TSBB06 Multidimensional Signal Analysis Lecture 2D: Stereo Geometry

Per-Erik Forssén, docent Avdelningen för Datorseende Institutionen för Systemteknik Linköpings Universitet

Epipolar geometry

- Epipolar geometry is the geometry of two cameras (stereo cameras) that image the same scene
- Three or more cameras:
 - Multi-view geometry (see TSBB15 Computer Vision)
- Basic assumption:
 - Images are taken from different positions
 ⇒ The cameras have distinct camera centers

Possible camera configurations

Two cameras:

- different internal parameters
- Images taken at the same time
- ⇒ Non-static scene is allowed

Motion stereo:

- One moving camera
- Images taken at different times
- ⇒ Scene must be static

Common camera motion patterns

Turntable: The scene is rotated

Image 1 Image 2

The camera moves "sideways"

Image 1

Image 2

The camera moves along the principal axis

Image 1

Image 2

Epipolar geometry

Two basic issues in epipolar geometry:

- The correspondence problem:
 - How can we know if a point in image 1 and another point in image 2 correspond to the same 3D point?
- The reconstruction problem:
 - Given that a pair of points in image 1 and 2 correspond, what 3D point do they depict?

Basic setup

- Let C₁ and C₂ be the camera matrices of the two cameras
- Let x be the homogeneous coordinates of a 3D point
- Let y₁ and y₂ be the homogeneous coordinates of the projections of x in image 1 and 2
- Let n₁ and n₂ be the homogeneous coordinates of the camera centers

$$\mathbf{y}_1 \sim \mathbf{C}_1 \mathbf{x}$$

$$\mathbf{y}_2 \sim \mathbf{C}_2 \mathbf{x}$$

$$C_1 n_1 = 0$$

$$C_2n_2=0$$

Projection rays

- If y₂ is known, what can be said about x?
- We know that x lies somewhere on a 3D line:
 - Passes through: n₂
 - Passes through: ${f C}_2^+{f y}_2$

These two points are always distinct!

Parametric representation of the line:

$$\mathbf{x} = (1 - t)\mathbf{n}_2 + t\mathbf{C}_2^+\mathbf{y}_2$$

· Pseudo-inverse:

$$\mathbf{CC}^+ = \mathbf{I} \Rightarrow \mathbf{C}_2^+ = \mathbf{C}_2^T (\mathbf{C}_2 \mathbf{C}_2^T)^{-1}$$

Projection ray

$$\mathbf{x} = (1-t)\mathbf{n}_2 + t\mathbf{C}_2^+\mathbf{y}_2$$
 $\mathbf{c}_{2}^+\mathbf{y}_2$ Virtual image plane \mathbf{n}_2 Camera centre

Image of a line

- What is the image of this line in camera 1?
- The parametric 3D point is mapped to $\mathbf{y}_1'(t)$ in image 1:

$$\mathbf{y}_1'(t) \sim \mathbf{C}_1[(1-t)\mathbf{n}_2 + t\mathbf{C}_2^+\mathbf{y}_2]$$

$$\mathbf{y}_1'(t) \sim (1-t)\mathbf{C}_1\mathbf{n}_2 + t\mathbf{C}_1\mathbf{C}_2^+\mathbf{y}_2$$

Two points in image 1

Image of a line

Form 2D line

$$\mathbf{l}_1 = (\mathbf{C}_1 \mathbf{n}_2) \times (\mathbf{C}_1 \mathbf{C}_2^+ \mathbf{y}_2)$$

- Easy to see that: $\mathbf{y}_1'(t)^T \mathbf{l}_1 = 0$ for all t
- Thus \mathbf{I}_1 represents the 2D line $\mathbf{y}_1'(t)$
- This is a general result:
 - The image of a 3D line is a 2D line (exception?)
- as $\mathbf{y}_1 = \mathbf{C}_1 \mathbf{x}$ it follows that $\mathbf{y}_1^T \mathbf{l}_1 = 0$

 \mathbf{y}_1 is the image of \mathbf{x} in image 1

Conclusions

- · If we know ${f y}_2$, with ${f y}_2={f C}_2{f x}$, we know that ${f y}_1$ lies on a line ${f l}_1$ in image 1
- The line I₁ depends on y₂
- I₁ is called an epipolar line
- All epipolar lines in image 1 intersect the point $\mathbf{e}_{12} = \mathbf{C}_1 \mathbf{n}_2$
- e₁₂ is called epipolar point or epipole
- Symmetry between image 1 and image 2

Epipolar lines and points

 \mathbf{y}_1 and \mathbf{y}_2 are corresponding (to the same 3D point \mathbf{x}) \mathbf{y}'_1 and \mathbf{y}'_2 are corresponding

 \mathbf{y}_2 generates epipolar line \mathbf{I}_1 in image 1

y'₂ generates epipolar line l'₁ in image 1

Both epipolar lines intersect at epipolar point **e**₁₂

y₁ lies on I₁ and y'₁ lies on I'₁

More conclusions

The mapping from a point y₂ to a line I₁:

$$\mathbf{l}_1 = (\mathbf{C}_1 \mathbf{n}_2) \times (\mathbf{C}_1 \mathbf{C}_2^+ \mathbf{y}_2)$$

$$\mathbf{l}_1 = [\mathbf{e}_{12}]_{\times} \mathbf{C}_1 \mathbf{C}_2^+ \mathbf{y}_2$$

 I_1 is directly given by a linear mapping of y_2 !

The fundamental matrix

- This 3 × 3 mapping is called the fundamental matrix, denoted F.
- usage:

$$\mathbf{l}_1 = \mathbf{F}\mathbf{y}_2$$

where:

$$\mathbf{F} = [\mathbf{e}_{12}]_{\times} \mathbf{C}_1 \mathbf{C}_2^+$$

F depends only on the camera matrices \mathbf{C}_1 and \mathbf{C}_2 (\mathbf{e}_{12} depends on \mathbf{C}_1 and \mathbf{C}_2)

The epipolar constraint

If y₁ and y₂ correspond to the same 3D point x we have:

$$\mathbf{y}_1^T \mathbf{l}_1 = 0$$

and thus

$$\mathbf{y}_1^T \mathbf{F} \mathbf{y}_2 = 0$$

Epipolar constraint

This relation must always be satisfied for points y₁
 and y₂ if they correspond to the same 3D point.

The epipolar constraint

 The epipolar constraint a necessary but not sufficient condition for correspondence:

$$\mathbf{y}_1 \leftrightarrow \mathbf{y}_2 \Rightarrow \mathbf{y}_1^T \mathbf{F} \mathbf{y}_2 = 0$$

 Other points on an epipolar line also satisfy the epipolar constraint.

Summary so far

- If C₁ and C₂ are known, F can be determined
- Given that F is known, we can test if a points in image 1 and a point in image 2 correspond to the same 3D point
- Given a point y₂ in image 2, the corresponding point y₁ lies on an epipolar line I₁ in image 1
- All epipolar lines in image 1 intersect at the epipolar point e₁₂
- \mathbf{l}_1 is given by $\mathbf{l}_1 = \mathbf{F}\mathbf{y}_2$

Symmetry

- In the previous derivation we saw that a point in image 2 defines an epipolar line in image 1
- Due to symmetry, we can instead start with a point in image 1 and find an epipolar line in image 2

$$\mathbf{l}_2 = \mathbf{F}^T \mathbf{y}_1$$

$$\mathbf{F}^T = [\mathbf{e}_{21}]_{\times} \mathbf{C}_2 \mathbf{C}_1^+$$

$$e_{21} = C_2 n_1$$

Properties of F

- The epipoles span the left and right null spaces of F:
 - From $\mathbf{F} = [\mathbf{e}_{12}]_{ imes} \mathbf{C}_1 \mathbf{C}_2^+$ follows that e₁₂ is a left null vector
 - and by symmetry: $\mathbf{Fe}_{21} = \mathbf{0}$
- The rank of F is 2:
 - rank $[\mathbf{e}_{12}] = 2 \Rightarrow \text{rank } \mathbf{F} = 2 \Rightarrow \text{det } \mathbf{F} = 0$
- **F** has 7 degrees of freedom (why?) **F** is a projective element in $P(\mathbb{R}^9)$

 - F is rank deficient

Two ways to determine F

- The calibrated case:
 - **F** can be computed from \mathbf{C}_1 and \mathbf{C}_2
- The uncalibrated case:
 - Given a set of K corresponding image
 points, y_{1k} in image 1 and y_{2k} in image 2,
 - it is possible to determine **F** from the constraints: $\mathbf{y}_{1.k}^T \mathbf{F} \mathbf{y}_{2,k} = 0, k = 1, \dots, K$

The uncalibrated case

- No camera matrices need to be known
- Image coordinates can only be determined up to a certain accuracy due to:
 - detection inaccuracy
 (e.g. quantization to integer pixel coordinates)
 - model errors
 lens distortion, rolling shutter etc.
- This accuracy affects the estimation of F

 Let y and y' be corresponding points in image 1 and image 2

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \quad \mathbf{y}' = \begin{pmatrix} y'_1 \\ y'_2 \\ y'_3 \end{pmatrix} \quad \mathbf{F} = \begin{pmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{pmatrix}$$

 Let y and y' be corresponding points in image 1 and image 2

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \quad \mathbf{y}' = \begin{pmatrix} y'_1 \\ y'_2 \\ y'_3 \end{pmatrix} \quad \mathbf{F} = \begin{pmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{pmatrix}$$

$$\mathbf{y}'^T \mathbf{F} \mathbf{y} =$$

$$y_1 y'_1 f_{11} + y'_2 y_1 f_{21} + y'_3 y_1 f_{31} + y_1 y'_2 f_{12} + y'_2 y_2 f_{22} + y'_3 y_2 f_{32} + y_1 y'_3 f_{13} + y'_2 y_3 f_{23} + y'_3 y_3 f_{33}$$

• The epipolar constraint: $\mathbf{Y}^T \mathbf{F}_{\text{vec}} = \mathbf{0}$

$$\mathbf{Y} = egin{pmatrix} y_1'y_1 \ y_2'y_1 \ y_3'y_2 \ y_3'y_2 \ y_2'y_3 \ y_2'y_3 \ y_3'y_3 \end{pmatrix} \mathbf{F}_{ ext{vec}} = egin{pmatrix} f_{11} \ f_{21} \ f_{31} \ f_{12} \ f_{22} \ f_{32} \ f_{13} \ f_{23} \ f_{33} \end{pmatrix}$$

One linear constraint on the elements of F.

Conclusion: each pair of corresponding points y_{1k},
 y_{2k} in the two images gives us a linear
 homogeneous constraint on F_{vec}. Stack these:

$$\begin{pmatrix} \mathbf{Y}_1^T & - \\ \vdots & \\ - & \mathbf{Y}_K^T & - \end{pmatrix} \mathbf{F}_{\text{vec}} = 0$$

 Conclusion: F_{vec} must satisfy the linear homogeneous equation

$$\mathbf{AF}_{\mathrm{vec}} = \mathbf{0} \quad \Rightarrow \quad \mathbf{A}^T \mathbf{AF}_{\mathrm{vec}} = \mathbf{0}$$

where **A** is the $K \times 9$ matrix that contains $\mathbf{Y}_{k}^{\mathsf{T}}$ for k = 1, ..., K in its rows

F_{vec} is an eigenvector of A^TA, of eigenvalue zero
 Or: F_{vec} is a right singular vector of A, of singular value zero

The 8-point algorithm

Given K pairs of corresponding points \mathbf{y}_{1k} , \mathbf{y}_{2k}

- 1. Form \mathbf{Y}_k from these pairs for k = 1, ..., K and then \mathbf{A} from all \mathbf{Y}_k (row-wise)
- F_{vec} = the eigenvector corresponding to the smallest eigenvalue of **A**^T**A** (or the right singular vector corresponding to the smallest singular value of **A**)
- 3. Reshape F_{vec} to a 3 \times 3 matrix F.

This **F** is an estimate of the fundamental matrix

The 8-point algorithm: Details

• Since **A** is $K \times 9$

$$A^TA F_{vec} = 0$$

has a unique solution \mathbf{F}_{vec} if $K \ge 8$.

This is why it is called the 8-point algorithm

- Special configurations of x_k make F not unique
- The 3D points \mathbf{x}_k that generate \mathbf{y}_{1k} , \mathbf{y}_{2k} must be in general positions (e.g. not in a plane, or all at infinity)

The 8-point algorithm: Details

- We know: det **F** = 0
- In practice, the image coordinates y₁, y₂
 cannot be measured exactly
 - det F = 0 is not valid automatically when F is estimated according to above
- If det **F** ≠ 0 :
 - F cannot be related to some camera matrices
 - F does not describe well-defined epipoles
- We need to enforce det F = 0
 - Find \mathbf{F}_0 that is closest to \mathbf{F} , with det $\mathbf{F}_0 = 0$

Enforcement of det F = 0

F is a 3×3 matrix with det **F** $\neq 0$

An SVD of **F** gives us: **F** = **U S V**^T

U and **V** are orthogonal matrices

S is a diagonal matrix that holds the singular values $\sigma_{\!\scriptscriptstyle 1}$,

$$\sigma_2$$
 , $\sigma_3 > 0$

$$\det \mathbf{F} = \pm \,\sigma_1 \,\cdot\,\sigma_2 \,\cdot\,\sigma_3$$

In normal cases: σ_1 and σ_2 are relatively large and σ_3 is small but not = 0

Enforcement of det $\mathbf{F} = 0$

Set the smallest singular value to zero and recombine:

$$\mathbf{F}_0 = \mathbf{U} \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mathbf{V}^T$$

F₀ is the closest approximation of F with det F₀ = 0
 (in Frobenius norm)

The 8-point algorithm Full picture

Given *K* ≥ 8 pairs of corresponding points y_{1k}, y_{2k}

- 1. Form \mathbf{Y}_k from each pair for k = 1, ..., K and stack these to form \mathbf{A}
- 2. \mathbf{F}_{vec} = the right singular vector corresponding to the smallest singular value of \mathbf{A} (ideally zero)
- 3. Reshape \mathbf{F}_{vec} to a 3 × 3 matrix \mathbf{F} .
- 4. Enforce det $\mathbf{F} = 0 \Rightarrow \mathbf{F}_0$
- 5. This \mathbf{F}_0 is our estimate of the fundamental matrix

The uncalibrated case, summary

- Given a set of K ≥ 8 correspondences, we can estimate an F that fits these points
 - The 8-point algorithm
- As the image coordinates are perturbed by noise, the estimated F will not satisfy
 Y_k^T F = 0 exactly, but F_{vec} minimizes

$$\epsilon = \|\mathbf{AF}_{\mathrm{vec}}\|$$

(at least before the constraint enforcement)

Note that this is an algebraic error (What is this?)

Hartley normalisation

- To get useful estimates of F, we need to use Hartley normalisation of the image coordinates:
 - Translate origin to the centroid of the points in each image
 - Scale each image so that average distance to origin = 2^{1/2}
- Estimate F in the transformed coordinates and then transform F back to standard coordinates
- More advanced methods: 7-point algorithm, gold-standard algorithm (TSBB15)

BREAK

Stereo rig

- A general stereo rig consists of two cameras with
 - distinct camera centers
 - general orientations of the camera principal axes (although often toward a common scene!)

Stereo rig

Research stereo rig, Eddie, ISY/LiU

FURFILM

FujiFilm consumer stereo camera Finepix W3

Point Grey, Bumblebee classic stereo camera

For a general stereo rig

- In general the epipolar lines are not parallel
 - Intersect at the epipole

- In this example, the cameras are convergent (or "inwards pointing").

Rectified stereo rig

 In a rectified stereo rig, the principal directions of the cameras are parallel and orthogonal to the baseline and the cameras have identical intrinsics

Rectified stereo images

For a rectified stereo rig, corresponding image points lie on the same row. This means that

- The epipolar points are points at infinity
- The epipolar lines are parallel

- More precisely:
$$\mathbf{e}_{12} = \mathbf{e}_{21} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Infinitely far to the left and to the right!

Rectified stereo images

The corresponding fundamental matrix is

$$\mathbf{F}_{\mathsf{R}} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

• Note that $\mathbf{y}_1^\mathsf{T}\mathbf{F}_\mathbf{B}\mathbf{y}_2 = 0$ for all vectors \mathbf{y}_1 , \mathbf{y}_2 with

$$\mathbf{y}_1 = \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} \quad \mathbf{y}_2 = \begin{pmatrix} u+d \\ v \\ 1 \end{pmatrix}$$

Rectified stereo rig

- A rectified stereo rig is difficult to build in practise:
 - requires expensive high precision mechanical alignment: E:g. 1/100 of a degree for a 4K camera with 45° hfov
 - a mechanical rig may lose its rectification if bumped into
- Typically one instead sets up an approximate rectified stereo rig, and does rectification in software.

Equivalent cameras

 Let C and C' be the camera matrices of two pinhole cameras with the same camera centre, n:

$$\mathbf{y} \sim \mathbf{C}\mathbf{x} \quad \mathbf{C}\mathbf{n} = \mathbf{0} \ \mathbf{y}' \sim \mathbf{C}'\mathbf{x} \quad \mathbf{C}'\mathbf{n} = \mathbf{0}$$

 Given y', we have the following parametric form for projection ray:

$$\mathbf{x} = t\mathbf{n} + (1 - t)\mathbf{C}'^{+}\mathbf{y}'$$

Equivalent cameras

This set of points is projected into camera C as

$$\mathbf{y} \sim \mathbf{C}[t\mathbf{n} + (1-t)\mathbf{C'}^{+}\mathbf{y'}]$$

$$\mathbf{y} \sim (1-t)\mathbf{C}\mathbf{C}'^{+}\mathbf{y}' = (1-t)\mathbf{H}\mathbf{y}' \sim \mathbf{H}\mathbf{y}'$$

There is a homography mapping H from y to y' defined by the cameras
 C and C' (how come?)

$$\mathbf{y} \sim \mathbf{H}\mathbf{y}' \quad \Leftrightarrow \quad \mathbf{y}' \sim \mathbf{H}^{-1}\mathbf{y}$$

- The images in the two cameras are identical except for a homography mapping of the coordinates.
 - ⇒ One can be converted to the other by resampling.

Rectified stereo rig

Consequently:

- All cameras that share the same camera center are in this sense "equivalent"
- E.g. if a camera rotates about its center by 3D rotation R, the image transforms according to a homography H = K R K⁻¹
 - where K is the intrinsic camera matrix

Rectified images

Consequence:

- If the principal axis of a camera is not exactly pointing in the right direction, this can be compensated for by applying a suitable homography **H** on the image coordinates
 - Implies a rotation of the principal axis
 - This can make the epipolar lines parallel
- The result is a rectified image

- We now wish to determine homographies H₁ for image 1 and H₂ for image 2 that rectify the two images
- Estimate F from corresponding points in the two images
 - The 8-point algorithm
- Find $\mathbf{H_1}$, $\mathbf{H_2}$ such that $(\mathbf{H}_1^{-1})^T\mathbf{F}\mathbf{H}_2^{-1}\sim\mathbf{F}_{\mathsf{R}}$

- This relation in H₁ and H₂ has multiple solutions, many of which are unwanted, e.g.:
 - horizontal mirroring
 - extreme geometric distortion
- Several methods for determining useful
 H₁ and H₂ from F exist, for example:
 - Loop & Zhang, Computing Rectifying
 Homographies for Stereo Vision, ICPR 1999
 Determines H₁ and H₂ by minimising geometric distortion, see computer exercise D

Example of an unrectified stereo image pair

Black lines are epipolar lines. Not parallel

From Loop & Zhang

Example of a rectification

Epipolar lines are parallel and aligned!

From Loop & Zhang

Another example, with less geometric distortion than the previous one

Epipolar lines are parallel and aligned!

From Loop & Zhang

Stereo rectification, summary

- A pair of stereo images that are not rectified:
 - the principal axes are not parallel and not perpendicular to the baseline
- can be rectified by homographies such that
 - corresponding points are found on the same row
- Multiple solutions to the rectification exist

Reconstruction

Given a pair of corresponding image points y₁ and

$$egin{array}{ll} \mathbf{y}_2 & \left\{ egin{array}{ll} \mathbf{y}_1 \sim \mathbf{C}_1 \mathbf{x} \ \mathbf{y}_2 \sim \mathbf{C}_2 \mathbf{x} \end{array}
ight.$$

we know that: $\mathbf{y}_1^T \mathbf{F} \mathbf{y}_2 = 0$

- But what about x? Can x be determined?
- This problem is called *triangulation*.

Reconstruction

The epipolar constraint ⇔ the two projection rays intersect

In this case: there is a unique \mathbf{x} that projects to \mathbf{y}_1 and \mathbf{y}_2

Reconstruction

- In reality, the image points \mathbf{y}_1 and \mathbf{y}_2 do not satisfy $\mathbf{y}_1^T \mathbf{F} \mathbf{y}_2 = 0$ exactly
 - Lens distortion
 - Coordinate quantization
 - Estimation inaccuracy
- The two projection rays do not intersect
 In this case: x is not well defined
 It has somehow to be estimated

The mid-point method

- Find the unique points \mathbf{x}_1 and \mathbf{x}_2 on the two projection rays that are closest to the other ray
- Set \mathbf{x} = the mid-point between \mathbf{x}_1 and \mathbf{x}_2
- If $\mathbf{x}_1 = \mathbf{x}_2$, $\mathbf{y}_1^T \mathbf{F} \mathbf{y}_2 = 0$

The mid-point method

Linear triangulation

From
$$\begin{cases} \mathbf{y}_1 \sim \mathbf{C}_1 \mathbf{x} \\ \mathbf{y}_2 \sim \mathbf{C}_2 \mathbf{x} \end{cases}$$

follows
$$\left\{ egin{array}{ll} \mathbf{0} = \mathbf{y}_1 imes \mathbf{C}_1 \mathbf{x} \ \mathbf{0} = \mathbf{y}_2 imes \mathbf{C}_2 \mathbf{x} \end{array}
ight.$$

$$egin{cases} \mathbf{0} = [\mathbf{y}_1]_ imes \mathbf{C}_1 \mathbf{x} \ \mathbf{0} = [\mathbf{y}_2]_ imes \mathbf{C}_2 \mathbf{x} \end{cases}$$

3+3 = 6 linear homogeneous equations in x

Linear triangulation

Since $[\mathbf{y}_1]_{\times}$ has rank 2: one of the 3 equations is linearly dependent to the other two:

$$\left\{ egin{array}{l} \mathbf{0} = [\mathbf{y}_1]_{ imes} \mathbf{C}_1 \mathbf{x} \ \mathbf{0} = [\mathbf{y}_2]_{ imes} \mathbf{C}_2 \mathbf{x} \end{array}
ight.$$

In total: 4 linear independent homogeneous equations in x

This can be written

$$Bx = 0$$

B is a 6×4 matrix

Linear triangulation

In practice (with noise) $\mathbf{B}\mathbf{x} = \mathbf{0}$ cannot be solved exactly, so we resort to finding an \mathbf{x} that minimizes

$$\epsilon(\mathbf{x}) = \|\mathbf{B}\mathbf{x}\|$$

with the constraint $\|\mathbf{x}\| = 1 \Rightarrow$ choose **x** as

- the right singular vector of **B** with smallest singular value.
- This approach is simple, but minimizes an algebraic error.

Optimal triangulation

 There is also a maximum likelihood (ML) approach to triangulation: Find the most likely 3D point x that could have generated the observations:

$$\mathbf{x}^* = \arg\max_{\mathbf{x}} p(\mathbf{y}_1|\mathbf{x}) p(\mathbf{y}_2|\mathbf{x})$$

If we assume normal i.i.d. image noise we get:

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} d^2(\mathbf{y}_1, \mathbf{l}_1(t))^2 + d^2(\mathbf{y}_2, \mathbf{l}_2(t))$$

 Leads to a cubic polynomial equation in t. This solution is known as optimal triangulation. See e.g. the Hartley&Zisserman book for details.

Reconstruction, summary

- Given that C₁ and C₂ are known and y₁ and y₂ correspond to the same x
 - they satisfy the epipolar constraint
- x can be determined, for example, by
 - the mid-point method (a geometric method)
 - the linear method (an algebraic method)
 - optimal triangulation (a statistical method)
- In the noise free case, these methods give the same x
- In the real and noisy case, they do not

Computer Lab on Tuesday

On the lab you will get to try:

- Stereo rectification
- Fundamental matrix estimation
- Triangulation

Note: Extensive preparations are needed. Check the lab sheet and review these slides.

