Multi-dimensional
Signal Analysis

Lecture 2E
Principal Component Analysis



Given

e avector space V of dimension N
* ascalar product defined by G,

e asubspace U of dimension M < N
e An N X M basis matrix B of the subspace U
* avectorveV

we can determine v, € U that is closest to v

e v, € Uis a subspace representation ofve V
* v, isindependent of B, it only depends on U
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More precisely:

* the coordinates of v, relative basis B is given
by

Where C€=B'G,v and G =B'G.B
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* In the previous applications normalised
convolution and filter optimisation the basis
was fixed

— This means that U is fixed

* An alternative approach is to allow the signal
vector v to be a stochastic variable and to
determine an M-dimensional subspace U such
that v, is as close as possible to v in average

13 November 2018 Lecture 2E, Klas Nordberg, LiU 5



e We want to minimise

— —_ 2
e=E H \ V1 H E means here to take the
expectation value or mean

where the expe ctatlon alue is taken over all
0 ns o

* ¢is minimised over all M-dimensional
subspaces U
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To simplify things, we assume that
e Visreal =RN

e G, =1
e Bis an ON-basis of subspace U:
Leads to:

~

(u|v)=ulv B=B BB =
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e This simplification also means that:

v,=Bc=BB'v

 We want to determine an M-dim subspace U

(represented by ON-basis B) such that we
minimise

e=E | v—BBv|]?
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e We assume that v has known statistical
properties

 We want to determine B that minimises ¢
* This is the same as maximising

for ON-basis B

e This is an optimisation problem with a set of
constraints (B'B = 1)
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e Assoon as M,
= the dimension of U,
= the number of columns in B,
is determined, we optimise €, over the N X M
elements in B with the constraints B'B = |

e Can be solved by means of standard
techniques for constrained optimisation

— Lagrange’s method
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e Simple example: M =1

= B has only one single column b,

* We want to maximise
e,=E[vbb,'vV]=E [b,'vv'b,]=b,"TE[vVv'] b,
with constraintc=b,"b, =1
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e Use Lagrange’s method:

Ve, = A Vc

where the gradients are with respect to the
elementsin b,

e Leadsto

E[vv']b, =Ab,
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Consequently:

e Remember: ||b,|| =1, since Bis ON
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° It IS Clear that the matrlx Approximation of C from P samples:

1 P

is an important thing to know in order to solve
+the nraohla

IICIJ IJICIII

e Cis called the correlation matrix of the signal
e Cissymmetricand N x N
e Cis positive definite (why?)
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e With this choice of b,, ¢, becomes
=b,"Cb,=Ab,'b; =\

Nnt tn Ma
C WL\ A

.
3

iIse €. we S
~J 1 - J

choose )\ as Iarge as possible

= b, is a normalised eigenvector
corresponding to the largest eigenvalue of C
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* From
€, = A\, = largest eigenvalue of C

follows that

e = sum of all eigenvalues of C except A,

(why?)
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e Let U be 2-dimensional:
B has two columns b, and b,

* We want to maximise
e, =E [vB B'v]
with the constraints
c,=b,'b;=1, ¢c,=b,'b,=0, c¢;=b,’b,=1
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* In the general case, when M > 1, the subspace
ON-basis matrix B is not unique

e B'=B Qwith Q € O(M) is also a solution
(why?)

e We need additional constraints on B in order
to make B unique

 We choose: B'C B is diagonal
— Subspace basis vectors are uncorrelated
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This additional constraint leads to

Cb,=\ b,
Cb,=\,b,

= Both b, and b, must the normalised and

mutually orthogonal eigenvectors of C, with
eigenvalues A, and A,
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e We want to maximise why

e,=E[VIBB'Vv]=b,"Cb,+b,"Cbh, =X, + A,

and therefore we should choose b, and b, as
normalised eigenvectors corresponding to the
two largest eigenvalues of C

— Remember multiplicity of eigenvalues

* Since Cis symmetric, b, and b, can always be
chosen as orthogonall!
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 Based on these examples we present a general
result:

We want to determine an M-dimensional
subspace U, described by a ON-basis matrix B.

1. Form the correlation matrix C
2. Compute eigenvalues and eigenvectors of C

3. The basis B consists of M eigenvectors
corresponding to the M largest eigenvalues
of C
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* This gives

and

where A, > A\, > ... > A, are the eigenvalues of C
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 The eigenvectors of C are in this context
referred to as principal components

* The magnitude of a principal component is
given by the corresponding eigenvalue

e The M-dimensional subspace U is spanned by
the M largest principal components of C

 To determine the basis B in this way is called
principal component analysis or PCA
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* In PCA we analyse the signal v to get its
coordinates relative to the subspace basis B:

c=B'v
* If necessary, we can then reconstruct v, as

v,=Bc

13 November2018 Lecture 2E, Klas Nordberg, LiU 24



~[pea] —
vERN ccERM

v, e RV

CGRNXN

In some application, for example,
clustering, the reconstruction step is
not relevant
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In signal processing, PCA can be used for

 General data analysis

— For an unknown data/signal determine if it can be reduced
in dimension

e Data/signal compression

— An N-dimensional signal can be represented with an
M-dimensional basis (M < N)

— Reduces the amount to data needed to store/transmit the
signal
— Data dependent compression

(+) Effective since the compression is data dependent
(-) Overhead since B must be stored/transmitted as well
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 PCA can typically be applied to signals with a

statistical model (mean and C known)

 PCA can also be applied to a finite data set in
the form of high-dimensional vectors

 Dimensionality reduction
e Cis estimated from the finite data set
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The idea behind PCA is to estimate C from a
larges set of observation of the data/signal v
and then choose the basis B as the M largest
principal components

How do we know a suitable value for M?
No optimal strategy!
Application dependent
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How large p e’

In some applications M may be fixed, i.e., already given
In other applications it makes sense to analyse the
eigenvalues A, ..., Ay in order to choose a suitable M
— For example: € / €, small (why?)

Usually each dimension of U corresponds to a cost

— Represents a coordinate of v, that needs to be stored or

transmitt ar~|
CAITIJDIITIIUULUN. A

— We want to keep M as small as possible
Balance between cost and decrease in ¢



A 512 x 512 pixel image

v e
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Let us divide this image into 8 x 8 pixels block
This gives in total 64 x 64 = 4096 blocks

The pixels of each block constitute our
signal v, a vector in R%*

— (8 x 8 reshaped to a 64-dim column vector)
From the 4096 observations of v we form the
64 x 64 correlation matrix C

We also compute the eigenvalues and
eigenvectors of C



 Here are the 64 eigenvalues of C

-

One large

SERELE
the rest are
relatively small

‘0 .
10 20 30 40 50 60
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e If we remove the largest eigenvalue and plot
the rest: .«

1 L A A b A o T L L W
10 20 30 40 50 60
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e Each eigenvector of Cis a 64-dimensional
vector that can be reshaped into an 8 x 8 block
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We notice that
* b, is approximately flat or constant (DC)

* b, and b, are approximately shaped like a
plane with a slope in two perpendicular
directions. Linear

* b,, b.and b, are approximately shaped like
guadratic surfaces
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 The distribution of the eigenvalues implies

that already by going from 0 to 1 dimension of
U the error € is reduced quite a lot

By adding a few more dimensions it should be
possible to represent the signal quite well

e Let us try with some different values for M
and look at the result
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e Each block, as a vector v € R 4 is projected
ontov, € U

* v, can be represented with only M
coordinates

* v, is a reasonably good approximation of v, at
least the mean error should be low

— How good is determined by the distribution of
eigenvalues relative to M
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 Here v is projected onto the first principal
component b,

* Since b, is flat or
constant,
each block
becomes flat or
constant
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e Here v is projected onto the first two principal
components b, and b,

* Since b, is a slope in
one direction we can
now represent that
change in each block

— But not a slope in the
orthogonal direction!
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e Here v is projected onto the first three principal
components b, ... b,

* Since b, is a slope in
the other direction
we can now have
slopes in any direction
within each block
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e Here v is projected onto the first six principal
components b, ... b,

e With 3 more
dimensions, each
block can contain
more details

e Here, data has been
reduced by a factor
64/6 ~ 11
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A general observation:

— In areas of low spatial frequency the
approximation is good

— In areas of high spatial frequency the
approximation is worse
* The more details or higher spatial frequency,
the more dimensions are needed for an
accurate representation
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* Introducing the new basis B in this way and
computing the coordinates of v relative to B is
sometimes also referred to as

Karhunen-Loéve transformation

B'v gives the “transformed signal”
(= the coordinates of v relative to basis B)

B B'v reconstructs the projected signal v,
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* In some application PCA is used to make a
statistical analysis of a signal v

e |tisthen very common to describe v in terms
of its mean m, and its covariance matrix

m,=E[v]

COVV =E [ (V— mv) (V— mv)T]
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* The PCA is then based on the covariance
matrix Cov, rather than the correlation C

e This corresponds to translating the origin of
the subspace U to the mean m, and do
correlation based PCA there

 Both approaches are called PCA

— Statistical data analysis typically use Cov,
— Data compression typically use C
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* In the case that we approximate the statistics

of v from a finite number of P observations,

these can be described by a data matrix A that

holds all these v in its columns
 An estimate of C=E [v V'] is then given by

C=(1/P) AAT
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 The principal components are the
eigenvectors of A AT

 These are also the left singular vectors of A

e An alternative to computing the PCA, thatin
some cases may have better numerical

properties:

1. Form the data matrix A

2. Compute its SVD

3. Form B from the left singular vector that

corresponds to the M largest singular values
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 Formulation of the problem that PCA solves:
" Find a subspace U that minimises e =E || v—B B'v ||?
= This subspace is represented by an ON-basis B
e Solution: B consists of the M “largest”
eigenvectors of C=E[ v V']
= Called principal components
= Alternatively computed by means of SVD
= ¢ =sum of residual eigenvalues of C
e Applications:
" Dimensionality reduction
= Signal compression



