Geometric definition of homography

Figure: A homography defined as central projection of the p’rane T,
through the point n, on the plane 7’.
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Observations

- A homography is always invertible.

- A homography becomes a perspective pinhole camera,
if everything in the scene lies in a plane.

- The two planes can lie on the 'same side' of the projection centre.

- A homography maps straight lines in one image

to straight lines in the other image. The "only" invariant of
a homography!

- A homography can map proper points to ideal points, and vice versa.



Example of a homography

Figure: The right image is a synthetic view generated from the left
image by applying a suitable homography.



Example of a homography (razy case)
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(From Hartley & Zisserman, "Multiple View Geometry in Computer Vision", 2004)



Algebraic representation of homographies

A homography is represented by an invertible 3x3 matrix,
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Homographies & Cameras
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Assume P = [I 0] and P’ = [A D] are projective cameras, and
let w = (v, d) be a plane which does not contain any of the

camera centres. If X is a point on the plane and projects into the
two views as x ~ PX and x' ~ P’'X, then

x' ~ (A —bv'/d)x,

and the matrix H= A —bv" /d is a homography.
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Homographies & Cameras (conu,)

Proof (except invertibility):

Wewas s~ PX=(E 0)X (T 0)(%)
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Cameras with identical centre

Consider P=(I06) aud P'=(AO0).
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Point Correspondences

In many cases it is useful to consider
point correspondences between two
(or more) images.
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- There exist many methods for
automatically finding (putative)
point correspondences, based on
feature extraction (SIFT, SURF, ...).

- Not all correspondences they
propose are correct! ("Outliers”, more on that in TSBB15.)



Direct Linear Transformation (DLT) (4= «~

Suppose we are given a number of point correspondences  Xj <> X;

and want to find a homography that transforms all  x; nfe xj,
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Direct Linear Transformation (DLT)  onta)

We stack all DIT comghaints for jz=b, ;% b & Yaka matixd A:
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