Multi-dimensional Signal Analysis

Lecture 2E
Principal Component Analysis

Subspace representation

Given

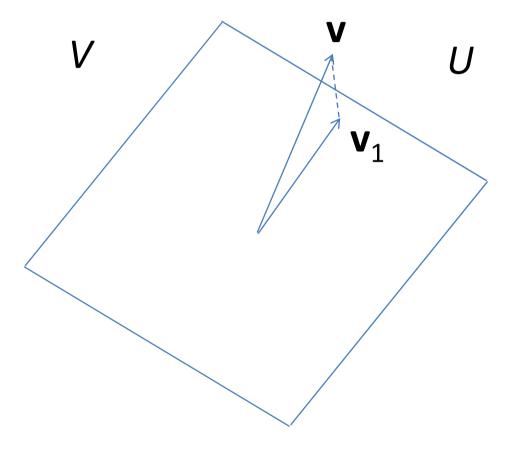
- a vector space *V* of dimension *N*
- a scalar product defined by G₀
- a subspace *U* of dimension *M* < *N*
- An $N \times M$ basis matrix **B** of the subspace U
- a vector $\mathbf{v} \in V$

we can determine $\mathbf{v}_1 \in U$ that is closest to \mathbf{v}

- $\mathbf{v}_1 \in U$ is a subspace representation of $\mathbf{v} \in V$
- v₁ is independent of B, it only depends on U

Note!

Subspace representation



Subspace representation

More precisely:

• the coordinates of \mathbf{v}_1 relative basis \mathbf{B} is given by

$$\mathbf{c} = \mathbf{G}^{-1} \, \widetilde{\mathbf{c}}$$

Where
$$\tilde{\mathbf{c}} = \mathbf{B}^{\mathsf{T}}\mathbf{G}_{0}\mathbf{v}$$
 and $\mathbf{G} = \mathbf{B}^{\mathsf{T}}\mathbf{G}_{0}\mathbf{B}$

Stochastic signals

- In the previous applications normalised convolution and filter optimisation the basis was fixed
 - This means that U is fixed
- An alternative approach is to allow the signal vector \mathbf{v} to be a *stochastic variable* and to determine an M-dimensional subspace U such that \mathbf{v}_1 is as close as possible to \mathbf{v} in average

Initial problem formulation

We want to minimise

$$\epsilon = \mathbf{E} \parallel \mathbf{v} - \mathbf{v}_1 \parallel^2$$

E means here to take the expectation value or mean

where the expectation value is taken over all observations of the signal **v**

• ϵ is minimised over all M-dimensional subspaces U

Problem formulation

To simplify things, we assume that

- V is real = \mathbb{R}^N
- $G_0 = I$
- **B** is an ON-basis of subspace *U*:

Leads to:

$$\langle \mathbf{u} \mid \mathbf{v} \rangle = \mathbf{u}^\mathsf{T} \mathbf{v}$$

$$ilde{\mathbf{B}} = \mathbf{B}$$

$$B^TB = I$$

Problem formulation

This simplification also means that:

$$\mathbf{v}_1 = \mathbf{B} \ \mathbf{c} = \mathbf{B} \ \mathbf{B}^\mathsf{T} \mathbf{v}$$

We want to determine an M-dim subspace U
 (represented by ON-basis B) such that we
 minimise

$$\epsilon = E \parallel \mathbf{v} - \mathbf{B} \mathbf{B}^{\mathsf{T}} \mathbf{v} \parallel^2$$

Solving the problem

- We assume that v has known statistical properties
- We want to determine **B** that minimises ϵ
- This is the same as maximising

$$\epsilon_1 = \mathbf{E} \left[\mathbf{v}^\mathsf{T} \mathbf{B} \; \mathbf{B}^\mathsf{T} \mathbf{v} \right]$$

(why?)

for ON-basis B

 This is an optimisation problem with a set of constraints (B^TB = I)

Practical solution

- As soon as M,
 - = the dimension of *U*,
 - = the number of columns in \mathbf{B} , is determined, we optimise ϵ_1 over the $N \times M$ elements in \mathbf{B} with the constraints $\mathbf{B}^\mathsf{T}\mathbf{B} = \mathbf{I}$
- Can be solved by means of standard techniques for constrained optimisation
 - Lagrange's method

- Simple example: M = 1
 - **B** has only one single column **b**₁
- We want to maximise

$$\epsilon_1 = E[\mathbf{v}^\mathsf{T} \mathbf{b}_1 \mathbf{b}_1^\mathsf{T} \mathbf{v}] = E[\mathbf{b}_1^\mathsf{T} \mathbf{v} \ \mathbf{v}^\mathsf{T} \mathbf{b}_1] = \mathbf{b}_1^\mathsf{T} E[\mathbf{v} \ \mathbf{v}^\mathsf{T}] \mathbf{b}_1$$

with constraint
$$c = \mathbf{b}_1^T \mathbf{b}_1 = 1$$

Use Lagrange's method:

$$\nabla \epsilon_1 = \lambda \ \nabla c$$

where the gradients are with respect to the elements in \mathbf{b}_1

Leads to

$$\mathsf{E} \; [\; \mathbf{v} \; \mathbf{v}^\mathsf{T} \;] \; \mathbf{b}_1 \; = \lambda \; \mathbf{b}_1$$

Consequently:

 \mathbf{b}_1 is an eigenvector corresponding to eigenvalue λ of E [$\mathbf{v} \ \mathbf{v}^T$]

• Remember: $||\mathbf{b}_1|| = 1$, since **B** is ON

The correlation matrix

It is clear that the matrix

$$\mathbf{C} = \mathbf{E} \left[\mathbf{v} \mathbf{v}^{\mathsf{T}} \right]$$

Approximation of **C** from *P* samples:

$$\mathbf{C} \approx \frac{1}{P} \sum_{k=1}^{P} \mathbf{v}_k \mathbf{v}_k^T$$

is an important thing to know in order to solve the problem

- C is called the correlation matrix of the signal
- C is symmetric and N × N
- C is positive definite (why?)

• With this choice of \mathbf{b}_1 , ϵ_1 becomes

$$\epsilon_1 = \mathbf{b}_1^\mathsf{T} \mathbf{C} \ \mathbf{b}_1 = \lambda \ \mathbf{b}_1^\mathsf{T} \mathbf{b}_1 = \lambda$$

• Since we want to $\underline{\text{maximise}} \ \epsilon_1$ we should choose λ as large as possible

 \Rightarrow **b**₁ is a normalised eigenvector corresponding to the largest eigenvalue of **C**

• From

$$\epsilon_1 = \lambda_1$$
 = largest eigenvalue of **C**

follows that

 ϵ = sum of all eigenvalues of **C** except λ_1

Let *U* be 2-dimensional:
 B has two columns **b**₁ and **b**₂

We want to maximise

$$\epsilon_1 = E [\mathbf{v}^T \mathbf{B} \; \mathbf{B}^T \mathbf{v}]$$

with the constraints

$$c_1 = \mathbf{b}_1^{\mathsf{T}} \mathbf{b}_1 = 1, \quad c_2 = \mathbf{b}_1^{\mathsf{T}} \mathbf{b}_2 = 0, \qquad c_3 = \mathbf{b}_2^{\mathsf{T}} \mathbf{b}_2 = 1$$

- In the general case, when M > 1, the subspace
 ON-basis matrix B is not unique
- B' = B Q with Q ∈ O(M) is also a solution (why?)
- We need additional constraints on B in order to make B unique
- We choose: B^TC B is diagonal
 - Subspace basis vectors are uncorrelated

This additional constraint leads to

$$\mathbf{C} \ \mathbf{b}_1 = \lambda_1 \ \mathbf{b}_1$$

$$\mathbf{C} \ \mathbf{b}_2 = \lambda_2 \ \mathbf{b}_2$$

 \Rightarrow Both \mathbf{b}_1 and \mathbf{b}_2 must the normalised and mutually orthogonal eigenvectors of \mathbf{C} , with eigenvalues λ_1 and λ_2

• We want to maximise

(why?)

$$\epsilon_1 = E [\mathbf{v}^T \mathbf{B} \ \mathbf{B}^T \mathbf{v}] = \mathbf{b}_1^T \mathbf{C} \ \mathbf{b}_1 + \mathbf{b}_2^T \mathbf{C} \ \mathbf{b}_2 = \lambda_1 + \lambda_2$$

and therefore we should choose \mathbf{b}_1 and \mathbf{b}_2 as normalised eigenvectors corresponding to the two largest eigenvalues of \mathbf{C}

- Remember multiplicity of eigenvalues
- Since \mathbf{C} is symmetric, \mathbf{b}_1 and \mathbf{b}_2 can always be chosen as orthogonal!

Generalisation

- Based on these examples we present a general result:
 - We want to determine an *M*-dimensional subspace *U*, described by a ON-basis matrix **B**.
- 1. Form the correlation matrix C
- 2. Compute eigenvalues and eigenvectors of C
- 3. The basis **B** consists of *M* eigenvectors corresponding to the *M* largest eigenvalues of **C**

Generalisation

This gives

$$\boldsymbol{\epsilon}_1 \!=\! [\mathbf{v}^\mathsf{T}\mathbf{B} \ \mathbf{B}^\mathsf{T}\mathbf{v}] = \boldsymbol{\lambda}_1 + \ldots + \boldsymbol{\lambda}_M$$

and

$$\epsilon = \lambda_{M+1} + \dots + \lambda_{N}$$

where $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_N$ are the eigenvalues of **C**

Principal components

- The eigenvectors of **C** are in this context referred to as *principal components*
- The magnitude of a principal component is given by the corresponding eigenvalue
- The M-dimensional subspace U is spanned by the M largest principal components of C
- To determine the basis B in this way is called principal component analysis or PCA

Analysis and reconstruction

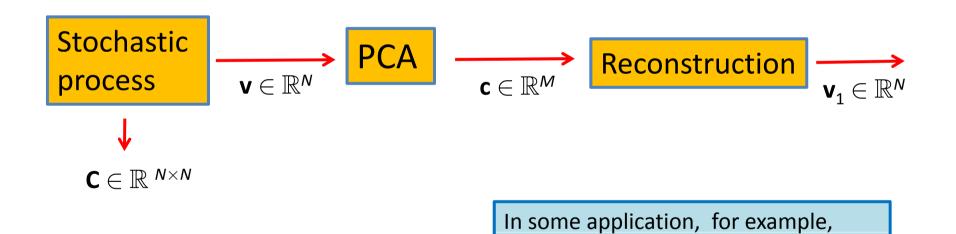
 In PCA we analyse the signal v to get its coordinates relative to the subspace basis B:

$$c = B^T v$$

• If necessary, we can then reconstruct \mathbf{v}_1 as

$$\mathbf{v}_1 = \mathbf{B} \mathbf{c}$$

Analysis and reconstruction



clustering, the reconstruction step is

not relevant

Applications

In signal processing, PCA can be used for

- General data analysis
 - For an unknown data/signal determine if it can be reduced in dimension
- Data/signal compression
 - An N-dimensional signal can be represented with an M-dimensional basis (M < N)
 - Reduces the amount to data needed to store/transmit the signal
 - Data dependent compression
 - (+) Effective since the compression is data dependent
 - (-) Overhead since **B** must be stored/transmitted as well

Signal model

- PCA can typically be applied to signals with a statistical model (mean and C known)
- PCA can also be applied to a finite data set in the form of high-dimensional vectors
 - Dimensionality reduction
 - C is estimated from the finite data set

How large subspace?

- The idea behind PCA is to estimate C from a larges set of observation of the data/signal v and then choose the basis B as the M largest principal components
- How do we know a suitable value for M?
- No optimal strategy!
- Application dependent

How large subspace?

- In some applications M may be fixed, i.e., already given
- In other applications it makes sense to analyse the eigenvalues $\lambda_1, ..., \lambda_N$ in order to choose a suitable M
 - For example: ϵ / ϵ_1 small (why?)
- Usually each dimension of U corresponds to a cost
 - Represents a coordinate of v₁ that needs to be stored or transmitted
 - We want to keep M as small as possible
- Balance between cost and decrease in ϵ

An example

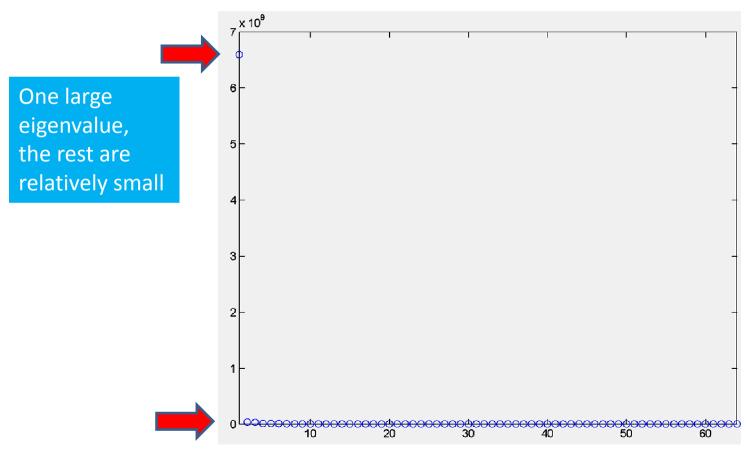
A 512 imes 512 pixel image

An example

- Let us divide this image into 8×8 pixels block
- This gives in total $64 \times 64 = 4096$ blocks
- The pixels of each block constitute our signal \mathbf{v} , a vector in \mathbb{R}^{64}
 - (8 \times 8 reshaped to a 64-dim column vector)
- From the 4096 observations of \mathbf{v} we form the 64×64 correlation matrix \mathbf{C}
- We also compute the eigenvalues and eigenvectors of C

The eigenvalues of **C**

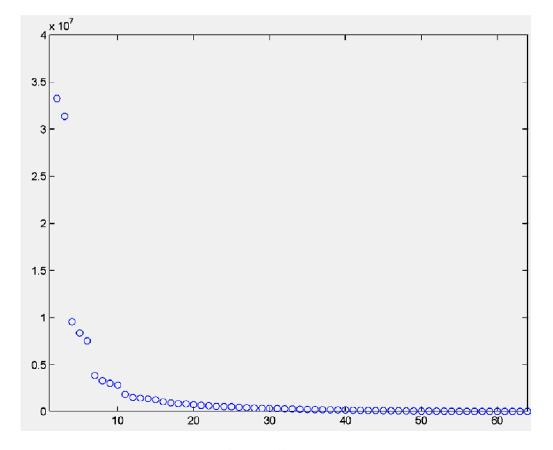
Here are the 64 eigenvalues of C



The eigenvalues of **C**

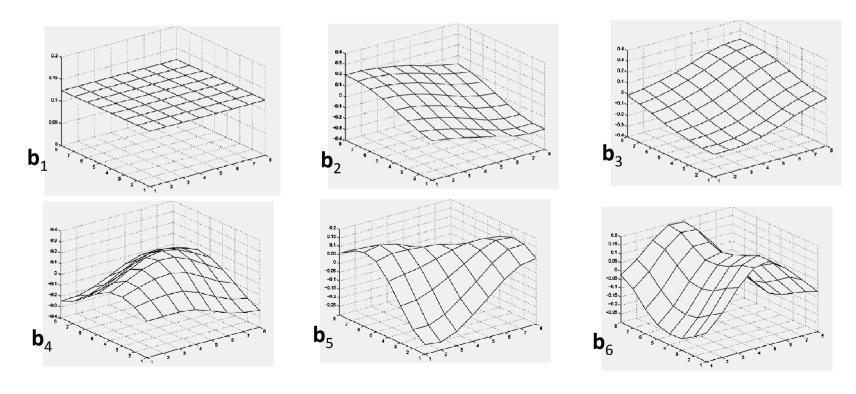
If we remove the largest eigenvalue and plot

the rest:



The eigenvectors of **C**

• Each eigenvector of ${\bf C}$ is a 64-dimensional vector that can be reshaped into an 8×8 block



The eigenvectors of **C**

We notice that

- b₁ is approximately flat or constant (DC)
- b₂ and b₃ are approximately shaped like a plane with a slope in two perpendicular directions. Linear
- b₄ , b₅ and b₆ are approximately shaped like quadratic surfaces

An example

- The distribution of the eigenvalues implies that already by going from 0 to 1 dimension of U the error ϵ is reduced quite a lot
- By adding a few more dimensions it should be possible to represent the signal quite well
- Let us try with some different values for M and look at the result

An example

- Each block, as a vector $\mathbf{v} \in \mathbb{R}^{64}$, is projected onto $\mathbf{v}_1 \in U$
- v₁ can be represented with only M coordinates
- \mathbf{v}_1 is a reasonably good approximation of \mathbf{v} , at least the mean error should be low
 - How good is determined by the distribution of eigenvalues relative to M

M = 1

 Here v is projected onto the first principal component b₁

Since b₁ is flat or constant,
 each block
 becomes flat or constant

M = 2

Here v is projected onto the first two principal

components \mathbf{b}_1 and \mathbf{b}_2

- Since b₂ is a slope in one direction we can now represent that change in each block
 - But not a slope in the orthogonal direction!

M = 3

Here v is projected onto the first three principal

components $\mathbf{b}_1 \dots \mathbf{b}_3$

 Since b₃ is a slope in the other direction we can now have slopes in any direction within each block

M=6

- Here v is projected onto the first six principal components b₁ ... b₆
- With 3 more dimensions, each block can contain more details
- Here, data has been reduced by a factor $64/6 \approx 11$

General observation

A general observation:

- In areas of low spatial frequency the approximation is good
- In areas of high spatial frequency the approximation is worse
- The more details or higher spatial frequency, the more dimensions are needed for an accurate representation

Karhunen-Loève transformation

 Introducing the new basis B in this way and computing the coordinates of v relative to B is sometimes also referred to as Karhunen-Loève transformation

 $\mathbf{B}^{\mathsf{T}}\mathbf{v}$ gives the "transformed signal" (= the coordinates of \mathbf{v} relative to basis \mathbf{B}) $\mathbf{B}^{\mathsf{T}}\mathbf{v}$ reconstructs the projected signal \mathbf{v}_1

Covariance and mean

- In some application PCA is used to make a statistical analysis of a signal v
- It is then very common to describe \mathbf{v} in terms of its mean $\mathbf{m}_{\mathbf{v}}$ and its **covariance matrix**

$$\mathbf{m}_{\mathbf{v}} = \mathbf{E} [\mathbf{v}]$$

$$Cov_v = E [(v - m_v) (v - m_v)^T]$$

Covariance and mean

- The PCA is then based on the covariance matrix Cov, rather than the correlation C
- This corresponds to translating the origin of the subspace U to the mean $\mathbf{m_v}$ and do correlation based PCA there
- Both approaches are called PCA
 - Statistical data analysis typically use Cov_v
 - Data compression typically use C

The data matrix

- In the case that we approximate the statistics of v from a finite number of P observations, these can be described by a data matrix A that holds all these v in its columns
- An estimate of $C = E [v v^T]$ is then given by

$$C = (1/P) A A^T$$

SVD vs EVD

- The principal components are the eigenvectors of A A^T
- These are also the left singular vectors of A
- An alternative to computing the PCA, that in some cases may have better numerical properties:
 - 1. Form the data matrix A
 - 2. Compute its SVD
 - 3. Form **B** from the left singular vector that corresponds to the *M* largest singular values

What you should know includes

- Formulation of the problem that PCA solves:
 - Find a subspace *U* that minimises $\epsilon = E \parallel \mathbf{v} \mathbf{B} \mathbf{B}^\mathsf{T} \mathbf{v} \parallel^2$
 - This subspace is represented by an ON-basis **B**
- Solution: B consists of the M "largest" eigenvectors of C = E[vv^T]
 - Called principal components
 - Alternatively computed by means of SVD
 - ϵ = sum of residual eigenvalues of C
- Applications:
 - Dimensionality reduction
 - Signal compression