TSBB06 Multi-dimensional Signal Processing

Lecture 2B

Dual Bases

Bases and coordinates

- Let V be an N-dimensional vector space with basis \mathbf{b}_k , k = 1, ..., N
- Any $\mathbf{v} \in V$ can then be written as

$$\mathbf{v} = \sum_{k=1}^{N} c_k \mathbf{b}_k$$

for some set of coordinates c_k

How do we determine these coordinates?

Dual basis

• Assume that we can find a set of N vectors $\hat{\mathbf{b}}_k$ such that

$$\langle \mathbf{b}_i | \tilde{\mathbf{b}}_j \rangle = \langle \tilde{\mathbf{b}}_i | \mathbf{b}_j \rangle = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

- This set is unique (why?)
- This set is a basis of V (why?)
- This set depends on the scalar product (why?)
- Called a dual basis

Dual basis

• Compute the scalar product between $v \in V$ and a dual basis vector $\tilde{\mathbf{b}}_k$

$$\left\langle \mathbf{v} | \tilde{\mathbf{b}}_{k} \right\rangle = \left\langle c_{1} \mathbf{b}_{1} + c_{2} \mathbf{b}_{2} + \dots + c_{N} \mathbf{b}_{N} | \tilde{\mathbf{b}}_{k} \right\rangle =$$

$$c_{1} \left\langle \mathbf{b}_{1} | \tilde{\mathbf{b}}_{k} \right\rangle + c_{2} \left\langle \mathbf{b}_{2} | \tilde{\mathbf{b}}_{k} \right\rangle + \dots + c_{N} \left\langle \mathbf{b}_{N} | \tilde{\mathbf{b}}_{k} \right\rangle =$$

$$c_{1} \cdot 0 + \dots + c_{k} \cdot 1 + \dots + c_{N} \cdot 0 = c_{k}$$

Coordinates and dual bases

Main result (in this part of the course!):

- If we have the dual basis, the coordinates of a vector are given as the scalar product between the vector and the dual basis
- We summarise this as

$$\mathbf{v} = \sum_{k=1}^{N} \left\langle \mathbf{v} | \tilde{\mathbf{b}}_k \right\rangle \mathbf{b}_k$$

This works also for the infinite countable case

Orthonormal bases

• By definition, an orthonormal (or unitary) basis \mathbf{b}_k , k = 1, ..., N, satisfies

$$\langle \mathbf{b}_i | \mathbf{b}_j \rangle = \delta_{ij}$$

- Consequently: an ON-basis is its own dual basis
 - In this case <u>only</u>: coordinates are given as the scalar product between vector and basis

Change of basis

- A dual basis can also be useful if we want to change from one basis to another
- Let \mathbf{b}_k and \mathbf{b}'_k , k = 1, ..., N be two bases

$$\mathbf{v} = c_1 \, \mathbf{b}_1 + c_2 \, \mathbf{b}_2 + \dots + c_N \, \mathbf{b}_N$$

 $\mathbf{v} = c'_1 \, \mathbf{b}'_1 + c'_2 \, \mathbf{b}'_2 + \dots + c'_N \, \mathbf{b}'_N$

where c_k and c'_k are the corresponding coordinates

b'_k is the new basis

Change of basis

 Taking the scalar product between v and the new dual basis, and expanding v in the old basis gives us

$$c'_{k} = \left\langle \mathbf{v} | \tilde{\mathbf{b}}'_{k} \right\rangle =$$

$$= \left\langle c_{1} \mathbf{b}_{1} + c_{2} \mathbf{b}_{2} + \dots + c_{N} \mathbf{b}_{N} | \tilde{\mathbf{b}}'_{k} \right\rangle =$$

$$= c_{1} \left\langle \mathbf{b}_{1} | \tilde{\mathbf{b}}'_{k} \right\rangle + c_{2} \left\langle \mathbf{b}_{2} | \tilde{\mathbf{b}}'_{k} \right\rangle + \dots + c_{N} \left\langle \mathbf{b}_{N} | \tilde{\mathbf{b}}'_{k} \right\rangle$$

Consider a discrete signal f[k] of N samples, enumerated from 0 to N - 1

- An element of a vector space $V = \mathbb{C}^N$
 - Initially in \mathbb{R}^N but we need to use \mathbb{C}^N
- We use the scalar product

$$\langle \mathbf{f} | \mathbf{g} \rangle = \sum_{k=0}^{N-1} f[k] g^*[k]$$

 This signal can be seen as the linear combination of N impulse functions together with the sample values

$$\mathbf{f} = \sum_{k=0}^{N-1} f[k] \boldsymbol{\delta}_k$$

We use bold face to denote elements of vector space *V*

where
$$\boldsymbol{\delta}_k = \delta[x-k]$$

• The impulse functions δ_k , k = 0, ..., N-1 form an orthonormal (ON) basis for V (why?)

- The coordinates of f relative to this basis are very easy to find:
 - They are the function values
- We call this basis the canonical basis of this function space
 - The canonical basis is its own dual basis

Let us now look at another basis for the same space

Consider the set of functions defined as

$$\mathbf{b}_k = e^{2\pi i k x/N} , \quad k = 0, \dots, N-1$$

We note that

$$\langle \mathbf{b}_k | \mathbf{b}_l \rangle = \sum_{x=0}^{N-1} e^{-2\pi i lx/N} e^{2\pi i kx/N} = N \delta_{kl}$$

Which means that

$$\left| \tilde{\mathbf{b}}_k = \frac{1}{N} \mathbf{b}_k \right|$$

- We have two bases for V,
 - the canonical basis
 - the complex exponential basis and we know the coordinates of $\mathbf{f} \in V$ in the first basis (the canonical basis)
- We also have the dual bases
 - We can determine the coordinates in both bases

 The coordinates of f relative to the second basis are given as

$$c'_k = \left\langle \mathbf{f} | \tilde{\mathbf{b}}_k \right\rangle = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-2\pi i kx/N}$$

 We recognise this as the discrete Fourier transform (DFT) of the function f

Interpretation of DFT (I)

•
$$c_k = F(2\pi k/N)$$

• $F(u_k)$ at $u_k = 2\pi k/N$ is the scalar product of the signal f and the dual basis function

 $\frac{1}{N}e^{2\pi ikx/N}$

Note: no minus sign!!

• Alternatively, we can compute c'_k by transforming from the coordinates in the canonical basis to coordinates in the new basis:

```
new coordinates =
linear combination of old coordinates and
< old basis | new dual basis >
```

This gives us

$$c_k' = \sum_{l=0}^{N-1} f[l] \left\langle \boldsymbol{\delta}_l | \tilde{\mathbf{b}}_k \right\rangle$$

• Since $\left\langle \boldsymbol{\delta}_{l} | \tilde{\mathbf{b}}_{k} \right\rangle = \frac{1}{N} e^{-2\pi i k l/N}$

we get
$$c_k' = rac{1}{N} \sum_{l=0}^{N-1} f[l] e^{-2\pi i k l/N}$$

Same expression as before!

Interpretation of DFT (II)

• $F(u_k)$ at $u_k = 2\pi k/N$ is the result of transforming coordinates from the canonical basis to the basis

$$e^{2\pi ikx/N}$$

 A third interpretation of the DFT is given directly from the expression

$$F(u) = \frac{1}{N} \sum_{l=0}^{N-1} f[l]e^{-iul/N}$$

• The function F(u) is a linear combination of the functions $1_{-iul/N}$

with the coefficients f[/]

Interpretation of DFT (III)

• The resulting transform function F, either of a discrete variable $u_k=2\pi k/N$, or a continuous variable u, is a linear combination of exponential functions

Conclusions:

- The DFT can be seen as either
 - a direct coordinate computation in terms of scalar product between **f** and the dual basis of the complex exponentials
 - A coordinate transformation when we change from the canonical basis δ_k to the basis \mathbf{b}_k of complex exponentials
 - A linear combination of complex exponentials

 This description generalises to the continuous Fourier transform but is more elaborate to prove formally since we have to deal with infinite and uncountable bases

Back to dual bases

- A very useful result:
 - Given a basis \mathbf{b}_k with a dual basis \mathbf{b}_k
 - The dual basis of $\hat{\mathbf{b}}_k$ is the original basis \mathbf{b}_k
- This is straightforward to show (how?), at least in the finite dimensional case
- Thus: $\hat{\ddot{\mathbf{b}}}_{\mathbf{k}} = \mathbf{b}_{\mathbf{k}}$

Dual coordinates

This result implies for $\mathbf{v} \in V$:

$$\mathbf{v} = \sum_{k=1}^{N} c_k \mathbf{b}_k$$

$$c_k = \left\langle \mathbf{v} | \tilde{\mathbf{b}}_k \right\rangle$$

$$\mathbf{v} = \sum_{k=1}^{N} \tilde{c}_k \tilde{\mathbf{b}}_k$$

$$\tilde{c}_k = \langle \mathbf{v} | \mathbf{b}_k \rangle$$

These are the dual coordinates of v

Transforming coordinates

 The coordinates and the dual coordinates must be related according to the coordinate transformation rule:

```
new coordinates =
linear combination of old coordinates and
< old basis | new dual basis >
```

Transforming coordinates

- Transforming from coordinates to dual coordinates means
 - old basis \mathbf{b}_k
 - new basis \mathbf{b}_k
 - new dual basis \mathbf{b}_k
- and gives us

$$\tilde{c}_k = \sum_{l=1}^N c_l \, \langle \mathbf{b}_l | \mathbf{b}_k \rangle$$

Transforming coordinates

- Alternatively, transforming from dual coordinates to "standard" coordinates means
 - old basis \mathbf{b}_k
 - new basis \mathbf{b}_k
 - new dual basis $\tilde{\mathbf{b}}_k$
- and gives us

$$c_k = \sum_{l=1}^N \tilde{c}_l \left\langle \tilde{\mathbf{b}}_l | \tilde{\mathbf{b}}_k \right\rangle$$

Expanding the basis in the dual basis

 We now go one step further and express one of the basis vectors as a linear combination of the dual basis:

$$\mathbf{b}_k = \sum_{l=1}^N \widetilde{\mathbf{b}}_l \, \langle \mathbf{b}_k | \mathbf{b}_l
angle$$

These are the dual coordinates of \mathbf{b}_k

Expanding the basis in the dual basis

Let us define the matrix G with elements

$$G_{lk} = \langle \mathbf{b}_k | \mathbf{b}_l \rangle$$

Notice the order of the indices!

it allows us to write the previous expression as

$$\mathbf{b}_k = \sum_{l=1}^N \tilde{\mathbf{b}}_l G_{lk}$$

Expresses a basis vector as a linear combination of the dual basis

Expanding the basis in the dual basis

 By inverting G we can expand each dual basis vector in the original basis

$$\tilde{\mathbf{b}}_k = \sum_{l=1}^N \mathbf{b}_l [\mathbf{G}^{-1}]_{lk}$$

- This suggests a recipe for computing the dual basis of a general (non-orthogonal) basis:
 - Compute \mathbf{G} , with $G_{lk} = \langle \mathbf{b}_k | \mathbf{b}_l \rangle$
 - Invert G
 - Form linear combinations of the basis with G

The matrix **G**

From the previous relation follows directly

$$\left\langle \tilde{\mathbf{b}}_{k} | \tilde{\mathbf{b}}_{m} \right\rangle = \sum_{l=1}^{N} \left\langle \mathbf{b}_{l} | \tilde{\mathbf{b}}_{m} \right\rangle \left[\mathbf{G}^{-1} \right]_{lk} = \sum_{l=1}^{N} \delta_{lm} \left[\mathbf{G}^{-1} \right]_{lk} = \left[\mathbf{G}^{-1} \right]_{mk}$$

• Furthermore, from $\langle \mathbf{a} | \mathbf{b} \rangle = \langle \mathbf{b} | \mathbf{a} \rangle^*$ follows

$$G_{kl} = G_{lk}^*$$

i.e., **G** is *Hermitian* (or symmetric in the case *V* is real)

G and scalar products

• Let \mathbf{u} , $\mathbf{v} \in V$, and let \mathbf{b}_k be a basis of V:

$$\mathbf{u} = \sum_{k=1}^{N} u_k \mathbf{b}_k \qquad \mathbf{v} = \sum_{k=1}^{N} v_k \mathbf{b}_k$$

$$\mathbf{c}_u = \begin{pmatrix} u_1 \\ \vdots \\ u_N \end{pmatrix}$$
Coordinates of u and v, respectively, in the basis \mathbf{b}_k

$$\mathbf{c}_v = \begin{pmatrix} v_1 \\ \vdots \\ v_N \end{pmatrix}$$

G and scalar products

The scalar product between u and v:

$$\langle \mathbf{u} | \mathbf{v} \rangle = \left\langle \sum_{k=1}^{N} u_k \mathbf{b}_k \middle| \sum_{l=1}^{N} v_l \mathbf{b}_l \right\rangle$$

$$= \sum_{k=1}^{N} \sum_{l=1}^{N} u_k v_l^* \left\langle \mathbf{b}_k \middle| \mathbf{b}_l \right\rangle$$

$$= \sum_{k=1}^{N} \sum_{l=1}^{N} u_k v_l^* G_{lk} = \mathbf{c}_v^* \mathbf{G} \mathbf{c}_u$$

G and scalar products

- This means that **G** defines the scalar product in terms of coordinates relative to the basis \mathbf{b}_{k}
- Sometimes it is easier to describe a vector in terms of its coordinates relative to some basis, rather than as an abstract element of some vector space
- If G is at hand, it is then straightforward to compute scalar products by multiplying the coordinate vectors of u and v from left and right onto G

$$\langle \mathbf{u} | \mathbf{v}
angle = \mathbf{c}_v^* \mathbf{G} \mathbf{c}_u$$

Notice the order of the vectors!

G and dual coordinates

 Previously, we derived how "standard" coordinates are transformed into dual coordinates and vice versa:

$$\tilde{c}_k = \sum_{l=1}^{N} c_l \langle \mathbf{b}_l | \mathbf{b}_k \rangle = \sum_{l=1}^{N} c_l G_{kl}$$

$$c_k = \sum_{l=1}^{N} \tilde{c}_l \langle \tilde{\mathbf{b}}_l | \tilde{\mathbf{b}}_k \rangle = \sum_{l=1}^{N} \tilde{c}_l \left[\mathbf{G}^{-1} \right]_{kl}$$

G, summary

- G depends on the scalar product and on the basis
- **G** is called (the) *metric* (tensor)
 - A.k.a. the Gram matrix or Gramian
- G is Hermitian (symmetric if V is real)
- Gives the dual basis, for a specific basis
- Gives scalar products given coordinates
- Transforms "standard" coordinates to dual ones
 - **G**-1 transforms in the opposite way

Two operations

- We have made extensive use of two operations:
 - scalar products
 - linear combinations
- Given a basis \mathbf{b}_k for V, the scalar product between $\mathbf{v} \in V$ and the dual basis gives the coordinates of \mathbf{v} relative the basis
- Given the coordinates of v, v can be reconstructed as a linear combination of the coordinates and the basis vectors

Two operations

In the following:

- Scalar products between a signal and a set of vectors (a basis of V or of a subspace of V) are referred to as an analyzing operation
 - Produces some type of coordinates
- Linear combinations between coordinates and a basis is a reconstructing operation
 - Or synthesising operation
 - Produces vectors or signals
- Analyzing and reconstructing operations are in a dual relation to each other (how?)

Finite dimensional signals

- In this course, many signals that are described are finite dimensional
 - E.g. a segment of some infinite discrete signal
- Some are one-variable (e.g., time) but they are often multi-variable (e.g., spatial)
 - We can rearrange multi-dimensional signals as column vectors (how?)

coordinates relative the canonical basis

Finite dimensional signals

- We apply a scalar product that is defined in the canonical basis in terms of a matrix G₀
 - G₀ is the metric in the canonical basis!

$$\langle \mathbf{f} | \mathbf{g} \rangle = \mathbf{g}^* \mathbf{G}_0 \mathbf{f}$$

Note the order of the vectors!

The basis matrix

- Let \mathbf{b}_k , k = 1, ..., N be a basis of V
- Let **B** denote a matrix that contains the vectors \mathbf{b}_k in its columns, the basis matrix

$$\mathbf{B} = \begin{pmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_N \\ \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_N \end{pmatrix}$$

The dual coordinates

The dual coordinates of v is given by

$$\tilde{\mathbf{c}} = \begin{pmatrix} \tilde{c}_1 \\ \tilde{c}_2 \\ \vdots \\ \tilde{c}_N \end{pmatrix} = \begin{pmatrix} \langle \mathbf{v} | \mathbf{b}_1 \rangle \\ \langle \mathbf{v} | \mathbf{b}_2 \rangle \\ \vdots \\ \langle \mathbf{v} | \mathbf{b}_N \rangle \end{pmatrix} = \begin{pmatrix} \mathbf{b}_1^* \mathbf{G}_0 \mathbf{v} \\ \mathbf{b}_2^* \mathbf{G}_0 \mathbf{v} \\ \vdots \\ \mathbf{b}_N^* \mathbf{G}_0 \mathbf{v} \end{pmatrix}$$

which can be written more compactly as

$$\tilde{\mathbf{c}} = \mathbf{B}^* \mathbf{G}_0 \mathbf{v}$$

Analyzing operator

 An analyzing operator computes the scalar product with the basis for a vector

- B*G₀ is an analyzing operator
 - It gives v's dual coordinates when applied to v
- We define $\mathbf{A} = \mathbf{B}^*\mathbf{G}_0$

Reconstructing operator

 Given the dual coordinates of v, we can reconstruct v by means of a linear combination with the dual basis

$$\mathbf{v} = \tilde{\mathbf{B}} \tilde{\mathbf{c}}$$

where the dual basis matrix is

$$ilde{\mathbf{B}} = egin{pmatrix} ig| & ig| &$$

Reconstructing operator

• In this context, $\tilde{\mathbf{B}}$ is a reconstructing operator

• We define $\mathbf{R} = ilde{\mathbf{B}}$

• In summary: $\mathbf{v} = \mathbf{R} \mathbf{A} \mathbf{v}$ for all $\mathbf{v} \in V$

 \Rightarrow **R A** = **I** (The $N \times N$ identity matrix)

Analyzing and Reconstructing operators

- If, instead, the dual basis has been used for the analysis, we obtain directly the coordinates
- $\tilde{\mathbf{A}} = \tilde{\mathbf{B}}^* \mathbf{G}_0$ is an analyzing operator
 - It gives v's coordinates when applied to v
- In this context, the reconstructing operator is $\tilde{\mathbf{R}} = \mathbf{B}$, forming linear combinations with the basis together with the coordinates

The dual basis revisited

These relations imply

$$\mathbf{R}\mathbf{A} = \tilde{\mathbf{B}}\mathbf{B}^*\mathbf{G}_0 = \mathbf{I} \Rightarrow$$

 $\tilde{\mathbf{B}}\mathbf{B}^*\mathbf{G}_0\mathbf{B} = \mathbf{B}$

 We note that B*G₀B contains all possible scalar products between basis vectors, i.e.,

$$\mathbf{B}^*\mathbf{G}_0\mathbf{B} = \mathbf{G}$$

G is the scalar product in basis **B G**₀ is the scalar product in the canonical basis

The dual basis revisited

This gives us

$$\tilde{\mathbf{B}}\mathbf{G} = \mathbf{B}$$
 $\tilde{\mathbf{B}} = \mathbf{B}\mathbf{G}^{-1}$

which is exactly the same relation between the basis and the dual basis as before (now in matrix form)

What you should know includes

- Definition of a dual basis
- Computation of coordinates based on dual basis
- What are dual coordinates
- Definition of a metric G
- Computation of the dual basis using G
- Computation of coordinates from dual coordinates using G
- The concepts analysing and reconstructing (or synthesising) operations or operators