22 + u2u3 + u2u3 + 2u23 =
= 2u21 + 2u1u2 + 2u22 + 2u2u3 + 2u23 =
= (u1 + u2)2 + (u2 + u3)2 + u21 + u23 > 0.

(It is of course also possible to use Sylvester’s criterion instead.)

Since f2(u,u) = f3(u,u) = 0 for all u ∈ ℝ3, both f2 and f3 fail the requirement that
⟨u ∣ u⟩ > 0 when u ≠ 0.
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(b) The Gram matrix is defined as

G =

⎛
⎜⎜⎜⎜⎜⎝
⟨b1 ∣ b1⟩ ⋯ ⟨bn ∣ b1⟩

⋮ ⋱ ⋮
⟨b1 ∣ bn⟩ ⋯ ⟨bn ∣ bn⟩

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝
b⊤1 G0b1 ⋯ b⊤1 G0bn

⋮ ⋱ ⋮
b⊤nG0b1 ⋯ b⊤nG0bn

⎞
⎟⎟⎟⎟⎟⎠ .

If we let B = 􏿴b1 … bn􏿷, we can write the above as G = B⊤G0B.

In this particular problem, since we use the standard basisB = I, the Grammatrix
G will be the same as G0. Since G0 ≠ I, the basis is not orthonormal with respect
to the chosen scalar product.

Answer: The Gram matrix is G =

⎛
⎜⎜⎜⎜⎜⎝
2 1 0
1 2 1
0 1 2

⎞
⎟⎟⎟⎟⎟⎠, and we see that the basis is not

orthonormal with respect to this scalar product.

(c) From the definition of the dual basis, we should have ⟨b̃i ∣ bj⟩ =
⎧⎪⎨
⎪⎩
1 if i = j,
0 otherwise.

This gives us three linear equations for b̃1 = (b̃1, b̃2, b̃3), and these result in

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⟨b̃1 ∣ b1⟩ = 1

⟨b̃1 ∣ b2⟩ = 0

⟨b̃1 ∣ b3⟩ = 0

⟺

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2b̃1 + b̃2 = 1

b̃1 + 2b̃2 + b̃3 = 0

b̃2 + 2b̃3 = 0

⟺

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

b̃1 =
3

4

b̃2 = −
1

2

b̃3 =
1

4

⟺ b̃1 =
1

4

⎛
⎜⎜⎜⎜⎜⎝
3
−2
1

⎞
⎟⎟⎟⎟⎟⎠ .

Answer: The first dual basis vector is b̃1 =
1

4
(3, −2, 1).

6. (a) Answer: SinceG0 = I, the frame operator is given by

F = BB⊤ = 􏿶
1 −1 2 1
1 1 1 −2􏿹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
−1 1
2 1
1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 􏿶

7 0
0 7􏿹 .

(b) By definition, the lower frame bound L and upper frame bound U are defined as
the largest L > 0 and smallest U ≥ L such that for every v

0 < L ‖v‖2 ≤ ‖B⊤G0v‖2F ≤ U ‖v‖2 ⟺ 0 < L ‖v‖2 ≤ v⊤G0Fv ≤ U ‖v‖2.

Since in this case Fv = 7v, the frame condition is

0 < L ‖v‖2 ≤ 7v⊤G0v􏿋􏻰􏻰􏿌􏻰􏻰􏿍
⟨v∣v⟩=‖v‖2

≤ U ‖v‖2,

so we see that L = U = 7.

Answer: The lower and upper frame bounds are L = U = 7.
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(c) Answer: Since the upper and lower frame bounds are equal, this means that
the frame is tight.

7. (a) Replacing all occurrences ofH0,G0, andG1 in (FB2)with their definitions in terms
ofH1 gives

H1(u)H0(u + π) + G1(u)G1(u + π) =
= H1(u)H∗

1(u + π) + e−iuH∗
1(u + π)ei(u+π)H1(u + π + π) =

= H1(u)H∗
1(u + π) + eiπH∗

1(u + π)H1(u + 2π) =
= H1(u)H∗

1(u + π) −H∗
1(u + π)H1(u) = 0,

since the discrete­time Fourier transform is periodic with a period 2π.

(b) Replacing all occurrences ofH0,G0, andG1 in (FB2)with their definitions in terms
ofH1 gives

H1(u)H0(u) + G1(u)G0(u) = 2 ⟺
⟺ H1(u)H∗

1(u) + e−iuH∗
1(u + π)eiuH1(u + π) = 2 ⟺

⟺ |H1(u)|
2
+ |H1(u + π)|

2
= 2.

Answer: The condition (FB1) can be written as |H1(u)|
2
+ |H1(u + π)|

2
= 2.

8. (a) The epipolar constraint is x⊤
k
Fx′

k
= 0, and direct verification yields

x⊤1 Fx
′
1 = −6, x⊤2Fx

′
2 = −4, x⊤3Fx

′
3 = −4,

which means that none of the three pairs of points satisfy the epipolar constraint.

Answer: None of the pairs of points satisfy the epipolar constraint.

(b) If Fmaps points in the second view to epipolar lines in the first view, F⊤ maps in
the opposite direction, and we obtain l′ = F⊤x1 = (−3,0, 3) ∼ (−1,0, 1).

Answer: The sought epipolar line is l′ ∼ (−1,0, 1).
(c) The epipoles satisfy F⊤e = 0 and Fe′ = 0, i.e. they are found as the left and right

null spaces ofF. With the particular form in this problem,F = [(1,2, 1)]×, it is clear
that the epipoles are e = e′ = (1,2, 1).

Answer: The epipoles are e = e′ = (1,2, 1).


