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Recapitulation:

* Given a vector space V, a set U is a subspace if
all u € U satisfy the properties of a vector space

— assumes that U has the same scalar field as V

* Since we assume that V is a scalar product space,
U inherits this property from V

— U uses the same scalar product as V

« Uis a proper subspace of V if U is a proper subset
of V (i.e., there exists v € V such that v & U)

* V is sometimes called the embedding space or
ambient space of U
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Orthogonal complement

* Let U be a subspace of V

 We define U as thesetofall veV
that are orthogonal to all u e U

« U, is itself a subspace of V (why?)
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Subspace basis

* Let U be an M-dimensional subspace of
N-dimensional vector space V, M < N

e Letb,, k=1, ..., M, be a basis of U
« We refer to b, as a subspace basis

* Since U is a scalar product vector space and
we have a basis for U, all that is said about
coordinate computations based on dual bases
are valid also for U

— However, this gives us coordinates of u € U
and not v € V, if U is a proper subspace
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A general question

. Let b, be a basis of a proper subspace

UucVv

* Let v be a vector in V (perhaps not in U)
* What can be said about v in this case?

v/
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A general observation

* v € V can always be decomposed as

V=V, +V,

wherev; €e Uand vg € U |
* This decomposition is unique (why?)
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A general answer

In context of the previous question:
» We should be able to determine v, and its
coordinates relative to the subspace basis

* However, it may not be obvious how to
determine v,, since we only know v at this

point
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A least squares problem

* Let B be the basis matrix of the subspace
(B is N x M and known)

 Let ¢ be a column vector of the coordinates
of v, (M-dimensional and not known)

v,=Bc
« We want to determine ¢ such that
E(C) — HV B BCH2 This is a least

squares

is minimised O
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Solving least squares problems

* First we expand the norm using the scalar

Proc

uct
v — Bc||? = (v — Bc|v — Be)

 Let G, be the metric matrix

|v — BCH2 (v — Bc)"Gy(v — Be)
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Solving least squares problems

* Take the derivative wrt. ¢ and set equal to
zero to find the stationary point. This gives
us the expression:

B*G,B c = B*G,v (verify this!)

from which we get

This gives us coordinates

C = (B*GOB )_1 B*GOV c of v, relative to the

subspace basis B
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Determining v,

* This gives us
v,=Bc=B (B*G,B )'B*G,v
and

Vo=V-Vv,=V-B(B*G,B ) 1B*G,v
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Determining v,

. If v, is the solution we seek, it must be
the case that vy € U}
= it must be the case that B*G,v, = 0

\

° CheCk: This is the scalar

product between v

B*GO(V -B (B*GOB )_1B*GOV) — and all basis vectors
B*G,v - B*G,B (B*G,B )''B*G,V =
B*G,v - B‘Gyv = 0 [0k}

2018-11-08 Lecture 2C, Klas Nordberg, LiU 12




Summary so far

For a generalv € V':
« We can uniquely decompose v as v = v, + V,

with vieUand vg € U |
« Withv, =B,
c is given by ¢ = (B*G,B )-'B*G,v
« v, is the orthogonal projection of v onto U
« B*G,v = B*G,v, (Why?)
 Given v and U, v, does not depend on B
(why?), but it does depend on G, (why?)
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An observation

« B*G,v = B*G,v, is the scalar product between v,

and all the subspace basis vectors
— B*G,V are the dual coordinates C of v,

« B*G,B contains all the scalar products between

the basis vectors = the metric G
+ This gives usc = G~
* This is consistent with the previous lecture:

— We get dual coordinates by scalar products with the
basis

— We can transform dual to ”standard” coordinates by
means of G
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* Given a signal ¢ and a filter f (both discrete),
and the convolution i = g * f

* We have already seen that we can interpret
h as computing scalar products, one for each
element of h, for example as

Summation in the

h[l-ﬁ] — <g[/.g + ’I’L] |f* [_n]> scalar product is

here made over n
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* In practice, the filter f is often an FIR filter
(what is that?). Assume it has N taps.

* The summation over n is made over N integer
values

« Consequently, each time we evaluate the
scalar product for h[k] we can take the
summation over a finite interval from signal g

— centred on k

together with the reversal (and complex
conjugate) of the filter f
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Convolutions

* We can of course convolve g with several
filters f,., wherem=1, ..., M

* This gives us M filter responses:
hm k] = (glk + n]|frnl-—n]) , m=1,.... M

hinlk| = (glk + n]|bm|n]) , bm|n] = fr|-n]
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Toward normalised convolution

* Given this picture of convolving g with
multiple filters, in the context of the

previous subspace theory, it is possible to
reason like this:

— We consider the functions b,, as a basis B of some
subspace, m=1, ..., M
— The filter responses are the dual coordinates C

of the local signal, the signal region that is
covered by the filter when h[k] is computed

- More precisely: the dual coordinates of v,, the

projection of the local signal onto the subspace
spanned by B

2018-11-08 Lecture 2C, Klas Nordberg, LiU 18



Toward normalised convolution

* The subspace basis defines an N x M basis
matrix B

 This gives the metric G = B*G,B, Where
initially we set G, = |

« From ¢ we get the coordinates of the

signal region asc = G~ !¢

* Conclusion: we can determine the
coordinates of the local signal relative to
the basis given by the filters
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Taking the next step

* Until now we have identified the
“filter functions” b_[n] as the basis functions

» Let us instead choose the basis functions
rather freely, without thinking too much
about if they are suitable as filters or not

« The filters are instead defined by multiplying
the basis functions b, [n] by a suitable

”localising” function a[n]
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The applicability function

 The filters are now defined as

folnl=al-nl b, '[-n], m=1,.., M G

for all m

« ais a real-valued, positive, and (often) symmetric
function called the applicability function

« ais chosen such that the resulting filters are
localised, e.g., as a Gaussian function
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Putting things together

* With this type of filters, we get

honlk] = > glk +n] fin[—n]

The summation is

made over all
filter coefficients

hon[k) = ) glk + nlaln]b;, [n]
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Generalising the scalar product

* We choose a such that a[n] > 0 for all n

* This allows us to interpret h[k] directly as
the scalar product between the local
signal g[k+n] and the basis function b _[n]

* This means that we change from the scalar
product given as a simple product sum of
elements to a weighted product sum

— The weighting is done by a,
the applicability function
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Summary so far

« We choose a set of M basis functions b,

* We choose an applicability function a
« This results in M filter functions
fmln] = al-n] b, [-n]
that are applied to the signal
. convolution with these filters gives us h_

« We can interpret the filter responses h_[k] as the

scalar products between the local sighal and the
basis functions b,

« In this case: G, = diag(a)
— Assumes a[k] > 0 (why?)
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Summary so far

« We now have: G = B'G,B = B" diag(a) B

* The coordinates of the projection of the

local sighal onto the subspace spanned by
B are given by

/ \
C — ]_ (B d-lag( ) ) [h ] Foraf1xedk
\ A
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Normalised Convolution

« This technique is called Normalised Convolution
— Knutsson & Westin (SCIA 1993), Farneback (PhD 2002)

It is a general technique for managing incomplete
or uncertain data/signals:
— Filtering of incomplete signhals
— Extracting local features such as gradients
— Normalised averaging

« Alternatively: for making a local analysis of the
signal in terms of some suitable basis
— For example: polynomials
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Local polynomial expansion

* One application of this result is
local polynomial expansion of the signal

« At each point of the signal, we can
approximate the local region around the point
as a low order polynomial in the signal
variables (typically of order two)

* Developed by Farneback in his PhD thesis
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Local polynomial expansion

Motivation
« Let g(x) be a function (signal) of x € R.

* We can then (when?) make a Taylor expansion of g
around Xx:

o +7) = g(x) + g () + g (@) + ...

 Interpretation: the local signal around x
#a function of 7) is a linear combination of the basis
unctions{1,7,272,...}

 The coordinates of the local function in this basis are
the derivatives of g of orders {0, 1, 2, ... } at x
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Local polynomial expansion

« For a discrete signals, derivatives can now be
computed in (at least) two ways:
— Standard: Use a filter that is a ramp function in the Fourier
domain
« not suitable as a discrete filter function (why?)
« we must weight the ramp in the Fourier domain

— NC: As the coordinate that belongs to the basis function 7

« We may have to use more than one basis function,
e.g.{1, T, %’7’2}1'.0 describe the local signal

« We weight the basis functions in the signal domain, using the
applicability function
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Local polynomial expansion

Applications for 2D signals
« We use (typically) basis functions: {1, x, v, x2, yv2, xy}
« Applicability: (for example) a Gaussian function

« The corresponding 2D convolutions can be made
separable = efficient computations (why?)

« The corresponding coordinates ¢,, C,, Cy» G2y Cy2, Cy SIVE
— Local mean (average) of the signal
— First and second order derivatives of the signal

* The local signal g is expanded as

g(x) = xTAx +bx+c1| x — (az) A = ( z 6”31‘/2/2) b = (CQ’)
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Local polynomial expansion

* The local polynomial expansion provides an efficient
method for estimating local displacement (motion)
between two images

g,(x) = xTA;x + b,TX + ¢,
2,(x) = XTAX + b,Tx + ¢,

« Assuming g,(x) = g,(x + d), where d is the local
displacement, we get (why?)

A=A,
b1 + 2Ad = b2 - d = %A_l(bQ_bl)
dTAd - de + C1 = C2
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Displacement estimation

Summary

* We make a local polynomial expansion of
both images at each point using Norm. Conv.

« Assuming that there is a position dependent
displacement d between each local region of
the two images

— d can be estimated as d = 12A-'(b, - b,)
— Requires that A is of full rank (when is this true?)
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Signal certainty

« So far we let the scalar product between the basis
functions and the local signal be controlled by the
applicability a

* ais a fixed function, typically a Gaussian, that controls
the localisation of the coordinate computation process

« ais mainly related to properties of the basis functions

— To make them “localized”
* We can go one step further and allow the scalar product

to be controlled also by a sighal dependent weight
function: the signal certainty, denoted c

It allows us to apply coordinate estimation also for
signals with missing data
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Sighal certainty

Examples of incomplete or uncertain signals:
* Laser range data

 Local motion estimation
— (the aperture problem)

 |nconsistent measurements of local features
« Qutside the edges of an image

* Dead pixels in a camera

* Bayer patterns in 1-chip color cameras
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Sighal certainty

* Until now we have described the filter
responses as

hm[k] = glk + nla[n]b}, [n]

¢ is the signal

e |nstead we now use certainty function
hm[k] =) gk + nlc[k + nja[n]b}, [n]
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Modified scalar product

« We can still interpret h_[n] as the scalar

product between the local signal and the
basis functions:

hin k] = (glk + nl[bm(n])

where the scalar product now includes both
the applicability function, a, and the
signal certainty, ¢
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Sighal certainty

» ¢ is the signal dependent certainty
function

 ¢[n] describes how much we can trust the
signal value ¢g[n]

» For example: we can assume: c € {0,1}
1 if signal value is known, 0 if unknown

.. 2

. Another2 common choiceis ¢ = 1/0
where o~ is the variance (i.e. uncertainty)
this is called inverse variance weighting
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Sighal certainty

* We must assume that ¢ is a known function

* In the case that c[n] =0,
we interpret this as: g[n] is not known for this n

* Furthermore, we still interpret h[k] as a scalar
product between the local signal at point k and
the basis functions b,

— The scalar product is constructed from both the fixed
applicability function a and the position varying signal
certainty function ¢

- Gy = diag(a - ¢

G, becomes position
dependent!
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Implementation

* In the case c € {0, 1}, normalised
convolution can be implemented by first
setting all unknown signal values ¢[n] =0

 Convolve this g with the filter functions f

 The filter responses h_[k] become the dual

coordinates of the projection of the local
signal onto the subspace spanned by B

— Same as before
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Implementation

* We also need to determine the position
dependent scalar product

Golk| = diag(a|n] - c|k 4+ n])
from which we get the position dependent metric
G;;[k] = (b;|b;) = biGo[k]b; =

=) bj[nlclk + nla[n]b;[n]

and then transform the dual coordinates to
”standard” coordinates by means of G1[K]

* Produces useful results, but with more
computations than if ¢ is constant = 1
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Normalised averaging

* Asimple example of normalised convolution on
uncertain data uses only the single basis
function = 1 and some suitable applicability
function a (e.g., a Gaussian) in combination
with the signal certainty ¢

» In this case G,[K] = diag(a[n] - c[k + n])

* In this case G[k] = sum_(a[n] - c[k + n]) (why?)

— We can write this as G = a,, «C (Why?)
where a_ [n] = a[-n] _ a symmetric

arev =d
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Normalised averaging

* Furthermore, we now have
hlk] = Z glk + n| clk +n| aln]

=3 glk — nlelk — nlal]

which can be written as h = (g - ¢) * arev
* In summary: the local coordinate of ”1” is

Both numerator and
- C)*kQ .
(g ) rev denominator are
C * Qrevy functions of position
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Normalised averaging

 Normalised averaging can be implemented as
two convolutions
* (g C) * Grey
" C* Qyev

* The resulting functions are then divided
point-wise

* The result is the coordinate of the "complete”
signal ¢ (without missing data) projected onto
the basis function ”1”

— The way the projection is done depends on ¢,
therefore it is position dependent
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What you should know includes

* Definition of a subspace basis

* subspace coordinate computation in terms of
basis and metric

 Application: normalised convolution, where

metric Go is local and defined from
— Applicability
— Signal certainty

and where convolution is used to compute scalar
products = dual coordinates of the local signal
relative some chosen basis

* Application: local polynomial expansion (1D)
« Application: normalized averaging (2D)
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