Multi-dimensional
signal analysis
Lecture 2F

Over-determined representations
Frames
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So far we have seen

e A vector space V with a basis B
— B spans V and is linearly independent
— We can define a dual basis f)k
— We can compute coordinates of v € V as (v\5k>

A subspace U of V with a basis B
— B spans U but not V and is linearly independent
— We can define a dual basis b,

— Withve Vandv=v,+vjandv, L U, v, c U,
we can compute coordinates of v; € U as(v|by)
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 We are now going to treat a third case:

e A set of vectors (columns in B) such that they
—span V
— are linearly dependent

e |n this case, for v € V we can write v=B c for
several choices of ¢
— we have an over-determined representation
— B is not a basis
— ¢ are not the coordinates of v
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 Some practical signal processing problems are
simply described as
— M scalar products are formed between the signal

v and M known functions that span some
N-dimensional signal space V, but M > N

— How can we reconstruct v from these
"dual coordinates”?

— Citation marks are used here since coordinates are
not used in the proper way here



CvAarn
I

ames

A formal theory has been developed by Duffin
and Schaeffer for dealing with over-determined
or redundant representations:

A class of nonharmonic Fourier series,
Duffin & Schaeffer, Transaction of American
Mathematical Society, 1952

e Context: non-uniform sampling
* In the paper they define the concept of a frame
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* Given a set of vectors b, € V, we define the
frame operator F as

Fv="> (v|bg)b
k
with summation over all k (over all b,)

— The set of b, may be finite or infinite
— Keep in mind that the infinite case is tricky (why?)
— The b, may, or may, not be linearly independent

e Fisalinear mappingV—V
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e From the definition of F, it follows that
(Fulv) = (u|Fv) (why?)
for all Letu, v € V.

 Consequently: Fis self-adjoint (what is that?)
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e Duffin and Scheaffer showed that if we can find
constants 0 < A < B < 0o such that

AVl < ) [(vIbi)* < Bv]?
k

for all v € V, this is both a necessary and sufficient
condition for the statement:

F has a well-defined inverse F1
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e This condition is called the frame condition
—It is a condition on the set b,

—Note: same A and B must work forall v € V

* Aset of vectors b, that satisfies the frame
condition is a frame and the vectors b, are
frame vectors
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e We assume that A is the largest possible
choice, and B is the smallest possible
choice

A and B are called the lower and upper
frame bounds, respectively

—They depend only on the frame (the set b,)
and the scalar product in V

—They do not depend on v
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 Define the dual frame as the set of vectors

E)k = F_lbk

for all k (for all frame vectors b,)

e The set of dual frame vectors has the same
number of elements as the frame itself
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Another consequence of the frame condition:
 The set of dual frame vectors b, is also a frame

* They satisfy

— Also Fis self-adjoint
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e We know that in the case of a basis
— if we analyse (form scalar products) with the basis

— we must reconstruct with the dual basis
— Or vice versa

 Aframe and its dual frame work the same way
— if we analyse (form scalar products) with the frame

— we must reconstruct with the dual frame
— Or vice versa
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We can prove these statements:
e Choose an arbitrary v € V and define

u — Z<V’bk>6k

k
e This u can then be rewritten as

k

u|—= Z V|bk 1bk — 1 <Z<ka>bk> — F lFv =
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Alternatively:
e Choose an arbitrary v € V and define

u — Z(V’Bk>bk

k
e This u can then be rewritten as

a=>» (v[F 'by) by =) (F'v|by) by =FF 'v=
k k
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We summarise these results:

[ @Y

e Forallv e Vitisthe case that

2015-12-16

v="> (v|by)bs

k

v =" (v[bi)b

k
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1 1 Y\ v

, SUMMa

v\ 7
|

y

f)k — F_lbk
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If the set b, constitutes a basis of V it must

satisfy the frame condition
— Any basis is also a frame
— The dual frame is computed as

E)k — F_lbk

Each dual frame vector is
obtained by applylng Fl

(OJR110) LIIB LUIIEprIIUIIIg
frame vector

— Notice the difference compared to the basis case:

B=BG!

2015-12-16 Lecture 2F, Klas Nordberg, LiU

Each dual basis vector

is a linear combination
of the basis vectors

17
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A frame, however, doesn’t have to be a basis

It must span V

— Otherwise A =0 (why?)

It can also contain a set of linearly dependent
vectors

— It doesn’t have to be a basis

It can represent any vector in Vin a similar way as
a basis can

However, not any set of vectors that span Vis a
frame! (why?)
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For some frames we have A = B
Such a frame is a tight frame
For a tight frame it is the case that (why?)

1

- 1
by =Zbr = v= Z;Mbk)b

A tight frame is sort of generalisation of an
orthogonal basis to frames

A tight frame with A = 1 is equivalent to an
orthonomal basis (why?)
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Let V be an N-dimensional vector space of
type CVand let b, be a set of M > N vectors

that form a frame of V
Let G, be the scalar product matrix of V

Let B be an N X M matrix that holds the frame
vectors in its column

The frame operator then becomes
F=BB'G, (why?)
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« With B denoting the matrix of the dual frame
vectors, we get

~

B=F 'B=(BB*G;) 'B

e The two reconstruction formulas become

BB*Gov=v and BB*Gyv=1v
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 We can find a vector ¢ that produces v as
v=Bc

Since B is a frame, not a basis, we call c
reconstructing coefficients (not coordinates)

 The reconstructing coefficients are given by

_ B* G = Scalar products between all
— oV .
frame vectors and the signal v

2015-12-16 Lecture 2F, Klas Nordberg, LiU 22
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 However, this ¢ is not unique if the frame

vectors are linearly dependent
" |n this case there exists ¢, such that B¢, =0
" Any ¢, in the null space of B can be added to c
= Also ¢ + ¢, will reconstruct v

= Any such ¢, must be orthogonal to c = B* GV (why?)

* From this follows:

" C = B*GOV is the shortest vector of
reconstructing coefficients (why?)
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e Asignal f(t) is [-m, ] band-limited, i.e., it can
be sampled at integer values of t and then
perfectly reconstructed:

slk] = f(k) sinc(t) = sin(mt)

7t
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e This means that the set of functions

k=17

sinc(t — k),
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 They are also linearly independent since they
form an orthogonal set

(sinc(t—k) | sinc(t=1))=46,, kleZ
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where



A simple example
Reconstruction after oversampling (l)

e Let us assume that we instead sample this
signal at twice the required rate.

— We get twice as many sample as before
— Oversampling
— A redundant representation of f
e This is equivalent to sampling the function f(t)
assuming that is band-limited to [-27, 27]
— f(t) is [-m, ] band-limited function,
— Means: it must also be [-27,27] band-limited



A simple example
Reconstruction after oversampling (l)

e Reconstruction of signals band-limited in [-27, 27] :

A k
f(t) = E fl=]sinc|2|t—=
e 2 / \ 2

These sinc-functions vary They are linearly independent. They

twice as fast as the usual ones span the space of [-27,27]
and are twice as "dense”

 This means that we can reconstruct f perfectly from the
over-determined samples

— Not surprising
— Why bother to sample in this way?

2015-12-16 Lecture 2F, Klas Nordberg, LiU 28



A simple example
Reconstruction after oversampling (I1)

e Alternatively, it is clear that both the samples
at integer values and the samples at integers +
% independently can reconstruct f

e We can take the mean of these two
reconstructions:

Z f(k) sinc(t — k —I—% _z: f(k—l—%) sinc(t—k:—%)

2 '\ k=—o00 /
These two sets of functions
are linearly dependent.

2015-12-16 Lecture 2F, Klas Nordberg, LiU 29




A simple example
Reconstruction noise

e |n practice each sample s[k] includes a small
sampling error n[k]
s[k] = flk) + n[k]
e This error may come from
— Non ideal sampling
— Analog-to-digital conversion (quantization) errors

) Tl‘\f\ c"\mn“nn‘ laVaddaYa nrl/1 ;Y‘\+V'f\l4llf‘nt‘ =l alalddals "\I(‘t'\
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in the reconstructed signal

00 This is the noise we get

nrec(t) — Z n[k] Sinc(t o /{) in the case of standard

reconstruction
k=—00 (no oversampling)

2015-12-16 Lecture 2F, Klas Nordberg, LiU 30



A simple example
Reconstruction noise

e We assume that the sampling noise
— is unbiased: E[n] =0

— is independent with standard deviation = o
= E[ n[k] - n[l]]1 =020,

* Not a very realistic assumption for
quantization noise, but leads to

E[nelt)]=0? (Why?)

B - voise crerey

2015-12-16 Lecture 2F, Klas Nordberg, LiU
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A simple example
Oversampling reconstruction noise (l)

e In the case of oversampling (first case), we get

et 35 (4] s (2o 5))

k=—o0

* And, in the same way as bt%

This is the noise that
appears on the sample

E [’n,,rec (y) 2] — 0'2 (WhyQ) taken from the signal at

t=k/2, where k € Z

e No improvement!

2015-12-16 Lecture 2F, Klas Nordberg, LiU 32



A simple example
Oversampling reconstruction noise (1)

* However, in the second case of oversampling
we get

oo o0

| 1

1=} £ -+ § o (o

k=—o0 k=—oc0

and

2015-12-16 Lecture 2F, Klas Nordberg, LiU 33



A simple example
Summary

Standard (non-over) sampling gives a
reconstruction noise energy = o?

Oversampling were we reconstruct with
“scale 2” sinc-functions with twice the density also
gives o2

Oversampling were we reconstruct with
sinc-functions of “unit scale” gives reconstruction
noise energy = %2 02

It is possible to reduce the reconstruction error
based on oversampling (if we do it right)



A simple example
Analysis

* What is the difference in the two oversampling
cases? Or:

— Why do we get 02 in the first case and % o2 in the second
case?

 The first case is based on applying the sampling
theorem on a [-2m, 27] band-limited signal
— [-m, 7] band-limited signals form a subspace of these
— The reconstructing functions sinc(2(y — k)) form an
ON-basis for this space

e The second case is based on reconstructing f using a
redundant representation (a frame) of [-7,7]
band-limited signals

— We have twice as many basis functions as necessary



A simple example
Analysis

 We are reconstructing the signal v as
v=Bc

where B is some set of functions (here sinc-functions)
and c are some suitable coefficients (here the samples)

* |Inthe case that B is a basis: all errors in ¢ will be
mapped to errors inv

* Inthe case that B is a frame: all errors that are in the
null space of B will not affect v
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e By using all samples, rather than throwing away half of
them, we are able to reduce the reconstruction error

* |n general: oversampling with a factor P reduces the
reconstruction noise variance to o2/P after proper
reconstruction, with a frame

e Application: we can reduce the number of bits for each
qamnlp (mrrpaqp the qamnlmg nmqp\ if we also

increase the sampling rate sufﬂuently much
— For example: 1 bit per sample!

— Requires careful processing to assure suitable noise
properties (independent, unbiased)

Zero mean and
independent noise

does not come for free
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A slightly more complicated example of how frames
may be used in signal processing is the wavelet
transform

In the Fourier transform, we use basis functions e’

They are very non-local

— In order to describe what happens in a small interval
t € [t,, t,] we still need all these basis functions to
reconstruct the signal

As an alternative: the wavelet transform offers a way
to use localised basis functions

— They may form a frame rather than a basis!
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e
e Let ¢(t) be an arbitrary function

— We will soon see that 1) cannot be completely
arbitrary chosen
e From 1 we define a family of related functions
(wavelets) by scaling and translating :

bast) = < ()

e isreferred to as the mother wavelet for this
family of functions




The wavelet transform
Definition

Given a function f and the wavelets, we define
a new function W{a, b) as

Wi(a,b) = (flas) = W/ (1) (ab)dt

W:is called the continuous wavelet transform
(CWT) of f

— Depends on the choice of mother wavelet!




The wavelet transform
vs. the Fourier transform

* This is similar to the Fourier transform where scalar
products between f and functions e'“t are computed
 Fourier transform:

— all basis functions are non-local

— All basis functions are just time-scaled versions of et
— Non-redundant representation of f

— There is an inverse transform that reconstructs f
 Wavelet transform:
— It appears possible to choose localised

— ”Basis functions” are time-scaled and translated
— Appears to be an over-determined representation?
— Is there an inverse transformation that reconstructs f?
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e |tis straight-forward to show, with some

additional assumptions, that

K// ‘a‘ZWfab)wab()dadb

e This expression defines an
inverse continuous wavelet transform (ICWT)
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e Kis a constant defined as

K = / ‘U‘ W(v) dv
00 [Ty 2
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e This K depends only on the choice of ¥
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K must satisfy 0 < K < oo

= Otherwise the ICWT is not well-defined
This is a feasibility condition on

— A.k.a. admissibility condition

Leads to ¥(0) =0

= ¢ cannot have any DC-component
" ) isjust a “deviation from zero”
" ) is a wavelet!

Also implies: ¥ is continuously differentiable
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e The fact that an admissible ¢ cannot have any
DC-component means that it cannot
reconstruct the DC-component of f

e |t can, however, reconstruct all other
components of f
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e Apart from the feasibility condition, we can
choose an arbitrary ¥

— Gives a greater flexibility of CWT compared to the
Fourier transform

— At the cost of producing a 2-variable transform W,

* In practice CWT has limited application

— Instead, a discrete version of CWT has a wider
range of applications!

— See next lecture...
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 We can, for example, choose

p(t)=te ="

which satisfy the feasibility condition (why?)
 Another example is the Haar-wavelet
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NOW INC

Definition of a frame operator

Definition of a frame, frame condition, frame bounds
Definition of dual frame

Frame reconstruction

— Analogy between {basis, dual basis} and {frame, dual frame}
Relation between basis and frame
Tight frame

Minimum norm property of reconstruction coefficients
Application: noise reduction by means of over-sampling
Definition of continuous wavelet transform (CWT)

— Mother wavelet 1) generates ¢, , by scaling and translation
Inverse CWT

Feasibility constraints on 1) for reconstruction



