TSBB06 Multi-dimensional Signal Processing

Lecture 2C
Subspace Bases and
Normalised Convolution

Subspaces

Recapitulation:

- Given a vector space V, a set U is a subspace if all $\mathbf{u} \in U$ satisfy the properties of a vector space
 - assumes that U has the same scalar field as V
- Since we assume that V is a scalar product space, U inherits this property from V
 - U uses the same scalar product as V
- *U* is a proper subspace of *V* if *U* is a proper subset of *V* (i.e., there exists $v \in V$ such that $v \notin U$)
- V is sometimes called the embedding space or ambient space of U

Orthogonal complement

Let U be a subspace of V

• We define U_{\perp} as the set of all $\mathbf{v} \in V$ that are orthogonal to all $\mathbf{u} \in U$

• U_{\perp} is itself a subspace of V (why?)

Subspace basis

- Let U be an M-dimensional subspace of N-dimensional vector space V, $M \leq N$
- Let \mathbf{b}_k , k = 1, ..., M, be a basis of U
- We refer to \mathbf{b}_k as a subspace basis
- Since U is a scalar product vector space and we have a basis for U, all that is said about coordinate computations based on dual bases are valid also for U
 - However, this gives us coordinates of $\mathbf{u} \in U$, and not $\mathbf{v} \in V$, if U is a proper subspace

A general question

- Let \mathbf{b}_k be a basis of a proper subspace $U \subset V$
- Let v be a vector in V (perhaps not in U)
- What can be said about v in this case?

A general observation

• $\mathbf{v} \in V$ can always be decomposed as

$$\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_0$$

where
$$\mathbf{v}_1 \in U$$
 and $\mathbf{v}_0 \in U_{\perp}$

This decomposition is unique (why?)

A general answer

In context of the previous question:

- We should be able to determine \mathbf{v}_1 and its coordinates relative to the subspace basis
- However, it may not be obvious how to determine \mathbf{v}_1 , since we only know \mathbf{v} at this point

A least squares problem

- Let B be the basis matrix of the subspace (B is $N \times M$ and known)
- Let c be a column vector of the coordinates of v₁ (M-dimensional and not known)

$$\mathbf{v}_1 = \mathbf{B} \mathbf{c}$$

We want to determine c such that

$$\epsilon(\mathbf{c}) = \|\mathbf{v} - \mathbf{B}\mathbf{c}\|^2$$
 is minimised

This is a least squares problem

Solving least squares problems

First we expand the norm using the scalar product

$$\|\mathbf{v} - \mathbf{B}\mathbf{c}\|^2 = \langle \mathbf{v} - \mathbf{B}\mathbf{c}|\mathbf{v} - \mathbf{B}\mathbf{c}\rangle$$

Let G₀ be the metric matrix

$$\|\mathbf{v} - \mathbf{B}\mathbf{c}\|^2 = (\mathbf{v} - \mathbf{B}\mathbf{c})^*\mathbf{G}_0(\mathbf{v} - \mathbf{B}\mathbf{c})$$

Solving least squares problems

 Take the derivative wrt. c and set equal to zero to find the stationary point. This gives us the expression:

$$B*G_0B c = B*G_0v$$

(verify this!)

from which we get

$$c = (B*G_0B)^{-1}B*G_0V$$

This gives us coordinates **c** of **v**₁ relative to the subspace basis **B**

Determining v₀

This gives us

$$v_1 = B c = B (B*G_0B)^{-1}B*G_0V$$

and

$$v_0 = v - v_1 = v - B (B*G_0B)^{-1}B*G_0v$$

Determining v₀

- If \mathbf{v}_1 is the solution we seek, it must be the case that $\mathbf{v}_0 \in U_\perp$
 - \Rightarrow it must be the case that $\mathbf{B}^*\mathbf{G}_0\mathbf{v}_0 = \mathbf{0}$

Check:

$$B*G_0(v - B (B*G_0B)^{-1}B*G_0v) =$$

$$B*G_0v - B*G_0B (B*G_0B)^{-1}B*G_0v =$$

$$B^*G_0v - B^*G_0v = 0$$

This is the scalar product between **v** and all basis vectors

Summary so far

For a general $v \in V$:

- We can uniquely decompose ${\bf v}$ as ${\bf v}={\bf v}_1+{\bf v}_0$ with ${\bf v}_1\in U$ and ${\bf v}_0\in U_\perp$
- With $\mathbf{v}_1 = \mathbf{B} \mathbf{c}$, \mathbf{c} is given by $\mathbf{c} = (\mathbf{B}^*\mathbf{G}_0\mathbf{B})^{-1}\mathbf{B}^*\mathbf{G}_0\mathbf{v}$
- v_1 is the orthogonal projection of v onto U
- $B*G_0v = B*G_0v_1$ (why?)
- Given v and U, v₁ does not depend on B (why?), but it does depend on G₀ (why?)

An observation

- $\mathbf{B}^*\mathbf{G}_0\mathbf{v} = \mathbf{B}^*\mathbf{G}_0\mathbf{v}_1$ is the scalar product between \mathbf{v}_1 and all the subspace basis vectors $\Rightarrow \mathbf{B}^*\mathbf{G}_0\mathbf{v}$ are the dual coordinates $\tilde{\mathbf{c}}$ of \mathbf{v}_1
- B*G₀B contains all the scalar products between the basis vectors = the metric G
- This gives us $\mathbf{c} = \mathbf{G}^{-1} \tilde{\mathbf{c}}$
- This is consistent with the previous lecture:
 - We get dual coordinates by scalar products with the basis
 - We can transform dual to "standard" coordinates by means of G⁻¹

Convolution

- Given a signal g and a filter f (both discrete), and the convolution $h=g\ast f$
- We have already seen that we can interpret
 h as computing scalar products, one for each
 element of h, for example as

$$h[k] = \langle g[k+n]|f^*[-n]\rangle$$

Summation in the scalar product is here made over *n*

Convolution

- In practice, the filter f is often an FIR filter (what is that?). Assume it has N taps.
- The summation over n is made over N integer values
- Consequently, each time we evaluate the scalar product for h[k] we can take the summation over a finite interval from signal g
 - centred on k

together with the reversal (and complex conjugate) of the filter *f*

Convolutions

 We can of course convolve g with several filters f_m , where m = 1, ..., M

This gives us M filter responses:

$$h_m[k] = \langle g[k+n]|f_m^*[-n]\rangle , m = 1, \dots, M$$

$$h_m[k] = \langle g[k+n]|b_m[n]\rangle , b_m[n] = f_m^*[-n]$$

Toward normalised convolution

- Given this picture of convolving g with multiple filters, in the context of the previous subspace theory, it is possible to reason like this:
 - We consider the functions b_m as a basis **B** of some subspace, m = 1, ..., M
 - The filter responses are the dual coordinates $\tilde{\mathbf{c}}$ of the **local signal**, the signal region that is covered by the filter when h[k] is computed
 - More precisely: the dual coordinates of v₁, the projection of the local signal onto the subspace spanned by B

Toward normalised convolution

- The subspace basis defines an $N \times M$ basis matrix ${\bf B}$
- This gives the metric $\mathbf{G} = \mathbf{B}^* \mathbf{G}_0 \mathbf{B}$, where initially we set $\mathbf{G}_0 = \mathbf{I}$
- From $\tilde{\mathbf{c}}$ we get the coordinates of the signal region as $\mathbf{c} = \mathbf{G}^{-1}\tilde{\mathbf{c}}$
- Conclusion: we can determine the coordinates of the local signal relative to the basis given by the filters

Taking the next step

- Until now we have identified the "filter functions" $b_m[n]$ as the basis functions
- Let us instead choose the basis functions rather freely, without thinking too much about if they are suitable as filters or not
- The filters are instead defined by multiplying the basis functions $b_m[n]$ by a suitable "localising" function a[n]

The applicability function

The filters are now defined as

$$f_m[n] = a[-n] b_m^*[-n], m = 1, ..., M$$

The same *a* for all *m*

- a is a real-valued, positive, and (often) symmetric function called the applicability function
- a is chosen such that the resulting filters are localised, e.g., as a Gaussian function

Putting things together

With this type of filters, we get

$$h_m[k] = \sum_{m} g[k+n] f_m[-n]$$

The summation is made over all filter coefficients

$$h_m[k] = \sum_n g[k+n]a[n]b_m^*[n]$$

Generalising the scalar product

- We choose a such that a[n] > 0 for all n
- This allows us to interpret h[k] directly as the scalar product between the local signal g[k+n] and the basis function $b_m[n]$
- This means that we change from the scalar product given as a simple product sum of elements to a weighted product sum
 - The weighting is done by a,
 the applicability function

Summary so far

- We choose a set of M basis functions b_m
- We choose an applicability function a
- This results in M filter functions $f_m[n] = a[-n] b_m^*[-n]$

that are applied to the signal

- convolution with these filters gives us h_m
- We can interpret the filter responses $h_m[k]$ as the scalar products between the local signal and the basis functions b_m
- In this case: $G_0 = diag(a)$
 - Assumes a[k] > 0 (why?)

Summary so far

• We now have: $G = B^*G_0B = B^* \operatorname{diag}(a) B$

 The coordinates of the projection of the local signal onto the subspace spanned by B are given by

$$\mathbf{c} = \mathbf{G}^{-1}\tilde{\mathbf{c}} = (\mathbf{B}^* \operatorname{diag}(a) \mathbf{B})^{-1} [h_m]$$
 For a fixed k For $m = 1, ..., M$

Normalised Convolution

- This technique is called Normalised Convolution
 - Knutsson & Westin (SCIA 1993), Farnebäck (PhD 2002)
- It is a general technique for managing incomplete or uncertain data/signals:
 - Filtering of incomplete signals
 - Extracting local features such as gradients
 - Normalised averaging
- Alternatively: for making a local analysis of the signal in terms of some suitable basis
 - For example: polynomials

- One application of this result is local polynomial expansion of the signal
- At each point of the signal, we can approximate the local region around the point as a low order polynomial in the signal variables (typically of order two)
- Developed by Farnebäck in his PhD thesis

Motivation

- Let g(x) be a function (signal) of $x \in \mathbb{R}$.
- We can then (when?) make a Taylor expansion of g around x:

$$g(x + \tau) = g(x) + g'(x)\tau + \frac{1}{2}g''(x)\tau^2 + \dots$$

- Interpretation: the local signal around x (a function of τ) is a linear combination of the basis functions $\{1, \tau, \frac{1}{2}\tau^2, \ldots\}$
- The coordinates of the local function in this basis are the derivatives of g of orders $\{0, 1, 2, ...\}$ at x

- For a discrete signals, derivatives can now be computed in (at least) two ways:
 - Standard: Use a filter that is a ramp function in the Fourier domain
 - not suitable as a discrete filter function (why?)
 - we must weight the ramp in the Fourier domain
 - NC: As the coordinate that belongs to the basis function $\mathcal T$
 - We may have to use more than one basis function, e.g. $\{1,\tau,\frac{1}{2}\tau^2\}$ to describe the local signal
 - We weight the basis functions in the signal domain, using the applicability function

Applications for 2D signals

- We use (typically) basis functions: {1, x, y, x², y², xy}
- Applicability: (for example) a Gaussian function
- The corresponding 2D convolutions can be made separable ⇒ efficient computations (why?)
- The corresponding coordinates c_1 , c_x , c_y , c_{x^2} , c_{y^2} , c_{xy} give
 - Local mean (average) of the signal
 - First and second order derivatives of the signal
- The local signal g is expanded as

$$g(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b} \mathbf{x} + c_1$$
 $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} \mathbf{A} = \begin{pmatrix} c_x^2 & c_{xy}/2 \\ c_{xy}/2 & c_y^2 \end{pmatrix} \mathbf{b} = \begin{pmatrix} c_x \\ c_y \end{pmatrix}$

 The local polynomial expansion provides an efficient method for estimating local displacement (motion) between two images

$$g_1(\mathbf{x}) = \mathbf{x}^\mathsf{T} \mathbf{A}_1 \mathbf{x} + \mathbf{b}_1^\mathsf{T} \mathbf{x} + c_1$$

 $g_2(\mathbf{x}) = \mathbf{x}^\mathsf{T} \mathbf{A}_2 \mathbf{x} + \mathbf{b}_2^\mathsf{T} \mathbf{x} + c_2$

• Assuming $g_2(\mathbf{x}) = g_1(\mathbf{x} + \mathbf{d})$, where \mathbf{d} is the local displacement, we get (why?)

$$A_1 = A_2$$

$$b_1 + 2Ad = b_2$$

$$d^{\mathsf{T}}Ad - b^{\mathsf{T}}d + c_1 = c_2$$

$$\mathbf{d} = \frac{1}{2}\mathbf{A}^{-1}(\mathbf{b}_2 - \mathbf{b}_1)$$

Displacement estimation

Summary

- We make a local polynomial expansion of both images at each point using Norm. Conv.
- Assuming that there is a position dependent displacement d between each local region of the two images
 - d can be estimated as d = $\frac{1}{2}$ A⁻¹(b₂ b₁)
 - Requires that A is of full rank (when is this true?)

- So far we let the scalar product between the basis functions and the local signal be controlled by the applicability a
- a is a fixed function, typically a Gaussian, that controls the localisation of the coordinate computation process
- a is mainly related to properties of the basis functions
 - To make them "localized"
- We can go one step further and allow the scalar product to be controlled also by a signal dependent weight function: the signal certainty, denoted c
- It allows us to apply coordinate estimation also for signals with missing data

Examples of incomplete or uncertain signals:

- Laser range data
- Local motion estimation
 - (the aperture problem)
- Inconsistent measurements of local features
- Outside the edges of an image
- Dead pixels in a camera
- Bayer patterns in 1-chip color cameras

Until now we have described the filter responses as

$$h_m[k] = \sum_n g[k+n]a[n]b_m^*[n]$$

Instead we now use

c is the signal certainty function

$$h_m[k] = \sum_n g[k+n]c[k+n]a[n]b_m^*[n]$$

Modified scalar product

• We can still interpret $h_m[n]$ as the scalar product between the local signal and the basis functions:

$$h_m[k] = \langle g[k+n]|b_m[n]\rangle$$

where the scalar product now includes both the applicability function, a, and the signal certainty, c

- c is the signal dependent certainty function
- c[n] describes how much we can trust the signal value g[n]
- For example: we can assume: $c \in \{0,1\}$ 1 if signal value is known, 0 if unknown
- Another common choice is $c=1/\sigma^2$ where σ^2 is the variance (i.e. uncertainty) this is called *inverse variance weighting*

- We must assume that c is a known function
- In the case that c[n] = 0,
 we interpret this as: g[n] is not known for this n
- Furthermore, we still interpret h[k] as a scalar product between the local signal at point k and the basis functions b_m
 - The scalar product is constructed from both the fixed applicability function a and the position varying signal certainty function c
- $\mathbf{G}_0 = \operatorname{diag}(a \cdot c)$

G₀ becomes position dependent!

Implementation

- In the case $c \in \{0, 1\}$, normalised convolution can be implemented by first setting all unknown signal values g[n] = 0
- Convolve this g with the filter functions f_m
- The filter responses $h_m[k]$ become the dual coordinates of the projection of the local signal onto the subspace spanned by **B**
 - Same as before

Implementation

We also need to determine the position dependent scalar product

$$\mathbf{G}_0[k] = \operatorname{diag}(a[n] \cdot c[k+n])$$

from which we get the position dependent metric

$$\mathbf{G}_{ij}[k] = \langle \mathbf{b}_j | \mathbf{b}_i \rangle = \mathbf{b}_i^* \mathbf{G}_0[k] \mathbf{b}_j =$$

$$= \sum_{n} b_j[n] c[k+n] a[n] b_i^*[n]$$

and then transform the dual coordinates to "standard" coordinates by means of $G^{-1}[k]$

• Produces useful results, but with more computations than if *c* is constant = 1

Normalised averaging

- A simple example of normalised convolution on uncertain data uses only the single basis function = 1 and some suitable applicability function a (e.g., a Gaussian) in combination with the signal certainty c
- In this case $G_0[k] = diag(a[n] \cdot c[k + n])$
- In this case $G[k] = sum_n(a[n] \cdot c[k + n])$ (why?)
 - We can write this as $G = a_{rev} * c \text{ (why?)}$

where
$$a_{rev}[n] = a[-n]$$

a symmetric

$$\Rightarrow a_{rev} = a$$

Normalised averaging

Furthermore, we now have

$$h[k] = \sum_{n} g[k+n] c[k+n] a[n]$$
$$= \sum_{n} g[k-n] c[k-n] a[-n]$$

which can be written as $h = (g \cdot c) * a_{rev}$

• In summary: the local coordinate of "1" is

$$\frac{(g \cdot c) * a_{\text{rev}}}{c * a_{\text{rev}}}$$

Both numerator and denominator are functions of position

Normalised averaging

- Normalised averaging can be implemented as two convolutions
 - $\bullet (g \cdot c) * a_{rev}$
 - $-c*a_{rev}$
- The resulting functions are then divided point-wise
- The result is the coordinate of the "complete" signal g (without missing data) projected onto the basis function "1"
 - The way the projection is done depends on c, therefore it is position dependent

What you should know includes

- Definition of a subspace basis
- subspace coordinate computation in terms of basis and metric
- Application: normalised convolution, where metric G₀ is local and defined from
 - Applicability
 - Signal certainty

and where convolution is used to compute scalar products = dual coordinates of the local signal relative some chosen basis

- Application: local polynomial expansion (1D)
- Application: normalized averaging (2D)