Multi-dimensional signal analysis

Lecture 2F
Over-determined representations
Frames

Basis and subspace basis

So far we have seen

- A vector space V with a basis B
 - B spans V and is linearly independent
 - We can define a dual basis $\hat{\mathbf{b}}_k$
 - We can compute coordinates of $\mathbf{v} \in V$ as $\langle \mathbf{v} | ilde{\mathbf{b}}_k
 angle$
- A subspace U of V with a basis B
 - B spans U but not V and is linearly independent
 - We can define a dual basis $\tilde{\mathbf{b}}_k$
 - With $\mathbf{v} \in V$ and $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_0$ and $\mathbf{v}_0 \perp U$, $\mathbf{v}_1 \in U$, we can compute coordinates of $\mathbf{v}_1 \in U$ as $\langle \mathbf{v} | \hat{\mathbf{b}}_k \rangle$

Over-determined representations

- We are now going to treat a third case:
- A set of vectors (columns in B) such that they
 - span V
 - are *linearly dependent*
- In this case, for v ∈ V we can write v = B c for several choices of c
 - we have an over-determined representation
 - B is not a basis
 - c are not the coordinates of v

Real world problems

- Some practical signal processing problems are simply described as
 - M scalar products are formed between the signal
 v and M known functions that span some
 N-dimensional signal space V, but M > N
 - How can we reconstruct v from these "dual coordinates"?
 - Citation marks are used here since coordinates are not used in the proper way here

Frames

 A formal theory has been developed by Duffin and Schaeffer for dealing with over-determined or redundant representations:

A class of nonharmonic Fourier series, Duffin & Schaeffer, Transaction of American Mathematical Society, 1952

- Context: non-uniform sampling
- In the paper they define the concept of a frame

Frame operator

• Given a set of vectors $\mathbf{b}_k \in V$, we define the frame operator \mathbf{F} as

$$\mathbf{F}\,\mathbf{v} = \sum_k ra{\mathbf{v}|\mathbf{b}_k}\mathbf{b}_k$$

with summation over all k (over all \mathbf{b}_k)

- The set of \mathbf{b}_k may be finite or infinite
- Keep in mind that the infinite case is tricky (why?)
- The \mathbf{b}_k may, or may, not be linearly independent
- **F** is a linear mapping $V \rightarrow V$

The frame operator (II)

• From the definition of **F**, it follows that

$$\langle \mathbf{F} \, \mathbf{u} | \mathbf{v}
angle = \langle \mathbf{u} | \mathbf{F} \, \mathbf{v}
angle$$
 (why?)

for all Let $\mathbf{u}, \mathbf{v} \in V$.

Consequently: F is self-adjoint (what is that?)

The frame condition

• Duffin and Scheaffer showed that if we can find constants $0 < A \le B < \infty$ such that

$$|A||\mathbf{v}||^2 \le \sum_k |\langle \mathbf{v}|\mathbf{b}_k\rangle|^2 \le B||\mathbf{v}||^2$$

for all $v \in V$, this is both a **necessary and sufficient** condition for the statement:

F has a well-defined inverse **F**⁻¹

The frame condition

- This condition is called the frame condition
 - -It is a condition on the set \mathbf{b}_k
 - -Note: same A and B must work for all $\mathbf{v} \in V$
- A set of vectors \mathbf{b}_k that satisfies the frame condition is a *frame* and the vectors \mathbf{b}_k are *frame vectors*

Frame bounds

- We assume that A is the largest possible choice, and B is the smallest possible choice
- A and B are called the lower and upper frame bounds, respectively
 - They depend only on the frame (the set \mathbf{b}_k) and the scalar product in V
 - They do not depend on v

Dual frame

• Define the *dual frame* as the set of vectors

$$\tilde{\mathbf{b}}_k = \mathbf{F}^{-1}\mathbf{b}_k$$

for all k (for all frame vectors \mathbf{b}_k)

 The set of dual frame vectors has the same number of elements as the frame itself

Dual frame

Another consequence of the frame condition:

- The set of dual frame vectors $\tilde{\mathbf{b}}_k$ is also a frame
- They satisfy

$$\left| \frac{1}{B} \|\mathbf{v}\|^2 \le \sum_{k} |\langle \mathbf{v} | \tilde{\mathbf{b}}_k \rangle|^2 \le \frac{1}{A} \|\mathbf{v}\|^2$$

 \Rightarrow Also **F**⁻¹ is self-adjoint

Bases and frames

- We know that in the case of a basis
 - if we analyse (form scalar products) with the basis
 - we must reconstruct with the dual basis
 - or vice versa
- A frame and its dual frame work the same way
 - if we analyse (form scalar products) with the frame
 - we must reconstruct with the dual frame
 - or vice versa

Frame reconstruction

We can prove these statements:

• Choose an arbitrary $\mathbf{v} \in V$ and define

$$\mathbf{u} = \sum_k \langle \mathbf{v} | \mathbf{b}_k
angle ilde{\mathbf{b}}_k$$

• This **u** can then be rewritten as

$$\mathbf{u} = \sum_k \langle \mathbf{v} | \mathbf{b}_k \rangle (\mathbf{F}^{-1} \mathbf{b}_k) = \mathbf{F}^{-1} \left(\sum_k \langle \mathbf{v} | \mathbf{b}_k \rangle \mathbf{b}_k \right) = \mathbf{F}^{-1} \mathbf{F} \mathbf{v} = \mathbf{v}$$

Frame reconstruction

Alternatively:

• Choose an arbitrary $\mathbf{v} \in V$ and define

$$\mathbf{u} = \sum_k \langle \mathbf{v} | ilde{\mathbf{b}}_k
angle \mathbf{b}_k$$

• This **u** can then be rewritten as

$$\mathbf{u} = \sum_{k} \langle \mathbf{v} | \mathbf{F}^{-1} \mathbf{b}_{k} \rangle \ \mathbf{b}_{k} = \sum_{k} \langle \mathbf{F}^{-1} \mathbf{v} | \mathbf{b}_{k} \rangle \ \mathbf{b}_{k} = \mathbf{F} \ \mathbf{F}^{-1} \mathbf{v} = \mathbf{v}$$

Frame reconstruction, summary

We summarise these results:

• For all $\mathbf{v} \in V$ it is the case that

$$\mathbf{v} = \sum_k \langle \mathbf{v} | \mathbf{b}_k \rangle \tilde{\mathbf{b}}_k$$

$$\mathbf{v} = \sum_k \langle \mathbf{v} | ilde{\mathbf{b}}_k
angle \mathbf{b}_k$$

$$\tilde{\mathbf{b}}_k = \mathbf{F}^{-1} \mathbf{b}_k$$

Bases and frames (II)

- If the set \mathbf{b}_k constitutes a basis of V it must satisfy the frame condition
 - Any basis is also a frame
 - The dual frame is computed as

$$\tilde{\mathbf{b}}_k = \mathbf{F}^{-1} \mathbf{b}_k$$

Each dual frame vector is obtained by applying **F**⁻¹ onto the corresponding frame vector

– Notice the difference compared to the basis case:

$$\tilde{\mathbf{B}} = \mathbf{B} \, \mathbf{G}^{-1}$$

Each dual basis vector is a linear combination of the basis vectors

Bases and frames (III)

A frame, however, doesn't have to be a basis

- It must span V
 - Otherwise A = 0 (why?)
- It can also contain a set of linearly dependent vectors
 - It doesn't have to be a basis
- It can represent any vector in V in a similar way as a basis can
- However, not any set of vectors that span V is a frame! (why?)

Tight frames

- For some frames we have A = B
- Such a frame is a *tight frame*
- For a tight frame it is the case that (why?)

$$\tilde{\mathbf{b}}_k = \frac{1}{A} \mathbf{b}_k \quad \Rightarrow \quad \mathbf{v} = \frac{1}{A} \sum_k \langle \mathbf{v} | \mathbf{b}_k \rangle \mathbf{b}_k$$

- A tight frame is sort of generalisation of an orthogonal basis to frames
- A tight frame with A = 1 is equivalent to an orthonomal basis (why?)

Matrix formulation

- Let V be an N-dimensional vector space of type \mathbb{C}^N and let \mathbf{b}_k be a set of $M \geq N$ vectors that form a frame of V
- Let G₀ be the scalar product matrix of V
- Let B be an N × M matrix that holds the frame vectors in its column
- The frame operator then becomes

$$\mathbf{F} = \mathbf{B} \, \mathbf{B}^* \mathbf{G}_0 \qquad \qquad (\mathbf{why?})$$

Matrix formulation

 \bullet With $\widetilde{\mathbf{B}}$ denoting the matrix of the dual frame vectors, we get

$$\tilde{\mathbf{B}} = \mathbf{F}^{-1}\mathbf{B} = (\mathbf{B}\,\mathbf{B}^*\mathbf{G}_0)^{-1}\mathbf{B}$$

The two reconstruction formulas become

$$\tilde{\mathbf{B}} \, \mathbf{B}^* \mathbf{G}_0 \mathbf{v} = \mathbf{v}$$
 and $\mathbf{B} \, \tilde{\mathbf{B}}^* \mathbf{G}_0 \mathbf{v} = \mathbf{v}$

Reconstructing coefficients

We can find a vector c that produces v as

$$v = B c$$

Since **B** is a frame, not a basis, we call **c** reconstructing coefficients (not coordinates)

The reconstructing coefficients are given by

$$\mathbf{c} = \tilde{\mathbf{B}}^* \mathbf{G}_0 \mathbf{v}$$

= Scalar products between all frame vectors and the signal v

Reconstructing coefficients

- However, this c is not unique if the frame vectors are linearly dependent
 - In this case there exists \mathbf{c}_0 such that $\mathbf{B} \mathbf{c}_0 = \mathbf{0}$
 - Any \mathbf{c}_0 in the null space of **B** can be added to \mathbf{c} ⇒ Also $\mathbf{c} + \mathbf{c}_0$ will reconstruct \mathbf{v}
 - Any such \mathbf{c}_0 must be orthogonal to $\mathbf{c} = \tilde{\mathbf{B}}^* \mathbf{G}_0 \mathbf{v}$ (why?)
- From this follows:
 - $\mathbf{c} = \tilde{\mathbf{B}}^* \mathbf{G}_0 \mathbf{v}$ is the shortest vector of reconstructing coefficients (why?)

A simple example

• A signal f(t) is $[-\pi, \pi]$ band-limited, i.e., it can be sampled at integer values of t and then perfectly reconstructed:

$$s[k] = f(k)$$

$$sinc(t) = \frac{\sin(\pi t)}{\pi t}$$

$$f(t) = \sum_{k=-\infty}^{\infty} s[k] \operatorname{sinc}(t-k)$$

A simple example

This means that the set of functions

$$sinc(t-k), \qquad k=\mathbb{Z}$$

spans the set of $[-\pi, \pi]$ band-limited functions

A simple example

 They are also linearly independent since they form an orthogonal set

$$\langle \operatorname{sinc}(t-k) \mid \operatorname{sinc}(t-l) \rangle = \delta_{kl}, \quad k,l \in \mathbb{Z}$$

where

$$\langle f(t)|g(t)\rangle = \int_{-\infty}^{\infty} f(t) g^*(t) dt$$
 (why?)

A simple example Reconstruction after oversampling (I)

- Let us assume that we instead sample this signal at twice the required rate.
 - We get twice as many sample as before
 - Oversampling
 - A redundant representation of f
- This is equivalent to sampling the function f(t) assuming that is band-limited to $[-2\pi, 2\pi]$
 - -f(t) is $[-\pi, \pi]$ band-limited function,
 - Means: it must also be $[-2\pi, 2\pi]$ band-limited

A simple example Reconstruction after oversampling (I)

• Reconstruction of signals band-limited in $[-2\pi, 2\pi]$:

$$f(t) = \sum_{k=-\infty}^{\infty} f\left(\frac{k}{2}\right) \operatorname{sinc}\left(2\left(t - \frac{k}{2}\right)\right)$$

These sinc-functions vary twice as fast as the usual ones and are twice as "dense"

They are linearly independent. They span the space of $[-2\pi, 2\pi]$ band-limited functions.

- This means that we can reconstruct f perfectly from the over-determined samples
 - Not surprising
 - Why bother to sample in this way?

A simple example Reconstruction after oversampling (II)

- Alternatively, it is clear that both the samples at integer values and the samples at integers + ½ independently can reconstruct f
- We can take the mean of these two reconstructions:

$$f(t) = \frac{1}{2} \sum_{k=-\infty}^{\infty} f(k) \operatorname{sinc}(t-k) + \frac{1}{2} \sum_{k=-\infty}^{\infty} f\left(k + \frac{1}{2}\right) \operatorname{sinc}\left(t - k - \frac{1}{2}\right)$$

These two sets of functions are linearly dependent.

A simple example Reconstruction noise

 In practice each sample s[k] includes a small sampling error n[k]

$$s[k] = f(k) + n[k]$$

- This error may come from
 - Non ideal sampling
 - Analog-to-digital conversion (quantization) errors
- The sampling error n[k] introduces an error also in the reconstructed signal

$$n_{rec}(t) = \sum_{k=-\infty}^{\infty} n[k] \operatorname{sinc}(t-k)$$

This is the noise we get in the case of standard reconstruction (no oversampling)

A simple example Reconstruction noise

- We assume that the sampling noise
 - is unbiased: $\mathbf{E}[n] = 0$
 - is independent with standard deviation = σ \Rightarrow **E**[$n[k] \cdot n[l]$] = $\sigma^2 \delta_{kl}$
- Not a very realistic assumption for quantization noise, but leads to

$$E[n_{rec}(t)^2] = \sigma^2 \qquad \text{(why?)}$$

A simple example Oversampling reconstruction noise (I)

• In the case of oversampling (first case), we get

$$n_{rec}(y) = \sum_{k=-\infty}^{\infty} n\left(\frac{k}{2}\right) \operatorname{sinc}\left(2\left(y - \frac{k}{2}\right)\right)$$

And, in the same way as before

$$\mathsf{E}[n_{rec}(y)^2] = \sigma^2 \text{ (why?)}$$

This is the noise that appears on the sample taken from the signal at t = k/2, where $k \in \mathbb{Z}$

No improvement!

A simple example Oversampling reconstruction noise (II)

 However, in the second case of oversampling we get

$$n_{rec}(t) = \frac{1}{2} \sum_{k=-\infty}^{\infty} n[k] \operatorname{sinc}(t-k) + \frac{1}{2} \sum_{k=-\infty}^{\infty} n\left[k + \frac{1}{2}\right] \operatorname{sinc}\left(t - k - \frac{1}{2}\right)$$

and

$$\mathsf{E}[n_{rec}(t)^2] = \dots = \frac{1}{4}\sigma^2 + \frac{1}{4}\sigma^2 = \frac{1}{2}\sigma^2$$

What happens here?

A simple example Summary

- Standard (non-over) sampling gives a reconstruction noise energy = σ^2
- Oversampling were we reconstruct with "scale 2" sinc-functions with twice the density also gives σ^2
- Oversampling were we reconstruct with sinc-functions of "unit scale" gives reconstruction noise energy = $\frac{1}{2} \sigma^2$
- It is possible to reduce the reconstruction error based on oversampling (if we do it right)

A simple example Analysis

- What is the difference in the two oversampling cases? Or:
 - Why do we get σ^2 in the first case and ½ σ^2 in the second case?
- The first case is based on applying the sampling theorem on a $[-2\pi, 2\pi]$ band-limited signal
 - $[-\pi, \pi]$ band-limited signals form a subspace of these
 - The reconstructing functions sinc(2(y k)) form an ON-basis for this space
- The second case is based on reconstructing f using a redundant representation (a frame) of $[-\pi,\pi]$ band-limited signals
 - We have twice as many basis functions as necessary

A simple example Analysis

We are reconstructing the signal v as

v = B c

where **B** is some set of functions (here *sinc*-functions) and **c** are some suitable coefficients (here the samples)

- In the case that B is a basis: all errors in c will be mapped to errors in v
- In the case that B is a frame: all errors that are in the null space of B will not affect v

Applications

- By using <u>all</u> samples, rather than throwing away half of them, we are able to reduce the reconstruction error
- In general: oversampling with a factor P reduces the reconstruction noise variance to σ^2/P after proper reconstruction, with a frame
- Application: we can reduce the number of bits for each sample (increase the sampling noise) if we also increase the sampling rate sufficiently much
 - For example: 1 bit per sample!
 - Requires careful processing to assure suitable noise properties (independent, unbiased)

Zero mean and independent noise does not come for free

Wavelet transform

- A slightly more complicated example of how frames may be used in signal processing is the wavelet transform
- In the Fourier transform, we use basis functions e^{iut}
- They are very <u>non-local</u>
 - In order to describe what happens in a small interval $t \in [t_1, t_2]$ we still need all these basis functions to reconstruct the signal
- As an alternative: the wavelet transform offers a way to use localised basis functions
 - They may form a frame rather than a basis!

Wavelet functions

- Let $\psi(t)$ be an arbitrary function
 - We will soon see that ψ cannot be completely arbitrary chosen
- From ψ we define a family of related functions (wavelets) by scaling and translating ψ :

$$\psi_{a,b}(t) = \frac{1}{\sqrt{|a|}} \psi\left(\frac{t-b}{a}\right)$$

• ψ is referred to as the *mother wavelet* for this family of functions

The wavelet transform Definition

• Given a function f and the wavelets, we define a new function $W_f(a,b)$ as

$$W_f(a,b) = \langle f|\psi_{a,b}\rangle = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{\infty} f(t) \,\psi^* \left(\frac{t-b}{a}\right) \,dt$$

- W_f is called the continuous wavelet transform (CWT) of f
 - Depends on the choice of mother wavelet!

The wavelet transform vs. the Fourier transform

- This is similar to the Fourier transform where scalar products between f and functions e^{iut} are computed
- Fourier transform:
 - all basis functions are non-local
 - All basis functions are just time-scaled versions of e^{it}
 - Non-redundant representation of f
 - There is an inverse transform that reconstructs f
- Wavelet transform:
 - It appears possible to choose **localised** ψ
 - "Basis functions" are **time-scaled and translated** ψ
 - Appears to be an over-determined representation?
 - Is there an inverse transformation that reconstructs f?

Inverse CWT

 It is straight-forward to show, with some additional assumptions, that

$$f(t) = \frac{1}{K} \iint_{-\infty}^{\infty} \frac{1}{|a|^2} W_f(a,b) \,\psi_{a,b}(t) \, da \, db$$

 This expression defines an inverse continuous wavelet transform (ICWT)

K

K is a constant defined as

$$K = \int_{-\infty}^{\infty} \frac{1}{|v|} \Psi(v) \overline{\Psi}(v) dv$$
$$= \int_{-\infty}^{\infty} \frac{|\Psi(v)|^2}{|v|} dv$$

ullet This *K* depends only on the choice of ψ

K

- K must satisfy $0 < K < \infty$
 - Otherwise the ICWT is not well-defined
- ullet This is a *feasibility condition* on ψ
 - A.k.a. admissibility condition
- Leads to $\Psi(0) = 0$
 - ψ cannot have any DC-component
 - lacktriangledown is just a "deviation from zero"
 - lacksquare ψ is a wavelet!
- Also implies: Ψ is continuously differentiable

No DC?

- The fact that an admissible ψ cannot have any DC-component means that it cannot reconstruct the DC-component of f
- It can, however, reconstruct all other components of f

CWT

- \bullet Apart from the feasibility condition, we can choose an arbitrary ψ
 - Gives a greater flexibility of CWT compared to the Fourier transform
 - At the cost of producing a 2-variable transform W_f
- In practice CWT has limited application
 - Instead, a discrete version of CWT has a wider range of applications!
 - See next lecture...

Example of a mother wavelet

We can, for example, choose

$$\psi(t) = t \, e^{-\frac{1}{2}t^2}$$

which satisfy the feasibility condition (why?)

Another example is the Haar-wavelet

What you should know includes

- Definition of a frame operator
- Definition of a frame, frame condition, frame bounds
- Definition of dual frame
- Frame reconstruction
 - Analogy between {basis, dual basis} and {frame, dual frame}
- Relation between basis and frame
- Tight frame
- Minimum norm property of reconstruction coefficients
- Application: noise reduction by means of over-sampling
- Definition of continuous wavelet transform (CWT)
 - Mother wavelet ψ generates $\psi_{a,b}$ by scaling and translation
- Inverse CWT
- ullet Feasibility constraints on ψ for reconstruction