Multi-dimensional
Signal Analysis
Lecture 2G

Filter Banks and
Multi-resolution Analysis (I)

Filter banks

* A common type of processing unit for discrete signals
is a filter bank, where some input signal is filtered by

n filters, producing n channels

Filter 1 Channel 1
Channel 2 This an example
. of how to create
Input signal — . n channels
Signals and filters
are discrete! Channel n
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Filter banks, applications

Filter banks

* In order to have the same amount of data
(on average per time unit) before and after
the filtering: down-sample the filter outputs
by a factor n

* Keep every

n-th sample
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e One application for filter banks is to
decompose the input signal into different
bands or channels

* Here band is rather imprecise and can mean
frequency band but also more general
subspaces
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Filter banks, applications

e Each band is processed independently relative to
the others
— Filtering, e.g., LP-filter to reduce noise
— Data compression, to reduce data
— Numerical resolution, to reduce data
— Even: removal, to reduce data
e Each band is then stored or transmitted
* From each band we want to be able to
reconstruct the input signal again
— Possibly only to some degree of approximation
— Or perfect reconstruction: output = input (+ shift!)
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Filter banks, applications

* In general, something like this:

Input signal Output signal

= Input signal

UO0I12NIISU0IDY

uoissiwsues) 1o aguelols

Possibly less data
than the input signal

I»
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The 2-channel filter bank

The 2-channel filter bank

e The simplest type of filter bank is the
2-channel filter bank Only specific

choices of filters
can make s’ =s

Analysing part | Reconstructing part |

Uy u, u
h, l L g — T h,
s Vo Vi v,
g% —l— 919
Down-sample = Same amount of L Up-sample =
Remove every samples as the Insert “0” between

second sample input signal s every sample
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Let the DFTs of h,, h,, g,, g, be denoted

as Hy, Hy, Gy, G, (they are 2m-periodic!)

We can show that necessary and sufficient conditions
for s’ = s are given by

Hy(u)Ho(u+7) + G1(u)Go(u+7m) =0 (FB2)

FB1: No distortion

FB2: No aliasing from the sub-sampling (why?)

: Ex 21.2
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A practical note

Assuming that all four filters are causal:
e The filters introduce delays in the output signal s’

* This means that, at best, we can accomplish
s’[k] = s[k - d] for some positive integer d

* We will ignore this practical matter for now and
consider the requirement s’[k] = s[k]

As a consequence, some filters may become non-causal
e Can be fixed by time-shift if they also are FIR

* Qutput will then be delayed accordingly

* We want the four filters to be FIR
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Finding the four filters

* Bad idea: choose two of the filters arbitrarily
and solve the other two from FB1 and FB2
(why?)

* Better idea: Apply some design principles for
the four filters that produce useful filters

— Many possibilities exists!
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Alternating flip

A particular choice of filters

* FB2 is automatically satisfied if —
— Conjugate
HO (’U,) — Hl (U) Mirror filters

Gi(u) =e ™ Hi(u+7)
Go(u) = ™ Hy(u+7) = G1(u)

* FB1 then becomes

Ex 21.4

[Hi(w)]* + |Hi(u+m)P =2 (0)
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* The conjugate mirror filter condition can also

be formulated in the time domain as

Called:
Alternating flip

holk] = h1|—k]
gilk] = (=)' 7" [l - K]
golk] = (=1)** ha[k +1] = g1 [-K]

\
s

Ex 21.5
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An orthogonal set

e We can show that the condition (O) implies
that

(ha -] hal-

2m|) = 6|lm)|

* h, is always orthogonal to itself when shifted
by multiples of 2 (unless m = 0)

Ex 21.8
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Convolution and linear combinations

* We have already seen that the convolution
operation can be interpreted in terms of
producing linear combinations

e Here:

(e.@)

uslk] = Y a[n] hyfk — 2]

n=—oo

* The signal u, is a linear combination of shifted
versions of h;

— Shift by multiples of 2
— We just saw that they form an ON-set!
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More orthogonality

More orthogonality

* In the same way we can show that the
conjugate mirror filter bank leads to

(91l 1] g1]- —2m]) = d|m]

g1l -] [ Pl

2m|) =0

Ex21.11 (why?)
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 This means that also v,[k] is formed as a linear
combination of orthonormal discrete
functions g;[k—2 m] = These are

functions of k,
one for each m

* Finally, it also means that the two orthogonal
sets h [k —2 m] and g,[k — 2 m] are mutually
orthogonal N\ V4

These are

functions of k,
one for each m
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Reconstruction

* The output signal from the filter bank, s’ = s, is
formed as the linear combination of two
orthogonal sets of functions (an ON-basis)

 Means: the coefficients in this linear
combination are the coordinates relative the
reconstructing basis functions. These are

= g[m] for the basis functions h,[k — 2m]
= d[m] for the basis functions g,[k — 2m]
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* |n the filter bank, a[m] is formed as

a[m] = (S * ho)[2 m]
= 3 sk hol2m — k]
k=—oc0
= Y skl [k —2m] = (s[-]|h[- —2m))
k=—o0
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o Similarly: d[m] = (s[-] | g,[-—2m])
* This result is expected!

* We are analysing s[k] using an ON-basis

* The corresponding coordinates are then
given as the scalar products between s[k]
and the basis functions

— They are their own duals!
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Orthogonal filter bank

* In summary: we choose H, such that
Hy(w)? + [Hy(u+ m) =2

and then the other three filters such that

Hy(u) = Hy(u)
Gi(u)=e ™ Hy(u+m)
Go(u) = €™ Hi(u+7) = G1(u)
e This produces an orthogonal filter bank
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Orthogonal filter bank

* Ifitis possible to choose h, as a FIR filter, then
h,, 94, g, also become FIR

* |s this possible?
e Yes: h, =22 (1, 1) is the simplest possible
choice
" g, =2%2(-1,1)
" hy =22 (1, 1)
=g, =2V2(1,-1)
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Splitting of the signal space

h, l — d —] T h,
v, v, s'
g, l=d— T &
* The signal u, is constructed as a linear combination of
2-shifts of h;

= Span some subspace V,, of the signal space V

* The signal v, is constructed as a linear combination of
2-shifts of g,

= Span some subspace W, of the signal space V
* The outputssignal s’ € Visu, +v,
" V=V, B W,, V, LW,
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Filter banks

Scaling function

e The conjugate mirror filter bank is only one
special solution to FB1 and FB2!

* There are other ways of obtaining s’ = s
— Still leads to perfect reconstruction

* Some approaches do not lead to an
orthogonal filter bank

— Can be useful anyway!

2015-12-07 Lecture 2G, Klas Nordberg, LiU 23

Consider a function ¢(t) that satisfies

1. ¢(t—k), k € Z, is an orthogonal basis of some
function space V,,

2. ¢(t) can be written as a linear combination of the
functions ¢(2t — k), k € Z

¢ Such a function ¢ is called a scaling function

* These relatively simple and innocent assumptions lead to a
framework for defining a discrete wavelet transform in terms
of orthogonal filter banks
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* The simplest example of a scaling function is

¢@%={1 0=t<l

0 otherwise
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* In this case: V, is the space of piece-wise
constant functions on integer intervals

e The functions ¢(2t — k) look like

[ k=0

k=1 P(t)=p(2t)+p(2t-1)
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Consequences

* The fact that ¢(t- k) is an orthogonal basis for
k € Z means

wlolo— 1) = [ T Gt — k) dt = O[k], kel

 From this follows that also 2Y/2¢(2t — k), k € Z,
form an orthogonal basis

] Ex 22.1
— Spans a function space V, # V,,

Ex 22.2

2015-12-07 Lecture 2G, Klas Nordberg, LiU 27

Consequences (ll)

e Property 2. of the scaling functions leads to

551%2”2¢@t—k)

k=—o0

Coordinates of ¢
relative to the

for some sequence of scalars h, € |§EFes

212¢(2x — K),
keZ

e Since we have an ON-basis:
he = (6(2)[21/26(2 —21/2/ 6(6) B2t —k
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Consequences (lll) Consequences (IV)

* Infact, any ¢(x—1), [ € Z, can be written as a Notice that:

linear combination of the basis 27/2¢(2 t — k): ’ Iggtfi:jgigins o[t - k) are shifted by multiples of “1

— Spans a space denoted V,,

o
_ . i 12¢(2t — k) are shifted by multiples of
t—1) = E B 022 4(9¢ —m The functions 21/2¢( y P
¢( ) m—21 gb( ) “1/2” relative to t

m=—00 Functions in V; can

— Spans a space denoted Vl - contain finer dletails

than V,
Ex22.3 * Both bases are orthonormal within each space

. VO (G ZR J Since V, has a basis
that spans every
basis vector in V,,
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Consequences (V) The sequence h

e Returning to property 1. we have seen that * The sequence of scalars h[k], k € Z, depends

only on the choice of scaling function ¢

* Remember that ¢ itself has particular
properties, described by 1. and 2.

— Also h[k] has particular properties!

(o(t)|o(t — k)) = k]

e This can also be formulated as

* h[k] can be interpreted as the coefficients of a
A _
; @ (v + 27k)|" = 1 Ex22.4 discrete filter with Fourier transform
(o, @]
where & is the Fourier transform of ¢ H(u) = Z hy, ek e

function

k=—o0
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The function H

e From 1. and 2. follows that H must be related
to @ as

d(u) = 2~1/2 [ <g) P (%) Ex22.5

or

@(U) This must be a

2m-periodic

@ (2 u) function!

H(u) = 21/2
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The function H

* The fact that ¢ has special properties and that
H is related to ¢ leads to

B[ +Hu+mf =2 | s

* We recognise this as condition (O) on the filter
h, in a conjugate mirror filter bank!
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The function (x)

» Define a new function (t), with a Fourier
transform ¥ given by

= Lo(2) e(3

Where Gu)=e "H(u+ ) This is the
alternating flip
condition in a
conjugate mirror

or g[n] = (_1)1‘n h[l o n] C— filter bank
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S

The sequence g

e The sequence g is derived from h

* But, h depends only on ¢:

= g depends only on ¢
 Also v depends only on the choice of ¢
* Finally, we can derive

<¢(t)‘21/2¢(2t — n)) = g[’n,] Ex 22.7
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The sequences h and g

We summarise:

W] = (D) 2P 9(2 1 — b))
ol = (W(OI220(2t — b))

or, more generally: 1

At least if we

can prove that

(ot —D)|22p(2t — k)) = hlk — 21] | PAIA

(W(t = D292t — k) = glk — 2]
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Properties of 1, (l)

* We can show that:
Ex 22.8

Yt —1)=> (~1)*he2"? ¢(2t — k+ 20 +1)
k

which means thatall y(t-1) € V,, le Z

= g, are the coordinates of 1/ in the ON-basis
of v,
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e For the simple example of a scaling function

¢(t):{1 0<t<l

0 otherwise

we get
Called Haar wavelet

glk] = {272, - 2:1/2}

and the : -
corresponding ’_|J
function (t): |
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Properties of 1, (ll)

* Using the previous relations, we can also
prove that Ex 22.9

(Wt —m)|p(t—1)=0 forl,meZ

which means that all ¥(t - [) are orthogonal to
the space V, since ¢(t —m) is a basis for this
space

o Y(t—m) e V,yand Y(t—-m) LV,
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Properties of V,

Properties of v, ()

* We can also show hat

(W(t —n)[p(t)) = d[n] (why?)

which means that the set ¥(t — n) is
orthonormal forn € Z

* In summary:
—All(t - n)are L to V,
— They form an orthonormal set
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* Let f be an arbitrary function in V,. It can then
be written as

Zs ] 212 p(2t — n)

for some sequence s[n] since 22¢(2t — n)
is an ON-basis for V,
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Properties of V,

The difference space W,

* Using the previous results, we can show that it
is also possible to write this f € V, as

f(t) =) aln] ¢t —n) + ) dn] p(t ~

n

for some sequences alk] and d[k] _—

* This means that ¢(t — n) and (t — n) together
span V;
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* V,is asubspace of V,

* Any f € V, can be written as a unique linear
combination of a component in V,and a
component in V,, and this component is
orthogonal to V,,

* There is a difference space W, characterised by
ow,cV,
ow,LV,
oV,=V,® W,
OForanyfeV,:f=fo+w, fo€V, wycW,
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The difference space W,

 V, has an ON-basis 22 ¢(2t — k), k € Z
* V, has an ON-basis ¢(t — k), k € Z
* W, has an ON-basis 9(t - k), k € Z

« V=V, W,

* Coordinates of f € V, are given by s[k]
* Coordinates of f € V; © W, given by a[k] and d[k]
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Sequences a, b and ¢

* Since f € V, is completely represented either by
sequence s[k], or by sequences a[k] and d[k] :

—There must be a (linear) mapping s — (a, d)

—There must be a (linear) mapping (a, d) — s
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A linear mappinga — b & ¢

A linear mapping b & c — a

From previous results follows:

Ex22.12

alk] Z(S[-]*m)[%]\

d[k] = (8[ . ] * m) [2 k] Convolve and

skip every
second sample

(the odd ones)
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From previous results also follows:
Ex 22.13

oo

stk = 3" (aln] Ak —2n) +d]

N /

Insert zeros between
every sample and
convolve

glk —2n])
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A 2-channel filter bank

* We can summarise these results as

Coordinates of f

relative to basis in V,
J— uc / ul uz
hIk] l—a—1 hik]

s — v v s'
/ arki— | — d\— T o —&E
relative to basis in V; relative to basis in W,
An orthogonal 2-channel filter bank with
= hy=h
" go=g (asalternating flip of h,)
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What you should know

The anatomy of the 2-channel filter bank

The 2 constraints on the 4 filters to produce s’=s
The conjugate mirror filter (CMF) bank
Orthogonal 2-channel filter bank

How a CMF decomposes the signal space into V,,
and W, and how they are related

Definition of a scaling function ¢
Leads to a unique function ¢

How ¢ and 1) decompose the signal space into V,
and W,, and how they are related
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