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The Kronecker Product

Definition (Kronecker product)
Let A € R™*™ and B € RP*". The Kronecker product between A and B is defined as
0,11B 000 alnB
A®B= : o ERmenr_

amlB amnB

Note that, in general, A® B # B ® A (i.e., the Kronecker product is not
commutative).
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The Kronecker Product (Some Properties)

The Kronecker product has many nice properties, for example:
(K1) Linearity: (chAk> @B = Z ck(Ar ® B)
k k
(K2) Associativity: (A@B)® C=A® (B®C)
(K3) Mixed product: (AC) ® (BD) = (A @ B)(C ® D)

Proving properties K2 and K3 is a nice exercise in block matrix multiplication!
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Vectorisation

Definition (Vectorisation)

Let A= (A; -+ A,) € R™*", where each Aj, € R™. The vectorisation of A is
defined as A,
vecA=| : | e R™.
A,

(V1) Linearity: vec (chAk) = ch vec Ay,
k k
(V2) Outer product: For u € R™ and v € R", we have

via
:vec(vlu vnu): : =v®u.
v

vec(uv ")
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Vectorisation of Matrix Product
Let A e R™*", X € R"*P, and C € RP*". Then
vec(AXC) = (CT ® A) vec X.
This theorem is very useful for solving linear matrix equations in a systematic way! If

we want to solve for X such that AXC =Y (where A and C may not even be
square), the theorem transforms the problem into solving a standard form system

AX =Y,
with A = CT Q A, X = vec X, and Y = vecY.
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Vectorisation of Matrix Product, Proof

We start with two preliminary observations.

First, let I = (el e ep) be the p x p identity matrix, and note that
T
€; »
X:XITz(xl o xp) | :Zxke;.
eT k=1
P

Secondly, note that
X1

P
veeX = | :Z(ek®xk).

k=1
Xp
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Vectorisation of Matrix Product, Proof (contd.)
Proof (contd.)

Using the first observation to rewrite X, we have
P
vec(AXC) = vec ( <Zxkek) ) = vec (ZAX;&,IC) = /use (Vl)/ =
k=1

ec (Axe, C) = Zvec (Ax,(Clep)") = /use (V2)/ =

M- M

k=1
p
=3 (CTer) ® (Axy) = /use (K3)/ =3 (CT ® A)(er ® x)-
k=1 k=1
Bringing CT ® A outside the sum, and using observation two, proves the result. O
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