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Epipolar geometry

 Epipolar geometry is the geometry of two
cameras (stereo cameras) that image the same

scene

« Three or more cameras:
- Multi-view geometry (see TSBB15 Computer Vision)




Possible camera
configurations

Two cameras: Motion stereo:

o different internal parameters * One moving camera

* Images taken at the same « Images taken at different
time times

—> Non-static scene is allowed => Scene must be static
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Common camera motion patterns

Turntable: The scene is rotated

The camera moves along
the principal axis




Epipolar geometry

Two basic issues in epipolar geometry:

- The correspondence problem:
How can we know if a point in image 1 and
another point in image 2 correspond to the
same 3D point?

- The reconstruction problem:

Given that a pair of points in image 1 and 2
correspond, what 3D point do they depict?
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Basic setup

- Let C, and C, be the camera matrices of the two
cameras

- Let x be the homogeneous coordinates of a 3D point

- Lety, and y, be the homogeneous coordinates of
the projections of x in image 1 and 2

- Let n, and n, be the homogeneous coordinates of
the camera centers




Projection rays

If y, is known, what can be said about x?

- We know that x lies somewhere on a 3D line:

- Passes through n2 \ These two points

- Passes through: CJy» are always

distinct!
Parametric representation of the line:
_|_




Projection ray

°/x 3D point
== t)n2 —+ tC;YQ /
x = (1

" Cyry,




Image of a line

- What is the image of this line in camera 17

- The parametric 3D point is mapped to y; (t) in
Image 1:




Image of a line

- Form 2D line
I, = (Ciny) x (C1C3 y2)

. Easy to see that: Y1 (¢)'1; = 0 for all ¢
. Thus 1, represents the 2D line y’ (¢)

- This is a general result:




Conclusions

- If we know y2, with y, = Cox , we know that y, lies on aline

1, in image 1

- The line 1, depends on y,

- 1, is called an epipolar line




Epipolar lines and points




More conclusions

. The mapping from a point y, to a line 11:

I, = (Cing) x (C1C3y2)

I, = [elz]xclc;}’Q




The fundamental matrix

- This 3 x 3 mapping is called the
fundamental matrix, denoted F.

- usage:

1, = Fy>




The epipolar constraint

- If y, and y, correspond to the same 3D point x we
have:

yili =0

- and thus




The epipolar constraint

- The epipolar constraint a necessary but not
sufficient condition for correspondence:

y, < y2 = yi Fys =0

- Other points on an epipolar line also satisfy the




Summary so far

- If C, and C, are known, F can be determined

- Given that F is known, we can test if a points in
Image 1 and a point in image 2 correspond to
the same 3D point

- Given a point y, in image 2, the corresponding
point y, lies on an epipolar line 1, in image 1

- All epipolar lines in image 1 intersect at the
epipolar point e,

- 1,isgivenby 1; = Fy>
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Symmetry

- In the previous derivation we saw that a
point in image 2 defines an epipolar line in
image 1

- Due to symmetry, we can instead start with a
point in image 1 and find an epipolar line in
Image 2




Properties of F

- The epipoles span the left and right null spaces of F:
- From F = [e;3]«C;C7 follows that
e12 is a left null vector
- and by symmetry: Fe,, =0

- The rank of F is 2:
- rank [e,], =2 =>rank F=2 = detF =0




Two ways to determine F

- The calibrated case:
- F can be computed from C, and C,

- The uncalibrated case:
- Given a set of K corresponding image
points, y,, in image 1 and y,, in image 2,




The uncalibrated case

- No camera matrices need to be known

- Image coordinates can only be determined up to
a certain accuracy due to:

- detection inaccuracy
(e.g. quantization to integer pixel coordinates)




Estimation of F

- Let y and y’ be corresponding points in image 1
and image 2

U1 Y1 fir fiz  fis
Yy =192 y = Yo F=|/foa1 fe2 [fo3
Ys y;’; fa1  f32  fa3




Estimation of F

- Let y and y’ be corresponding points in image 1
and image 2

U1 Y1 fir fiz  fis
Yy =192 y = Yo F=1/fa1 Jfo2 /Jfo3
Ys yé fa1  f32  fa3

1’7

L




Estimation of F

- The epipolar constraint: YTF =0

(yiyl\ (fﬁl\

Ya1 Jo1
y:,%yl J31
Y1Y2 J12
Y_ = yéyQ e — f22 -




Estimation of F

- Conclusion: each pair of corresponding points y,,,
Y., in the two images gives us a linear
homogeneous constraint on F,__. Stack these:

_Yf_




Estimation of F

- Conclusion: F, .. must satisfy the linear
homogeneous eguation

AF,..=0 = A'AF,..=0

where A is the K x 9 matrix that contains Y, T
fork=1, ..., Kin its rows




The 8-point algorithm

Given K pairs of corresponding points y,,, ¥,,

1. Form Y, from these pairs for k=1, ..., Kand then A
from all Y, (row-wise)

2. F .= the eigenvector corresponding to the smallest

eigenvalue of ATA

or the right singular vector corresponding to the




The 8-point algorithm: Detalls

- SinceAisKx9

ATAF,_ =0




The 8-point algorithm: Detalls

- We know: detF =0

- In practice, the image coordinates y., y,

cannot be measured exactly

- det F = 0 is not valid automatically when F is
estimated according to above

- IfdetF =0:

— F cannot be related to some camera matrices
- F does not describe well-defined epipoles

- We need to enforce det F =0
- Find F, that is closest to F, with det F;=0
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Enforcement ofdet F =0

Fisa3x3matrixwithdetF =0

An SVD of F givesus: F=U S VT

U and V are orthogonal matrices




Enforcement ofdet F =0

Set the smallest singular value to zero and
recombine:

01 0 0
Fo=U|0 oo 0]V
0 0 O




The 8-point algorithm
Full picture

Given K 2 8 pairs of corresponding points y,, Y.,

1. Form Y, from each pair for k=1, ..., Kand stack
these to form A
2. F,.=the right singular vector corresponding to

\
the smallest singular value of A (ideally zero)




The uncalibrated case, summary

« Given a set of K = 8 correspondences, we can

estimate an F that fits these points
- The 8-point algorithm

 As the image coordinates are perturbed by noise,
the estimated F will not satisfy
Y." F =0 exactly, but F . minimizes

€ = HAFveCH

(at least before the constraint enforcement)

- Note that this is an algebraic error ( )
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Hartley normalisation

- To get useful estimates of F, we need to use

Hartley normalisation of the image

coordinates:

- Translate origin to the centroid of the points in
each image

- Scale each image so that average distance to
origin = 21/2

- Estimate F in the transformed coordinates

and then transform F back to standard
coordinates

- More advanced methods: 7-point algorithm,

gold-standard algorithm (TSBB15)
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BREAK




Stereo rig

- A general stereo rig consists of two cameras with
- distinct camera centers
- general orientations of the camera principal
axes (although often toward a common
scene!)




Stereo rig

FujiFilm consumer stereo camera
Finepix W3




For a general stereo rig

* In general the epipolar lines are not parallel
- Intersect at the epipole




Rectified stereo rig

- In a rectified stereo rig, the principal directions of
the cameras are parallel and orthogonal to the
baseline and the cameras have identical intrinsics




Rectified stereo images

For a rectified stereo rig, corresponding image
points lie on the same row. This means that
- The epipolar points are points at infinity
- The epipolar lines are parallel
- More precisely: |

e =€z = | 0
0

Infinitely far to the left and to the right!
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Rectified stereo images

- The corresponding fundamental matrix is

0 0 O
Fr=10 0 -1
[ —




Rectified stereo rig

- A rectified stereo rig is difficult to build in practise:

— requires expensive high precision mechanical
alignment: E:g. 1/100 of a degree for a 4K camera

with 45° hfov

— amec

hanical rig may lose its rectification if

A )




Equivalent cameras

- Let C and C’ be the camera matrices of two
pinhole cameras with the same camera centre, n:

y~Cx Cn=0
v ~C'x C'n=0

- Given y’, we have the following parametric form



Equivalent cameras

- This set of points is projected into camera C as

y ~Cltn+ (1 - ¢)C""y’]

y ~(1-t)CCTy' = (1 -t Hy' ~ Hy’

- There is a homography mapping H from y to y’ defined by the cameras
C and C’ (how come?)




Rectified stereo rig

Consequently:

- All cameras that share the same camera center
are in this sense “equivalent”

- E.g. if a camera rotates about its center by 3D




Rectified images

Consequence:

- If the principal axis of a camera is not exactly
pointing in the right direction, this can be
compensated for by applying a suitable
homography H on the image coordinates

- Implies a rotation of the principal axis




Stereo rectification

- We now wish to determine homographies H, for

image 1 and H, for image 2 that rectify the two
Images

- Estimate F from corresponding points in the two
images




Stereo rectification

- This relation in H, and H, has multiple solutions,

many of which are unwanted, e.g.:
- horizontal mirroring
- extreme geometric distortion

- Several methods for determining useful
H, and H, from F exist, for example:

- Loop & Zhang, Computing Rectifying

Homographies for Stereo Vision, ICPR 1999
Determines H, and H, by minimising geometric

distortion, see computer exercise D
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Stereo rectification

Example of an unrectified stereo image pair




Stereo rectification

Example of a rectification

Epipolar lines are parallel and aligned! From Loop & Zhang

II."[}E,’E,%%';‘EY ©2018 Per-Erik Forssén

50



Stereo rectification

Another example, with less geometric distortion than the previous one

Epipolar lines are parallel and aligned! From Loop & Zhang
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Stereo rectification, summary

- A pair of stereo images that are not rectified:
- the principal axes are not parallel and not
perpendicular to the baseline

* can be rectified by homographies such that
- corresponding points are found on the same row




Reconstruction

- Given a pair of corresponding image points y, and

% y1 ~ Cix
y2 ~ Caox

we know that: y,TFy, =0




Reconstruction
A4

)

,®) )

The epipolar constraint < the two projection rays intersect

In this case: there is a unique x that projects to y, and y,




Reconstruction

- In reality, the image points y, and y,
do not satisfy y,TFy, = 0 exactly

- Lens distortion
- Coordinate quantization
- Estimation inaccuracy




The mid-point method

- Find the unique points x, and x, on the two
projection rays that are closest to the other ray

- Set x = the mid-point between x, and X,




| int method
he mid-poin
' N4

T e




Linear triangulation

From y1 ~ Cix
y2 ~ Cox

0=y x Cix
0= x Cox

follows




Linear triangulation

Since [y,], has rank 2: one of the 3 equations
IS linearly dependent to the other two:

= ;YI;xclx
= a4 « Cox




Linear triangulation

- In practice (with noise) Bx = 0 cannot be solved
exactly, so we resort to finding an x that minimizes

€(x) = || Bx|

with the constraint ||x|| = 1 = choose x as




Optimal triangulation

- There is also a maximum likelihood (ML) approach to

triangulation: Find the most likely 3D point x that could
have generated the observations:

X

X = arg m}%}XP(Yl x)p(y2|x)
If we assume normal i.i.d. image noise we get:

X" = argmin d*(y1,11(t)° + d*(y2,12(1))

Leads to a cubic polynomial equation in t. This solution is
known as optimal triangulation. See e.g. the
Hartley&Zisserman book for details.
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Reconstruction, summary

- Given that C, and C, are known and y, and y,

correspond to the same x
- they satisfy the epipolar constraint

« X can be determined, for example, by
- the mid-point method (a geometric method)
- the linear method (an algebraic method)
- optimal triangulation (a statistical method)

In the noise free case, these methods give the
same X

In the real and noisy case, they do not
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Computer Lab on Tuesday

On the lab you will get to try:

- Stereo rectification
- Fundamental matrix estimation
- Triangulation




