TSBB06 Multi-dimensional
Signal Processing

Lecture 2A
Recap, introduction and overview
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Recap from Mathematical Toolbox...

Definition of a vector space

Subspace

Linear combination

Linear dependency/independency

Linear span

Basis

Coordinates n
Scalar product

Norm (from scalar product)

Orthogonality
ON (ortho-normal)
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Recap from Mathematical Toolbox...

e Matrices M with n X m elements inR
represent linear transformations R — R"

e Range, null space, and rank of matrix M
e Determinant, trace
« Transpose, denoted M*

e Special cases: symmetric matrix, anti-symmetric
matrix, orthogonal matrix, O(n), SO(n), so(n)

e Eigenvalues of a symmetric matrix
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Can be generalized to C"

e See Mathematical Toolbox..., Section 3.10
e Special scalar product in C"

o Complex transpose, denoted M’

e Hermitian matrix, anti-Hermitian matrix
e Unitary matrix, U(n), SU(n), su(n)
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Scalar product

In a general vector space with a scalar product:

e The scalar product must satisfy
1.(|): VXV > F
2. (a+b|c) = (alc) + (b[c)
3. (aalb) = «a (a|b)
4. (alb) = (bla)”
5 (ala) >0, with=0iffa=0
for vectors a, b, ¢ and scalar «

e Here, * denotes complex conjugation
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Examples of scalar product spaces

. V =R" = the set of all ordered N-tuples
of real numbers form a vector space

e We represent such ordered N-tuples as
columns of N real numbers

« Given an N x N symmetric matrix G,:

e A scalar product between vectors a and
b is given as (a|b) = b’ Gya
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Examples of scalar product spaces

« We can choose G, =1 =the N X N identity matrix
- Gives the “standard” scalar product (dot product) b*a
. However, any G, that is

- Symmetric
- positive definite (what is that?)

also gives a scalar product that satisfies properties
1. - 5. (please check!)

. In fact, a G, that is symmetric and positive definite
is both sufficient and necessary in this case.

e Consequently: there are many ways to define a
scalar product space based on RY
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Examples of scalar product spaces

e Similarly, the set of all ordered N-tuples
of complex numbers, C forms a vector
space

e We represent such ordered N-tuples as
columns of N complex numbers

e Ascalar product between vectors a and
b is given as (alb) = b*Gga
- where G, is an N x N Hermitian matrix
- where G, also is positive definite
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Examples of scalar product spaces

e The set of N x M real matrices is a vector
space (how?)

e As a scalar product between matrices A
and B in this vector space can, for
example, be defined as

(A|B) = trace(B* A)

Frobenius scalar product
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Examples of scalar product spaces

e More interesting cases of vector spaces
are generated by considering specific
sets of functions

e This has to be done with some care to
assure that

- the sum of two functions is again in the set
e convergence of Cauchy sequences

- a scalar product exists

2018-11-05 Lecture 2A, Klas Nordberg, LiU 10



Examples function spaces

Examples:

* Polynomials
or more often: polynomials up to order p

* Functions t

 Functions t
differentiab

« Functions't

nat are periodic with period T

nat are continuously
e d times

nat are zero outside some region Q

« Square integrable functions (L2) (what is that?)
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Examples of scalar product spaces of functions

* As scalar product between two functions we

often use
Flg) = [ f@)g" (@)

* The range of integration can be chosen as
— For polynomials: an arbitrary finite interval
— For T-periodic functions: x, to x, + T

— Compactly supported functions: Q
— [2: -00to +o0
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Examples of scalar product for function spaces

* In some applications we may also want to
consider scalar products defined as

* In this case we assume that w(x) > 0
(Why?)
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Henceforth

* We will only consider scalar-product spaces

* They are either of type RY C»or some function
space

* They will often be finite dimensional

. O_ccasic_)naII?/, we will venture into the infinite
dimensional case

— With intuitive reasoning, rather than based on rigor
mathematics

* Functions can be of a single or multiple variables

 We will often consider the case that the scalar
product space and a basis is already given

— In general, the basis is not orthogonal!
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e Given that we have a scalar product
space V with a basisb,, k=1, ... N

e And some vectorv € V

« How do we determine the coordinates c,
of v relative the basis?

N

This is one of the _

main themes in V — E : Ckbk
this part of the .
course!! k=1
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Signal processing

Typical operations in signal processing

e Convolution (filtering)

e Transformation (e.g. Fourier transform)
e Sampling

- From continuous-time signal to discrete-time
signal

e Reconstruction

- From discrete-time signal to continuous-time
signal
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Signal spaces

 Signals are functions of time and/or spatial
position

- Audio (time)

An image (2D spatial)

Video (time+2D spatial) - aliased!!
MRI volume (3D spatial)

« We are also interested in other types of
functions, e.g., filters or,anal%/smg functions
that, from a practical point of view, are not
proper signals.

- These, too, are here referred to as “signals”
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Continuous and discrete signals

e The domain of the signhal function (of time
and/or position) is either

- a continuous set R™(”continuous signals”)

- a discrete set ZD(”discrete sighals”)
L The set of all integers
e D is the dimension of the domain

- For example, D=2 for an image
- A.K.a. outer dimension of the sighal
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Infinite or truncated domain

e Furthermore, the domain of the signal can
either be regarded as infinite or truncated

« When we make an analysis of an audio signal,
we often assume that it has well-defined
values for t € [—o0, 0]

e In practice, both an audio signal, and more
typically an image, have well-defined values
only for a truncated domain, e.g., t € [t1, t2]
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The codomain of the signal

e The signal function maps its domain to a
set called the codomain

e For many signals, the codomain can be
assumed to be the set of real numbers, R

- Audio
- Gray-scale images
- MRI density volumes
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The codomain of the signal

e For some signals, the codomain is rather a
set/vector of real numbers:

- Colour images

e In the case that the codomain is a vector
space, its dimension is the
inner dimension of the signal
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Digitised and truncated codomain

e In many practical cases, R may not be the

appropriate codomain if the signal values
are both sampled and digitised

- Example: pixel values from a digital camera are
represented by integers

e For certain signals, we know that sighal
values are always positive

- Example: Image intensities are always positive
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The signal vector

e Despite the various types of signals that
may emerge from practical problems, we
choose to describe them here as vectors,
elements of a well-defined vector space.
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e The convolution between functions f and g of a
discrete and 1-dimensional variable:

hin) = fln— k] glk
k

where summation is made over some subset of /Z
- In general, summation over the infinite set Z,

« Example: f is asignal, g is the filter, h is the
filtered signal. All signals are assumed real
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o Algebraically, the convolution operation has
two faces, two interpretations:
- It can be seen as a linear combination of vectors
- It can be seen as computing scalar products

 Which face we want to see depends on the
application, both are valid

- But usually only one fits your particular problem

2018-11-05 Lecture 2A, Klas Nordberg, LiU 25



Convolution as a linear combination

e We can see h[n] as a vector in the
signal space V

« With f,[n] = f[n - k] and ¢,=¢g[K]
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Convolution as a linear combination

e This view of the convolution operation implies that
h is a linear combination of shifted versions of the
signal f together with the elements of the filter g

e Convolution is a commutative operation:
g=f*g=g*f

—> we can also describe h as shifted versions of the

filter ¢ in a linear combination with the elements of
the signal f

 If g has finite support (a FIR-filter), then h is a
”proper” (finite) linear combination
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Convolution as scalar products

o Alternatively, we can see each element in h
as the result of a scalar product between
two function vectors, one derived from the
input signal and one derived from the filter.

hin] = fln — k|g[k]

k
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Convolution as scalar products

. For a fixed n,, we get the scalar h[n,] as

hino| = Z f k| plk]

where

plk| = glno — K|

g is mirrored around n,
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Convolution as scalar products

e Formally we can write this as

hino] = (f|p)

where p and g are function vectors

 Notice that the function p depends on n,
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Convolution as scalar products

. Alternatively, we can write h[n,] as

hino| = Z f1k] glno — k|

or

ol = oo — 111 R
Ny
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Convolution as scalar products

e Since convolution is commutative

(f *g =g=* [ ), we now have 4 different
ways of expressing h[n,] :

hlno] = (f[K]|g[no — K]

h__n()__ ~ <g '-nO N k‘]‘f[k> In all cases, the
h:n(): — <g k] ‘f[n() — k> sun:matiorgj,intthe
hingl = (flno — K||g[k]) FEeeimsiy
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Convolution as scalar products

e In the summation over k, we can either go from
-00 to oo, or vice versa

e This gives four more possibilities:

hino| = (f|— ]lg[no+k>
hino| = (g9lno + k]| f|—k])
hino| = (g[—k]|fno + k)
hino) = (flno + kllg[—Fk])
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Convolution: summary

« We have seen that the convolution f x g
operation produces
- a function h that can be seen as

e shifted versions of f linearly combined with g
e shifted versions of g linearly combined with f

- Function values h[n,] that can be seen as (at

east) 8 different types of scalar products
oetween functions derived from f, g, and n,
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Generalization

This idea generalizes directly to

« Complex valued functions (how?)

e Functions of 2 or more variables (how?)
e Functions of continuous variables (how?)
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Fourier transform

e There are different (and equivalent) ways
of defining the Fourier transform

e For example, we can use the following
definition:

Integration is
U) _ / f —7x Tu dx mac]e of the

entire variable
domain R?

[(x) = (ZT) /R B e du
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The inverse Fourier transform

e The expression of the inverse Fourier
transform suggests that the function f
(not the function value f(x)!) can be

interpreted as the functions

. T
X U
€

(QTI')D This is a function of X,
| but it is also indexed

. . . (or enumerated) by
linearly combined with F(u) [SSEaSAy
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The Fourier transform

 We know that any suitable f (which?) can be
transformed to F, and then inversely
transformed back again

e This suggests that the functions

. T
X U
€

(2m) P

form a basis for this function set and that F(u)
are the coordinates of f in this basis
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The Fourier transform

e This idea is intuitively correct, but is
complicated to show formally since we
then have to consider sets of vectors that
are not only infinite, but also uncountable

- since they are indexed by the variable u € RP

e We will return to the Fourier transform
when we have defined dual bases
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Sampling

The sampling theorem states that

e If f(x) is band-limited to the interval |—7, 7]
F(u) = 0 outside the interval

It can be sampled at integer values of x:
sample k: s[k] = f(k), k € Z
e such that fcg() can be reconstructed as

f(w) Z S[k] biIl(:(:U — k:) Sinc(:c) _ 312::13

k=—00
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Sampling

e The reconstruction formula suggests that f(x) can
be written as a set of integer shifted sinc-
functions sinc(x-k) linearly combined with s[k]

e Furthermore, the functions sinc(x-k) appear to
form a basis for the set of [—7, 7] band-limited

functions (k € Z)
- At least if they are linearly independent!

e The sample values s[k] must then be the
coordinates of f in this basis
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Sampling

e The sample values s(k) can be written as

slkl = f(k) = / f(x)d(x —k)dx
which intuitively can be written as

slk| = (f(z)]d(z = k))

2018-11-05 Lecture 2A, Klas Nordberg, LiU 42



Sampling

e This expression, however, is formally not
correct since the sampling functions
0(x — k) are not band limited (why?)

 However, what about using other sampling
functions?

e For example: How can f(x) be
reconstructed if we instead sample it with
rectangular functions?
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Conclusion

e In order to derive such a generalisation
of the sampling theorem we need to
better understand how coordinates and
bases are related in the general case:

- For general (G, = I) scalar product spaces
- For general (non-orthogonal) bases

« We need dual bases!
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What you should know includes

e Generalizations of the scalar product
« Examples of vectors spaces, other than R"

e Convolution described either as scalar
products or as a linear combination

 Inverse Fourier transform as computing linear
combinations

e Sampling defined as computing scalar products

e Reconstruction from sampling by linear
combinations (of sinc-functions)
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