Multi-dimensional
Signal Analysis
Lecture 2H

Multi-resolution Analysis (Il)
Discrete Wavelet Transform



Continuous wavelet transform
* A mother wavelet 9(t)

e Define _
ban(t) = — w(t b)

a

Vlal

e Define the continuous wavelet transform
(CWT) of f as

Wf(avb): <f|¢a,b>
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Continuing...

e fis a one-variable function

. Wf is a two-variable function
— Scale and translation

* W;has an inverse transform (ICWT) iff

e 2
0 < / \\I!(v)\ dv < o0 Uis the FT of ¢

—eo Y]
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Example

/\ /) /

Signal

Mother wavelet = - - -
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e The 2-channel filter bank

uO AN ul u2
ho L — a— h,
v 1
S g, 0 l 4 7 V, g, v, S
e Perfect reconstruction: s’ =s
—Ifandonlyif g, (u)my(u) + G1(w)Go(u) =2 (FBY)
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The conjugate mirror filter bank (CMF)
 We choose

* Leads to FB1 and FB2 being satisfied!
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Scaling function ¢(t): must satisfy

1. o(t—k), k € Z, is an orthogonal set of
functions of some function space V,

2. o¢(t) can be written as a linear combination
of the functions ¢(2t — k), k € Z
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and 2. alone lead to
Also 2Y/2¢(2 t — k) is an ON basis for V, DV,
Define sequence h as hlk] = (¢(t)|2/2¢(2¢ — k))

Define H(u) = DFT{h}
Then |H(u)|? + |H(u+m)|?% =2

— Same as condition (O) in the CMF
— H here corresponds to H, in the CMF
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Cont...

» Define sequence g as g[k| = (—1)* 7" [l — ]
e The alternating flip in CMF
* G here corresponds to G, in the CMF

e Define G(u) = DFT{g}
e Define a function (t) with FT ¥ Given by

v = 76(3) 2 (3)
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Cont...
e Y(t—k), ke Z,is also an ON-set
* Spans a subspace W, C V,and W, L V,
* Infact, V, =V, W,
— 2Y24)(2 t — k) is an ON-basis of V,
— ¢(t— k) is an ON-basis of V,,
— 1)(t — k) is an ON-basis of W,
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Cont...

* Anfe€ V,can be writtenas f=f,+ w,
" f, eV,
"w,e W,

e f€ V, has coordinates s[k] relative the ON-basis
in V,;

e f€ V, has coordinates alk] and d[k] relative the
ON-bases in V, and W,, respectively

e Sequences s[k] or alk] and d[k] are alternative
representations of f € V|
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These representations can be mapped:
"s—>a0&d

"ag&d—s
Coordinates of f
relative to basis in V,
— U / u, u,
hl] l a — T hik]

S Vo

/ i b = 41 o@D

Coordinates of f
relative to basis in V,

Coordinates of f
relative to basis in W,
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* The fact that V, is spanned by the ON-basis
22 $(2 t — k) when V,, C V, is spanned by
o(t — k) means:

The space V, contains functions that can
have smaller “details” than V, does
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The fact that V, = V, © W, means:

W, contains the details that are missing in
V, to make up V,

Alcn-
MioUyU.

V, contains an approximation of V; without
the details that are in W,
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e There is an obvious relation between a CMF-
bank and the results derived from 1. and 2. of
the scaling function ¢:

— ¢ and 9 define sequences h and g which we can
identify with the reconstructing filters h, and g,
in the 2-channel CMF-bank

— Any ¢ that satisfies 1. and 2. generates a
2-channel CMF-bank

e And vice versa (!)
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“
“

* In the CMF-bank, the signal space Vis the
space where the discrete input signal a lives

e The filter bank decomposes s into two
components u, € Vyand v, in W,

* WithV=V,® W,
" a[n] are the coordinates of u,[k] relative h,[k -2 n]
* d[n] are the coordinates of v,[k] relative g,[k -2 n]
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In the case of the scaling function:

* The signal space is V, which hosts functions of
a continuous variable: f(t)

 The discrete signal alk] are the coordinates of
f, € V, relative to the ON-basis 2V/2 ¢(2 t — k)

 The discrete signals a[k] and d[k] are the
coordinates of f € V, relative to the ON-bases

o(t — k) and (t — k)
— Together they span V, =V, ® W,
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In what follows, we will take the second view:

* Any discrete time function holds the
coordinates of some continuous time function

relative to some ON-basis of some space

— s[k] are the coordinates of f, € V, relative 21/2 (2 t — k)
— a[k] are the coordinates of f, € V, relative ¢(t — k)

— d[k] are the coordinates of w, € W, relative ¥(t — k)

* fi=fotwy €V, D W,

N2/
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 Consider the set of functions given by

26(bt—k), keZ

o |t rel:

1 1 1A

c—t

oc tn
wow U/

(am &

he set 212 ¢(2 t — k) in the same

11 -~ A N

way as that set relates to ¢(t — k) (why?)

— All the results derived from 1. and 2. between V,
and V, applies!!
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Consequently:

 The set of functions given as
2 b4 t—k)
forms an ON-basis of a space V, D V, DV,

* The space V, contains functions of even finer
details than V, does

— And finer still than V,, does
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Furthermore:

* We can define a difference space W, such that
V,=V, & W,
and W, LV,
e 2 ¢(4t—k)is an ON-basis for V,
e 212 (2 t—k) is an ON-basis for V,
o 21/24)(2 t — k) is an ON-basis for W,
(why?)
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)

Furthermore, V, =V, @ W, means that

* any f, € V, can be decomposed into

hL=f+w

where f, € V,and w, € W,
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\J \/ ollw \J 2 V

The coordinates of f, are:
slk] relative the ON-basis 2¢(4 t - k) in V,
e Alternatively:

alk] and d[k] relative the ON-bases
2Y2. (2t - k) in V,and 2Y24(2 t - k) in W,
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/2

e gand d are obtained from a as

a[k] — (3[ ] * h[_ ])[2 k]7 (the odd ones)
| *gl="])[2 k]

k] = (s

* sisobtained from g and d as

00 /

Convolve and skip
every second sample

Insert zeros between every
sample and convolve

s[k] = ) (a[n] hlk —2n] + d[n] g[k — 2 n])

n=——oo
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We have already seen that:

e f, € V, can be decomposed as

fi=fot wy
where f, € Vyand w, € W,
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This means:

* any f, € V, can be decomposed into

L =fotwy+w,
where f, € V,and w, € Wyand w; € W,
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This also means:

Vy,=Vo© Wy & W,

VoL W, L W, (they are mutually orthogonal)

(why?)
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* We can see f, € V, as an approximation of
f, € V,, and f, € V, as a coarser approximation

of f,

* The details that are missing in f, to get to f,
are found in W, and W,
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Coordinates of f; € V,,
relative 272 ¢(2 t — k)

Coordinates of f, € V,,
relative 2¢(4 t — k)

Coordinates of f, € V,,

relative ¢(t — k)

\

T

A ] olK] I —

2015-12-16

N

N

Coordinates of w, € W,
relative ¥(t — k)

Coordinates of w, € W,
relative 272 (2 t — k)
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relative ¢(t — k)

Coordinates of f, € V,,

/

Coordinates of f; € V,,
relative 272 ¢(2 t — k)

[T

hik]

Coordinates of f, € V,,
relative 2¢(4 t — k)

alk] T

Coordinates of w, € W,
relative ¥(t — k)

2015-12-16

h[k]

glk]

/—T

Coordinates of w, € W,
relative 272 ¢)(2 t — k)
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Coordinates of
fieVv,

Coordinates of
L, eV,

Coordinates of
fo €V,

Coordinates of
fieVv,

Coordinates of

hik]
7
o —F T

i
o] ﬁé-)—

2015-12-16

Coordinates of
w, € W,

Coordinates of
w, € W,
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e Consider the set of functions given by

W12 (20t —k), kEZ, pcZ, p>1

* It relates to the set 2(P-1/2 $(2(p- 1t — k) in the same

w/anv ac Fhat cot rnla'l- nc ¥
VVCly ao LIIQL SJOU UL ICIddlLCTC O LUV

2(p-2)/2 ¢(2(p 2t — k)
e Andsoon...
e ...all the way to the set ¢(t — k)
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* 2P2¢(2Pt — k) is an ON-basis for a space V,

* V, can be decomposed as

Vo=V Wy W, ...0 W,,
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e All spaces V,, W,, W,, ..., W

,.1 are mutually

orthogonal

e V,is spanned by ¢(t—k), k € Z

* W;is spanned by 272 ¢)(2/t - k), k € Z,
"je€Z,0<j<p-1
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* Any f, € V, can be decomposed as

ot Wit ot W,

AN

A very, very coarse Finer and finer details added
approximation of f, to f, in order to construct f,

* fo€Vyand w, € W,
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. Vp contains functions with details of some
minimal size or scale

* Then V,; contains function that have twice
the size or scale at minimum compared to V,

* And V,, contains functions that have 4 times
the size or scale at minimum compared to V,

* Andsoon...
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 We can choose p (a positive integer) as large
as we want

— Or is practically useful or necessary

* This specifies a certain “scale” of V,relative V,
— A factor 2P larger

* V, contains the “coarsest” approximation of f,
that is reasonable for a particular application
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n terms of coordinates! approximation
of f,inV, ¢
Here: p = 5: apprgximation
V5=V, — of f,inV,, l
approximation __
of f,inV,, \ G I
approximation mra—] | aa— |
of f,inV,, \ —

approximation \ r— | arki— | — '\

of f,inV,, {1 11— \ details of f,
\ in W,
Ak— | arki— | details of f,
fLeV, arki— | — '\ details of f, n Wos

in W,

'\ details of f,

details of f, in W,
in W,
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approximation
in V, approximation of f, in V;

\

approximation of f, in V,

— 1 hik]

details 1—] T o C'B T hiK] approximation of f, in V;

approximation of f, in V,

in W,
Detailsinw, | — T glk] C—B— T hik]
DetailsinW, | — T glkf‘(‘gf 7 hik]

Detailsin W, | — T g[kj—@— 1 hik]
Detailsinw, | —{ T g[k]—@g—

!

reconstruction of f in V.
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* Withf,=f,+w, €V:

coordinates of w, , relative to the ON-basis in
W, are given as

dJk] = (f | 269/204(26) £~ k) )
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* Withf,=f,+w, €V,

coordinates of w,, relative to the ON-basis in
W, are given as

dolk] = (f.q | 20272(202 t— k) )
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m

9 9 ] LC _/'2

. But]‘}_l =fj_ Wi 4 where Wi, € VVj-l
e Furthermore:
"W, LW,
"w, L W,
m 20-2)/24/(20-2) t — k) is an ON-basis of Wi,
" w;, L toall 202/2¢p(2072) t — k)

= d,[k] = (f | 202/2(202 t— k) )
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J

* In general, the coordinates of w; € W; is given
by

(fur | 27290(D t=k) ) =(f, | 2*p(2 t-k))

(why?)
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“
“

e P(x) is a wavelet

— Satisfies the “wavelet condition”

— Not thoroughly proven here but follows from the
special properties of ¢

e The details in terms of coordinates relative to
the ON-basis in W; are computed as

dilk] = { fo(t) | 29/ (27t k) )
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* |n the continuous wavelet transform we
compute

Wiy, (a,b) = { fp(t) | ap(t) )

wa,b( ) < )
/ Wa
Scaling and translation
of the mother wavelet
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* Consequently, we can see the details of £, in
the different spaces W, as a sampling of the
continuous wavelet transform given by :

dilK] = (£,(8) |22 (@t~ ) ) =

- <fp(t) 21/2 ) (t _;;jk)> -

W, (277,279k), jkeZ,j>0
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Scale parameter a

/N
1+ @ ] ] . [ Space W,
1/2 + * . ° . ® * ® ' Space W;
1/4 T ® e * o L e o © 9 e o ® e e o e Space W,
1/Q1 00 o0 00 g ©0 g 00 g0 00 g 20 g 20 g #0 g 0 Space W,
O : : : —>
-1 0 1 2 3

Translation parameter b

Sampling pattern of the CWT to get the DWT
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“

WAAY

* In practice the DWT computes these samples
of the CWT and the approximation at level V,

 Together they can completely reconstruct the
function f, in terms of its coordinates relative

to the ON-basis in Vp

* The reconstruction in V, is made by a set of
ON-basis functions
— DWT is a transform based on an ON-basis

— CWT is based on a frame
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e This approach of decomposing a function
f, € V, into coarser and coarser
approximations in together with the
corresponding details is referred to as
multi-resolution analysis (MRA)

e Formulated by Stéphane Mallat, 1989
— Ingrid Daubechies described first 1) for MRA 1987
— Filter banks have been around since the 1970’
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N samples = coordinates of f;, in V,,

a/ \d

N/2 samples = N/2 samples =
coordinates of f, ; In V,; coordinates of wy; in W,

a/l\d

N/4 samples =
coordinates of

N/4 samples =
fo2 NV, coordinates of w,, in W,

2015-12-16
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* Since V;; L W;, and all bases are ON:

[£i12= 1fa %+ [wp]?
* Means: [fi;] < |f]

* Means:
the more levels p we have, the smaller is f,
for the same f,
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For 2D images

e Apply the 1D DWT first on each column, and
then on each row

— Or vice versa, gives the same result (why?)
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Horizontal - Vertical

A-A

D-A

2015-12-16

/

|

Repeat the analysis on
the approximation part

Repeat the analysis on
the approximation part
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2D DWT
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The 2-channel filter bank

Conditions FB1 and FB2 for perfect reconstruction

The CMF-bank: condition on H, and the other three filters defined from H,
Alternating flip

Orthogonality of the CMF-bank

Definition of ¢, as a function of continuous time t

Definition of discrete sequence h[k]

Construction of sequence g from h (alternating flip)

Construction of ¥ from ¢ (and g)

Relation between MRA and CMF

Construction of the sequence of spaces V, D V,;, D .. DV, DV,

Construction of the difference spaces W, ,, ..., W, they are mutually orthogonal
Decomposition of f, € Vyasf =fo+wy+ ...+ w,,, fr€ Voand w, € W,
DWT: coordinates in W, = samples of CWT

The corresponding sampling pattern

Implementation of 2D DWT
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