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PART I

Exercise 1 The dual homogeneous coordinates l must satisfy y·l = 0. This relation
gives many solutions for l. Some examples are−2

1
0

 and

 0
3
−2

 .

Exercise 2 The translation matrix and the rotation matrix are given as

Ttrans =

1 0 1
0 1 1
0 0 1

 , Trot =

0 −1 0
1 0 0
0 0 1

 .

The combined transformation is

Trot Ttrans =

0 −1 0
1 0 0
0 0 1

 1 0 1
0 1 1
0 0 1

 =

0 −1 −1
1 0 1
0 0 1

 .

Exercise 3 See the IREG compendium, figure 6.1.

Exercise 4 See the IREG compendium, section 9.2.2.

Exercise 5 Set y = (u, v, 1) and define the elements of matrix Q as

Q =

q11 q12 q13
q12 q22 q23
q13 q23 q33

 .

This means that we can expand y>Q y = 0 as

y>Q y = q11u
2 + 2 q12u v + 2 q13u+ q22v

2 + 2 q23v + q33 = 0. (1)

Similarly, the defining equation of the ellipse can be expanded as

4u2 − 32 u+ 9v2 − 36 v + 99 = 0. (2)

Using (1) and (2), we can identify the elements of Q (up to multiplication with a
scalar):

q11 = 4, q12 = 0, q13 = −16, q22 = 9, q23 = −18, q33 = 99

∗This guide is not an authoritative description of how answers to the questions must be given
in order to pass the exam.
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PART II

Exercise 6 To make the estimation result independent of which coordinate system
is used for defining the coordinates of points. See the IREG compendium, section
11.2.2. Observation 52.

Exercise 7 See the IREG compendium, section 11.1.2.

Exercise 8 See the IREG compendium, section 11.2.1, the three cases on page 195.

Exercise 9 See the IREG compendium, sections 10.3 and 10.4.

Exercise 10 See the IREG compendium, section 13.2.

PART III

Exercise 11 B̃∗G0 B = I. See lecture 2B.

Exercise 12 To assure the symmetry of the scalar product: 〈 u | v 〉 = 〈 v | u 〉 for
all u,v ∈ Rn. See lecture 2A, slide 5.

Exercise 13 The orthogonal projection of v onto the subspace spanned by B is
given as v1 = B(B∗G0B)−1B∗G0v. The orthogonal distance from v to the space
is then given as ‖v − v1‖ = ‖v −B(B∗G0B)−1B∗G0v‖. See lecture 2C, slide 11.

Exercise 14 The dual frame is defined as b̃k = F−1bk, see lecture 2F, slide 11.
The expansion of v as a linear combination of the frame vectors is discussed in
slides 14 and 15.

Exercise 15 Using the scalar product between discrete functions of N samples:

〈 f [k] | g[k] 〉 =

N−1∑
k

f [k] g[k]∗,

the expression for discrete Fourier transform can be written:

F [l] =

N−1∑
k

f [k] e−i2πkl/N = 〈 f [k] | e2πikl/N 〉

This implies that the functions, of the discrete variable k, b̃l[k] = e2πikl/N are the
dual basis functions. The corresponding basis functions are then given as bl[k] =
1
N e2πikl/N since

〈 bn[k] | b̃l[k] 〉 =
1

N

N−1∑
k

e2πikn e−i2πkl/N =
1

N

N−1∑
k

e2πik(n−l)/N =
1

N
N δnl = δnl
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PART IV

Exercise 16 The signal has a spectrum that normally is larger for lower frequencies,
and decreases for higher frequencies. Since the spectrum describes the ”probability
of energy” in the frequency domain for a particular signal, it is reasonable to weight
the optimization error with the (non-uniform) spectrum. See exercise 16.1.

Exercise 17 See lecture 2E, slide 26.

Exercise 18 W0 consists of functions in V1 that are orthogonal to the functions
in V0. This means that V0 can be formulated as the direct sum of V0 and W0:
V1 = W0 ⊕ V0. See lecture 2G, slide 44.

Exercise 19 The optimization problem is formulated in the frequency domain, for
frequency functions corresponding to discrete signals, i.e., 2π-periodic functions.
We have an ideal frequency function of the filter, denoted FI(u), and the actual
frequency function of the filter, denoted F (u), which is the Fourier transform of the
filter coefficients f [k], i.e., F (u) = F{f}(u), and we want to minimize the difference
between the two frequency functions, i.e., minimize

ε = ‖FI(u)− F (u)‖2 = ‖FI(u)−F{f}(u)‖2,

over all choices of the filter coefficients f . The norm between the two frequency
functions is defined based on

ε = ‖FI(u)− F (u)‖2 = 〈 FI(u)− F (u) | FI(u)− F (u) 〉,

where the scalar product between two frequency functions is defined as

〈H(u) |G(u) 〉 =

∫ π

−π
H(u)W (u)G(u) du.

Here, W (u) is the weighting function in the frequency domain. It is sufficient to
integrate from −π to π, since the functions are 2π-periodic.

Exercise 20 In general, the filters are related to the basis functions bm[k] and the
applicability function a[n] as (see lecture 2C, slide 21):

fm[k] = a[−k] · bm[−k].

Since there is only one basis function b[k] = 1, the corresponding filter function is

f [k] = a[−k] = a rev[k].

In general, the local metric G[k] at point k is given as a matrix with elements (see
lecture 2C, slide 40):

Gij [k] = 〈 bj | bi 〉 = b∗iG0[k] bj =
∑
n

bj [n] c[k + n] a[n] b∗i [n],

where G0[k] = diag
(
a[n] · c[k + n]

)
. Since there is only one basis function b[k] = 1,

the corresponding metric is a 1× 1 matrix, with a single element

G[k] =
∑
n

c[k + n] a[n] =
∑
n

c[k − n] a[−n] = (c ∗ arev)[k].
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