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Bases and coordinates

 Let V be an N-dimensional vector space
with basis b,, k=1, ..., N

« Any v € V can then be written as

N

V — chbk

k=1

for some set of coordinates c,

« How do we determine these coordinates?
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 Assume that we can find a set of N vectors b,
such that

(i) = (Bb,) = 5, = {; o

* This set is unique (why?)

* This set is a basis of V (why?)

* This set depends on the scalar product (why?)
« Called a dual basis
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» Compute the scalar product between
v € Vand a dual basis vector by

<V\l~)k> = <clb1 + coby + ...+ chN|f)k> =
¢ <b1|5k> + e <b2|5k> o fen <bN|Bk> -

c1-0+...4+c.-1+...4cny-0=cp
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Coordinates and dual bases

Main result (in this part of the course!):

* |f we have the dual basis, the coordinates
of a vector are given as the scalar product
between the vector and the dual basis

e We summarise this as

This works also

for the infinite
countable case
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Orthonormal bases

» By definition, an orthonormal (or unitary)
basis b,, k=1, ..., N, satisfies

« Consequently: an ON-basis is its own dual
basis

— In this case only: coordinates are given as the
scalar product between vector and basis
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Change of basis

* A dual basis can also be useful if we want to
change from one basis to another

- Letb,andb’,, k=1, ..., N be two bases

v=c,b,+c,b,+..+cyb,
V = C,1 b’1 + C’2 b,2+ "na + C’N b,N

where ¢, and c¢’, are the corresponding
coordinates b, is the old basis

b’, is the new basis
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Change of basis

« Taking the scalar product between v and the
new dual basis, and expanding v in the old
basis gives us

i, = (vIb) =

= <Clb1 —+ Cgbg + ...+ CNbN|l~)?€> —

— ¢ <b1|B;> + e <b2\B;> 4. ten <bN\B;>
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An example (DFT)

» Consider a discrete signal f[k] of N
samples enumerated from O to N 1

N 0 1 M-
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An example (DFT)

» An element of a vector space VV = CV
— Initially in RY but we need to use CV

* We use the scalar product
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An example (DFT)

* This signal can be seen as the linear
combination of N impulse functions together
with the sample values

We use bold face to
denote elements of

vector space V

where §, = 5[3; — k]

* The impulse functions 1, k=0, ..., N— 1
form an orthonormal (ON) basis for V (why?)
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An example (DFT)

 The coordinates of f relative to this basis
are very easy to find:

— They are the function values

 We call this basis the canonical basis of
this function space

— The canonical basis is its own dual basis

 Let us now look at another basis for the
same space
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An example (DFT)

 Consider the set of functions defined as
b, = e2™k*/N L —0,... N—1

 \We note that

N—1
<bk‘bl> _ Z 6—27m'lm/N627m'km/N — N6y,
=0
* \Which means that ~ 1
b, = —by,

N
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An example (DFT)

 \We have two bases for V,
—the canonical basis
— the complex exponential basis

and we know the coordinates of f € V' In
the first basis (the canonical basis)

 We also have the dual bases

— We can determine the coordinates in both
bases
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An example (DFT)

 The coordinates of f relative to the second
basis are given as

* We recognise this as the discrete Fourier
transform (DFT) of the function f
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Interpretation of DFT (1)

* CL — F(Q?T]C/N)

e F(u,) at ux = 2mk/N is the scalar product
of the signal f and the dual basis function

Note: no

// minus sign!!

2mikx /N

—C

N
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An example (DFT)

- Alternatively, we can compute c’, by

transforming from the coordinates in the
canonical basis to coordinates in the new basis:

new coordinates =

linear combination of old coordinates and
< old basis | new dual basis >
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An example (DFT)

* This gives us

N—1 -~
= > flI] <5l|bk>
(=0
X 1 |
e Since <5l’bk> — Ne_QMkl/N
1 N—1
We 98t el = 5 D flle” Y| I
[=0 before!
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Interpretation of DFT (II)

» F(u,) atug = 27k /N is the result of

transforming coordinates from the
canonical basis to the basis

627rzkzc/N
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An example (DFT)

A third interpretation of the DFT is given
directly from the expression

__ i N§_1: —iul /N
[=0

* The function F(u) is a linear combination of
the functions 1
—€

N
with the coefficients f/]

—tul /N
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Interpretation of DFT (l1)

* The resulting transform function F,
either of a discrete variable uy, = 27k /N,
or a continuous variable u,
IS a linear combination of exponential
functions
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An example (DFT)

Conclusions:

« The DFT can be seen as either

— a direct coordinate computation in terms of
scalar product between f and the dual basis of
the complex exponentials

— A coordinate transformation when we change
from the canonical basis 0 to the basis b, of

complex exponentials
— A linear combination of complex exponentials
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An example (DFT)

* This description generalises to the
continuous Fourier transform but is more
elaborate to prove formally since we have
to deal with infinite and uncountable bases
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Back to dual bases

* Avery useful result: 3
— Given a basis b, with a dual basis by,

— The dual basis of f)k Is the original basis b,

* This is straightforward to show (how?),
at least in the finite dimensional case

» Thus: by, = by
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Dual coordinates

This result implies for v € V-

N

V — chbk Cl — <V‘f)k>
k=1
N

V = 6kBk Cr, = <V‘bk>
k=1 N\ These are the

of v
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Transforming coordinates

 The coordinates and the dual coordinates
must be related according to the
coordinate transformation rule:

new coordinates =

linear combination of old coordinates and
< old basis | new dual basis >
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Transforming coordinates

* Transforming from coordinates to dual
coordinates means

—old basis b,

—new basis by,
— new dual basis b,

* and gives us N

¢ =y c (bi|bg)

[=1
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Transforming coordinates

 Alternatively, transforming from dual
coordinates to "standard” coordinates
means
— old basis by,
—new basis b,

— new dual basis by,

N
e and giveS us CL = Z 61 <f)l|f)k>

2018-11-06 Lecture 2B, Klas Nordberg, LiU 28



Expanding the basis in the dual basis

* We now go one step further and express
one of the basis vectors as a linear
combination of the dual basis:

These are the dual
coordinates of b,
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Expanding the basis in the dual basis

 Let us define the matrix G with elements

G, = (bx|by)

Notice the order of the
indices!

it allows us to write the previous expression as

2018-11-06

N
by = Z b; G
=1
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Expresses a basis vector

as a linear combination of
the dual basis
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Expanding the basis in the dual basis

* By inverting G we can expand each dual basis
vector in the orlglnal basis

f)k — Z b; [G_
[=1

* This su?gests a reC|pe for computing the dual
basis of a general (non-orthogonal) basis:

— Compute G with le = <bk|bl>
— Invert G
— Form linear combinations of the basis with G
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The matrix G

* From the previous relation follows directly

<l~)k|5 > i<bl|b > Z(Slm — [G_l]mk‘

=1

» Furthermore, from {(a|b) = (b|a)" follows

Gr = Gy,

l.e., G is Hermitian
(or symmetric in the case Vis real)
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G and scalar products

e Letu, veV andlet b, be a basis of V-
N

N
uzzukbk V:Z?kak
k=1 '\
Coordinates of

/ U1 \ u and v, respectively,

/ in the basis b,
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G and scalar products

* The scalar product between u and v:
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G and scalar products

* This means that G defines the scalar product in
terms of coordinates relative to the basis b,

e Sometimes it is easier to describe a vector in terms
of its coordinates relative to some basis, rather
than as an abstract element of some vector space

* |[f Gis at hand, it is then straightforward to compute
scalar products by multiplying the coordinate
vectors of u and v from left and right onto G

<11‘V> p— C* ch Notice the order of
i the vectors!
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G and dual coordinates

* Previously, we derived how "standard”
coordinates are transformed into dual
coordinates and vice versa:

N N
G =Y c(bbr) =) G
I=1 =1
N N
Cr, = Ci <f)l‘f)k> — Zél [G_l}kl
=1 =1
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G, summary

G depends on the scalar product and on the
basis

G is called (the) metric (tensor)
— A.k.a. the Gram matrix or Gramian

G is Hermitian (symmetric if V' is real)
» Gives the dual basis, for a specific basis
» Gives scalar products given coordinates

 Transforms "standard” coordinates to dual
ones

G-1 transforms in the opposite way
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Two operations

« \WWe have made extensive use of two
operations:

— scalar products
— linear combinations
 Given a basis b, for V, the scalar product

between v € V and the dual basis gives the
coordinates of v relative the basis

* Given the coordinates of v, v can be
reconstructed as a linear combination of the
coordinates and the basis vectors
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Two operations

In the following:

« Scalar products between a signal and a set of
vectors (a basis of V or of a subspace of V)
are referred to as an analyzing operation

— Produces some type of coordinates

* Linear combinations between coordinates and
a basis Is a reconstructing operation

— Or synthesising operation
— Produces vectors or signals

* Analyzing and reconstructing operations are
in a dual relation to each other (how?)
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Finite dimensional signals

 In this course, many signals that are described are finite
dimensional
— E.g. a segment of some infinite discrete signal

 Some are one-variable (e.g., time) but they are often
multi-variable (e.g., spatial)
— We can rearrange multi-dimensional signals as column vectors

(how?)
(1) (91

f and g contain
\gN ) coordinates relative

v%/
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Finite dimensional signals

* We apply a scalar product that is defined in
the canonical basis in terms of a matrix G,

— G, is the metric in the canonical basis!

(flg) = g Gof

Note the order of
the vectors!
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The basis matrix

- Letb,, k=1, ..., Nbe a basis of V

 Let B denote a matrix that contains the
vectors b, in its columns, the basis matrix

|
B= (b, by, -~ by
|
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The dual coordinates

* The dual coordinates of v is given by

i) () BiC

<V|b2> b;GOV

(@R
|
I

v/ \tviby)) b Gov)
which can be written more compactly as

C = B*G‘OV
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Analyzing operator

* An analyzing operator computes the scalar
product with the basis for a vector

« B*G, is an analyzing operator
— It gives v’s dual coordinates when applied to v

- We define A = B*G,
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Reconstructing operator

* Given the dual coordinates of v, we can
reconstruct v by means of a linear
combination with the dual basis

v = B¢

where the dual basis matrix is

A
B(Bl b, --- by
T
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Reconstructing operator

» In this context, B is a reconstructing
operator

. We define R = B

e Insummary:v=RAv forallveV

= RA =1 (The N x N identity matrix)
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Analyzing and Reconstructing

operators

 |f, instead, the dual basis has been used
for the analysis, we obtain directly the
coordinates

» A = B*G, is an analyzing operator
— It gives v’s coordinates when applied to v

* In this context, the reconstructing operator
iIs R = B, forming linear combinations with
the basis together with the coordinates
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The dual basis revisited

* These relations imply
RA =BB*G, =1 =
BB*G,B =B

* We note that B*G B contains all possible
scalar products between basis vectors, I.e.,

G is the scalar product in basis B

B * GO B — G G, is the scalar product in the

canonical basis
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The dual basis revisited

* This gives us
BG =B B =BG

which is exactly the same relation between
the basis and the dual basis as before

(now in matrix form)
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What you should know includes

* Definition of a dual basis

« Computation of coordinates based on dual basis

* What are dual coordinates

» Definition of a metric G

« Computation of the dual basis using G

« Computation of coordinates from dual coordinates
using G

* The concepts analysing and reconstructing
(or synthesising) operations or operators
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