
Answers to the Midterm Examination 2019-10-21
in TSBB06 Multi-Dimensional Signal Analysis

Note: The answers given here are not an authoritative description of how answers
to the questions must be given in order to pass the exam. Some explanations
given here may not have to be included in the answer, unless explicitly called for.

Scoring: is in terms of half-points.
Type A problems are scored with one of [0p, 0.5p, 1p], while
Type B problems are scored with one of [0p, 0.5p, 1p, 1.5p, 2p].

Mårten Wadenbäck
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PART I, Geometry

Answer 1 (A, 1p) The line should satisfy l>x1 = 0 and l>x2 = 0, i.e. the vector
l should be orthogonal to both x1 and x2. We can use l = x1 × x2 = (2, 3,−9).

Answer 2 (A, 1p) We can transform the points {(2, 2), (0, 3), (2,−2)} and see
where they end up. We get
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It is clear (already after transforming the first point) that (x, y) = (−5,−1).

Answer 3 (A, 1p) There are many such notions to choose from, including (but
not limited to) length, area, volume (if in 3D), and handedness.

Answer 4 (B, 2p) First, recall that [ n̂ ]× is skew-symmetric, i.e. [ n̂ ]>× = −[ n̂ ]×.
Secondly, note that

[ n̂ ]2× =

−n2
2 − n2

3 n1n2 n1n3

n1n2 −n2
1 − n2

3 n2n3

n1n3 n2n3 −n2
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2

 = ([ n̂ ]2×)>

is symmetric.
Using Rodrigues’ formula, we see that R−R> = 2 sinα [ n̂ ]×. Since we know

the structure of [ n̂ ]×, and since ‖n̂‖ = 1, we can now read off both n̂ and sinα.
Unfortunately, since sinα = sin(π − α), we still do not know what the angle is.

This can be resolved by also computing

trace(R) = trace(I + sinα [ n̂ ]× + (1− cosα)[ n̂ ]2×) =

= trace(I)︸ ︷︷ ︸
=3

+ sinα trace([ n̂ ]×)︸ ︷︷ ︸
=0

+(1− cosα) trace([ n̂ ]2×)︸ ︷︷ ︸
=−2‖n̂‖2=−2

=

= 3 + (1− cosα)(−2) = 1 + 2 cosα,

giving cosα = 1
2
(traceR− 1).

Answer 5 (B, 2p) All points on the line through x1 and x2 are of the form
s1x1 + s2x2, while all points on the line through y1 and y2 are of the form
t1y1 + t2y2.

2



TSBB06 Multi-dimensional Signal Analysis, KTR1 Answers 2019-10-21

If the two lines contain a common point z, then there exist s1, s2, t1, t2 ∈ R
such that z = s1x1 + s2x2 = t1y1 + t2y2. If the two lines do not coincide, there
will exist precisely one intersection point. We can solve the homogeneous system
of equations

(
x1 x2 −y1 −y2

)
s1
s2
t1
t2

 = 0

by computing an SVD,
(
x1 x2 −y1 −y2

)
= USV>. If only one singular

value is zero, that means the lines are distinct and intersect at precisely one
point. This is found by noting that (s1, s2, t1, t2) ∼ v4, where v4 denotes the
rightmost column in V, corresponding to the smallest singular value. In this
case, the point is z = s1x1 + s2x2.

If two singular values are zero, this means that the lines coincide, and the
intersection is then the whole line.
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PART I, Estimation

Answer 6 (A, 1p) If the error is zero, this typically means either that the chosen
model is too flexible and contains too many free parameters, or that we are using
too little data in the estimation (the latter case was ruled out here). A too flexible
model is bad because it (over)fits to the noise, and will generalise poorly to new
data.

Answer 7 (A, 1p) In the orthogonal Procrustes problem we are given some 3D
(2D also works) point correspondences ak ↔ bk, k = 1, . . . ,m, and the objective
is to determine an orthogonal matrix R minimising

εrot =
m∑
k=1

‖bk −Rak‖2.

This is done by first forming A =
(
a1 . . . am

)
and B =

(
b1 . . . bm

)
, then

computing an SVD BA> = USV>, and finally setting R = UV>. (This is not
guaranteed to be a rotation, but that is only required in the strict version.)

Answer 8 (A, 1p) In this case, a ‘good’ set of singular values is characterised by
having one singular value which is much smaller than the rest. This means that
that the data matrix has an unambiguous one-dimensional null space (approxi-
mate null space), which holds the vectorised version of the homography matrix.

Answer 9 (B, 2p)
a) For every point xk, we get an equation

(
x2k 2xkyk 2xk y2k 2yk 1

)︸ ︷︷ ︸
Ak


c11
c12
c13
c22
c23
c33

 = 0.

Now stack the Ak to make a data matrix

A =

x21 2x1y1 2x1 y21 2y1 1
...

...
...

...
...

...
x2m 2xmym 2xm y2m 2ym 1

 , (1)

and compute its (right) null space. This can be done e.g. by computing an SVD
A = USV>. Then the rightmost column in V will be an approximation to the
null space (c11, c12, c13, c22, c23, c33). Note: C can only be determined up to a
(non-zero) scalar multiple, and it is irrelevant which multiple is found.
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b) The data matrix need to have a unique one-dimensional null space (rep-
resenting C). In general, this happens if we use five points, since then the data
matrix will be of size 5× 6.

Answer 10 (B, 2p) One approach is to use the constraint ‖z‖ = 1 (the homoge-
neous method). The solution to this constrained minimisation problem is found
by computing an SVD of the data matrix, A = USV>. Then an optimal z is
given by the rightmost column in V.

Another approach is to arbitrarily set one element in z to something non-zero,
and then solve for the other elements as an inhomogeneous least-squares problem.
If for example the final element in z is set to one, we may write z = (z0, 1).
Partitioning the data matrix as A =

(
A0 b

)
, where b is the rightmost column

of A, we have

‖Az‖=
∥∥∥ (A0 b

)(z0
1

)∥∥∥ = ‖A0z0 + b‖.

If A is a ‘tall’ matrix of full rank, this norm is minimised when z0 = −(A>A)−1A>b.
This gives a non-zero minimiser z to the original problem.
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