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1 Basic geometric objects

1.1. Alternative 1: The point ȳ0 is on the line since

(∆ l1) l1 + (∆ l2) l2 = ∆ (l21 + l22) = ∆.

We can set t̂ = (l2,−l1) as a direction vector or tangent vector of the line. This works since
ȳ0 + s t = (∆ l1 + s l2,∆ l2 − s l1) is a point on the line:

(∆ l1 + s l2) l1 + (∆ l2 − s l1) l2 = ∆ (l21 + l22) + s (l2l1 − l1l2) = ∆.

Finally we investigate the distance from ȳ0 + s t̂ to the origin, by looking at the square of this
distance:

‖ȳ0 + s t̂‖2 = (ȳ0 + s t̂) · (ȳ0 + s t̂) = ȳ0 · ȳ0 + 2 s ȳ0 · t̂︸ ︷︷ ︸
=0

+s2 t̂ · t̂ = ‖ȳ0‖2 + s2.

This expression shows that the distance is minimized for s = 0, from which follows that ȳ0 is the
closest point to the origin.

Alternative 2: The vector l̂ = (l1, l2) is a normal vector of the line, i.e., it is orthogonal (perpen-

dicular) to the line. Starting at the origin and moving along the direction of l̂, the distance s gives
the point s l̄. The path of this point intersects the line when

∆ = (s l1) l21 + (s l2) l22 = s(l21 + l22) = s.

The intersection point is (0, 0) + s l̂ = ∆ (l1, l2) = ȳ0.

1.2. Alternative 3: Change coordinates from (u, v) to (a, b) = (u, v) − (u0, v0), a translation by
subtracting (u0, v0). In these new coordinates, the point with coordinates (u0, v0) in the original
system lies at the origin. In the new coordinates, the equation of the line (same line as before) is
given as

∆ = u l1 + v l2 = (a+ u0) l1 + (b+ v0) l2 = a l1 + b l2 + (u0l1 + v0l2),

or
a l1 + b l2 = ∆− (u0l1 + v0l2).

This means that after the coordinate transformation, the line as the same normal vector (l1, l2) as
before the transformation, but the distance to the new origin in the direction of (l1, l2) is given as
∆ − (u0l1 + v0l2) (can become negative, which simply means that it is −(l1, l2) that points from
the new origin to the line).

Using the result from the previous exercise, the point closest to the origin is given as

(∆− (u0l1 + v0l2)) (l1, l2),

These coordinates are expressed in the new system, and to return to the original system, we need
to translate by adding (u0, y0). The result is

(∆− (u0l1 + v0l2)) (l1, l2) + (u0, y0).

The resulting point can also be expressed as:(
1− l21 −l1l2
−l1l2 1− l22

)
+ ∆

(
l1
l2

)
=
/
l21 + l22 = 1

/
=

(
l22 −l1l2
−l1l2 l21

)
+ ∆

(
l1
l2

)
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1.3. The results are independent of the handedness of the coordinate system: no assumption about the
handedness is made in the derivations.

1.4. For example, using Alternative 1 in exercise 1.1, we find the point in the plane that is closest to
x̄1 by moving x̄1 along a path in the direction of the normal vector of the plane until the path
intersects the plane. This is the same as finding s such that x̄1 + s p̄ is a point in the plane, where
p̄ is a normal vector of the plane, for example: p̄ = (2, 4,−1). Inserted into the equation of the
plane, we get:

(−1 + 2 s) · 2 + (2 + 4 s) · 4− (5− s) = 3,

or

21 s+ 1 = 3, ⇒ s =
2

21
.

Hence, the point in the plane that is closest to x̄1 has Cartesian coordinates

(−1, 2, 5) + s (2, 4,−1) = (−1, 2, 5) +
2

21
(2, 4,−1) =

1

21
(−17, 50, 103).

The distance from this point to x̄1 is given as∥∥∥∥ 1

21
(−17, 50, 103)− (−1, 2, 5)

∥∥∥∥ =

∥∥∥∥ 1

21
(4, 8,−2)

∥∥∥∥ =

√
84

21
=

2√
21
.

1.5. We can represent the line in parametric form: x̄(s) = x̄1 + s t̄, where t̄ is a tangent vector pointing
in the direction of the line. We can choose

t̄ = x̄1 − x̄2 = (−3, 3, 0), ⇒ x̄(s) = (−1− 3 s, 2 + 3 s, 5).

We want to find the point on this line that also lie in plane 1, i.e, find s such that x̄(s) lies in the
plane:

3 = 2 · (−1− 3 s) + 4 · (2 + 3 s)− 5 = 1 + 6 s, ⇒ s =
1

3
.

This gives the point where the line intersects the plane as

x̄

(
1

3

)
= (−2, 3, 5)

1.6. We seek parameters p1, p2, p3,∆ of the plane such that

x1p1 + x2p2 + x3p3 = ∆

for Cartesian coordinates (x1, x2, x3) of any point in the plane. In particular, the previous equation
should be valid for the three points x̄1, x̄2, x̄3, which leads to three linear equations in the unknown
parameters:

−p1 + 2 p2 + 5 p3 = ∆

2 p1 − p2 + 5 p3 = ∆

4 p1 + 3 p2 + p3 = ∆
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We have three equations and four unknowns, so it is not possible to solve all the unknown param-
eters. For example, we can express p1, p2, p3 in terms of ∆, which can be done using Gaussian
elimination: p1

p2

p3

 =
∆

51

6
6
9

 .

Consequently, the equation of the plane that includes x̄1, x̄2, x̄3 is given as

6

51
∆ x1 +

6

51
∆ x2 +

9

51
∆ x3 = ∆,

or, after dividing by ∆
51 on both sides,

6 x1 + 6 x2 + 9 x3 = 51.

1.7. We have two equations in the Cartesian coordinates (x1, x2, x3) of a point that lies on the line:

2 x1 + 4 x2 − x3 = 3,

6 x1 + 6 x2 + 9 x3 = 51.

We can then eliminate (for example) either x1 from the first equation or x3 from the second equation:

−6 x2 + 12 x3 = 42,

24 x1 + 42 x2 = 78.

The coordinates of points on the intersecting line can be represented in parametric form as (for
example): x1

x2

x3

 =


13
4

0
7
2

+ s

−
7
4

1
1
2


1.8. Alternative 1: Find the parameter value s that gives the shortest distance to x̄1 from x̄(s).

This leads to the minimization of a second order expression in s, which is done by computing the
derivative of the distance squared and setting it to zero.

Alternative 2: Find a point on the line such that the difference x̄(s)− x̄1 is perpendicular to the
direction of the line. A direction vector is given as t̄ = (−3, 2, 1), i.e., we want to find s such that

0 = t̄ · (x̄(s)− x̄1) = (−3, 2, 1) ·
(
(1, 5,−7) + s (−3, 2, 1)− (−1, 2, 5)

)
=

= (−3, 2, 1) ·
(
(2, 3,−12) + s (−3, 2, 1)

)
= −12 + 14 s

This gives s = 6
7 , and the point on the line closest to x̄1 is

x̄

(
6

7

)
= (1, 5,−7) +

6

7
(−3, 2, 1) =

1

7
(−11, 47,−43).

The distance from this point to x̄1 is∥∥∥∥x̄(6

7

)
− x̄1

∥∥∥∥ =

∥∥∥∥1

7
(−11, 47,−43)− (−1, 2, 5)

∥∥∥∥ =

∥∥∥∥1

7
(−4, 33,−78)

∥∥∥∥ =

√
7189

7
=

√
1027

7
≈ 12.1
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2 Homogeneous representations in 2D

2.1. We normalize the homogeneous coordinates of each point such that the third element = 1. The
first two element in the resulting vectors are the coordinates of the corresponding 2D point. The
homogeneous coordinates of the fifth point y5 cannot be P-normalized since it is a point at infinity.
It lies in the orientation given by ±(1,−1).

y1 ∼

1
1
1

 y2 ∼

 2
−1
1

 y3 ∼

−2
−2
1

 y4 ∼

−4
2
1


The four proper points together with the fifth point at infinity are plotted in the figure below:

y

y
y

y
1

2

3

4

y
5

y
5
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2.2. We normalize the homogeneous coordinates of each line such that the sum of squares of the first
two elements =1, and change the sign of the result if the third element becomes positive. The first
two element in the resulting vectors are (cosα, sinα) of a normal vector of the line that points away
from the origin. The third element is −L, with L = the shortest distance between the origin and
the line.

l1 ∼

 0
1
−2

 l2 ∼

0.707
0.707

0

 l3 ∼

 0.447
−0.894
−0.894

 l4 ∼

−0.707
0.707
−0.707


Alternatively, for each line we can determine the homogeneous coordinates of two points that lie on
the line, and then draw a line through these pairs of points. These pairs of points are determined
from the relation y · l = 0 when l and y are the homogeneous coordinates of a line and of a point
that lie on the line. For line l1 all points with homogeneous coordinates

y =

a2
1


lie on the line since y · l1 = 0. For line l2 the two points with homogeneous coordinates given by

y′2 =

−1
1
1

 y′′2 =

0
0
1


both lie on this line for the same reason. Similarly, for lines l3 and l4, these pairs of points

y′3 =

2
0
1

 y′′3 =

 0
−1
1

 y′4 =

−1
0
1

 y′′4 =

0
1
1


lie on the respective line. The four lines are plotted in the figure below:

l1

l2l3

l4
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2.3. For example: take lines l1 and l2. The homogeneous coordinates of the point of intersection, y, are
given by

y = l1 × l2 =

 0
1
−2

×
1

1
0

 =

 2
−2
−1

 ∼
−2

2
1


This are the homogeneous coordinates of the 2D point (−2, 2).

2.4. For example: take points y1 and y2. The dual homogeneous coordinates of the intersecting line, l,
are given by

l = y1 × y2 =

2
2
2

×
−2

1
−1

 =

−4
−2
6

 ∼
 0.894

0.447
−1.342


This are the dual homogeneous coordinates of the 2D line that has a normal vector (0.894, 0.447)
located at distance 1.342 from the origin.

As an example of a line that passes through y5, a point at infinity, consider the line that also
intersects with y3:

l = y5 × y3 =

 1
−1
0

×
−2
−2
1

 =

−1
−1
−4

 ∼
−0.707
−0.707
−2.828


2.5. For example, consider the line l3 and the three points y1,y2,y3. In order to determine the distances,

the homogeneous coordinates of both the line and the points must be properly normalized. With
these normalized homogeneous coordinates at hand, the signed distances from the line to the points
are given by a simple scalar product of the homogeneous vectors:

d13 = y1 · l3 =

1
1
1

 ·
 0.447
−0.894
−0.894

 = −1.342

d23 = y2 · l3 =

 2
−1
1

 ·
 0.447
−0.894
−0.894

 = 0.894

d33 = y3 · l3 =

−2
−2
1

 ·
 0.447
−0.894
−0.894

 = 0

The 2D point y1 lies on the same side of the line as the origin, therefore the distance is negative.
The 2D point y2 lies on the opposite side of the line relative the origin, therefore the distance is
positive. In the third case, the 2D point y3 lies on the line.

2.6. The basic result that is used here is

y · l = 0 ⇔ y is the homogeneous coordinates of a 2D point that lies on the line with dual
homogeneous coordinates l.

Since the two points with homogeneous coordinates y1 and y2 both lie on the line, we have

y1 · l = y2 · l = 0
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Let y = c1y1 + c2y2, be any linear combination of the vectors y1 and y2. From the above results
follows then

y · l = (c1y1 + c2y2) · l = c1(y1 · l) + c2(y2 · l) = c1 · 0 + c2 · 0 = 0

All vectors y1,y2, l lie in R3 and since y1 and y2 represent distinct points on the line, it must be
the case that the two vectors span the orthogonal space to the vector l. Any other point on the
line, with homogeneous coordinates y3, lies in the orthogonal complement of l, and therefore can
be written as

y3 = c1y1 + c2y2

for some scalars c1, c2.

2.7. Set

l1 =

a1

b1
c1

 l2 =

a2

b2
c2


We apply a D-normalization on these dual homogeneous coordinates to get the canonical forms:

l1 ∼
1√

a2
1 + b21

a1

b1
c1

 l2 ∼
1√

a2
2 + b22

a2

b2
c2


Still, the signs of teach canonical form is not properly set, but the orientations of the two normal
vectors, one for each line, are given by the two normal vectors

l̂1 =
1√

a2
1 + b21

(
a1

b1

)
l̂2 =

1√
a2

2 + b22

(
a2

b2

)
The smallest angle between them, α must satisfy

cosα = |̂l1 · l̂2| =
a1a2 + b1b2√

(a2
1 + b21)(a2

2 + b22)

2.8. The matrix Y has columns that are linearly dependent exactly when the three points lie on a line.
This is also exactly the case when Y is singular, i.e., Y has a well-defined inverse exactly when the
three points do not lie on a line. In this case, the first column in Y−> is orthogonal to the second
and third column of Y, i.e., it represents the dual homogeneous coordinates of a line that passes
through points y2 and y3. Similarly, the second column of Y−> is a line that passes through y1

and y3, and the third column is a line that passes through y1 and y2.

2.9. Using the same arguments as in the previous exercise, Ỹ−> is well-defined exactly when the three
lines do not intersect at a single point. In this case, the first column of Ỹ−> represents the
homogeneous coordinates of the intersecting point of lines l2 and l3, the second column of Ỹ−> is
the intersecting point of y1 and y3, and the third column is the intersecting point of y1 and y2.
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3 Transformations in 2D

3.1. We can decompose M1 as follows:

M1 =

 3 4 2
−4 3 −2
0 0 1

 =

1 0 2
0 1 −2
0 0 1


︸ ︷︷ ︸

translation

 3 4 0
−4 3 0
0 0 1

 =

1 0 2
0 1 −2
0 0 1


︸ ︷︷ ︸

translation

 3
5

4
5 0

− 4
5

3
5 0

0 0 1


︸ ︷︷ ︸

rotation

5 0 0
0 5 0
0 0 1


︸ ︷︷ ︸

scaling

The translation can be determined directly from the upper right 2× 1 sub-matrix of M1, but only
because we want to extract the translation as a factor to the left in the resulting product. The
scaling that is determined from the remaining factor by assuring that it produces a 2× 2 rotation
matrix in the upper left sub-matrix.

3.2. We also can decompose M1 as follows:

M1 =

 3 4 2
−4 3 −2
0 0 1

 =

5 0 0
0 5 0
0 0 1


︸ ︷︷ ︸

scaling

 3
5

4
5

2
5

− 4
5

3
5 − 2

5
0 0 1

 =

5 0 0
0 5 0
0 0 1


︸ ︷︷ ︸

scaling

 3
5

4
5 0

− 4
5

3
5 0

0 0 1


︸ ︷︷ ︸

rotation

1 0 14
25

0 1 2
25

0 0 1


︸ ︷︷ ︸

translation

This is the same scaling and rotation as in the previous exercise, since rotation and scaling are
commuting transformations.

3.3. We start by normalising the transformation matrix such that element (3,3) is =1, and then decom-
pose it into a translation and a pure linear transformation onto the 2D coordinates:

M =

1 −2 2
3 2 −2
0 0 2

 ∼
0.5 −1 1

1.5 1 −1
0 0 1

 =

1 0 1
0 1 −1
0 0 1

 0.5 −1 0
1.5 1 0
0 0 1


This means that the affine transformation M is given by a linear transformation of the 2D coordi-
nates defined by the matrix: (

0.5 −1
1.5 1

)
followed by a translation by (1,−1). The linear transformation can be illustrated by mapping a
square centered at the origin, e.g., with corner points:

(
1
1

)
is mapped to

(
−0.5
2.5

)
(
−1
1

)
is mapped to

(
−1.5
−0.5

)
(
−1
−1

)
is mapped to

(
0.5
−2.5

)
(

1
−1

)
is mapped to

(
1.5
0.5

)
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To better understand this transformation we can rotate the result such that the two parallel sides
A’ and C’ become aligned with sides A and C. The corresponding rotation is 45◦ clockwise. This
gives new points:

(
−0.5
2.5

)
is mapped to

(
1.41
2.12

)
(
−1.5
−0.5

)
is mapped to

(
−1.41
0.71

)
(

0.5
−2.5

)
is mapped to

(
−1.41
−2.12

)
(

1.5
0.5

)
is mapped to

(
1.41
−0.71

)

The remaining transformation on these points is now given by(
cos 45◦ sin 45◦

− sin 45◦ cos 45◦

) (
0.5 −1
1.5 1

)
=

(
1.41 0
0.71 1.41

)
= 1.41

(
1 0

0.5 1

)
This corresponds to a scaling by

√
2 and a shearing transformation along the second coordinate

axis: the corner points the original square will be displaced 0.5 units, up on the right side and
down on the left side. In summary the affine transformation can be decomposed as a sequence of
transformations applied to the points:

y′ =

1 0 1
0 1 −1
0 0 1


︸ ︷︷ ︸

translation

cos 45◦ − sin 45◦ 0
sin 45◦ cos 45◦ 0

0 0 1


︸ ︷︷ ︸

45◦ anti-clockwise rotation

1.41 0 0
0 1.41 0
0 0 1


︸ ︷︷ ︸

uniform scaling

 1 0 0
0.5 1 0
0 0 1


︸ ︷︷ ︸

shearing

y

3.4. For example: uniform scaling commutes with both rotation and shearing transformations, but
rotation and shearing do not commute in general. Translations do not commute with either of
scalings, rotations, and shearing transformations.

3.5. For example, take 2D point y4 and 2D line l1, previously defined. They intersect since y4 · l1 = 0.
Transform the point to a new point y′4:

y′4 = M y4 =

1 −2 2
3 2 −2
0 0 2

 −4
2
1

 =

 −6
−10

2

 ∼
−3
−5
1


i.e., the result is the 2D point (−3,−5). The line is transformed by M−>:

M−> =

1/4 −3/8 0
1/4 1/8 0
0 1/2 1/2

 ∼
2 −3 0

2 1 0
0 4 4


10



The new line l′1 is then given by

l′1 = M−> l1 =

2 −3 0
2 1 0
0 4 4

  0
1
−2

 =

−3
1
−4


The homogeneous coordinates of the transformed point and line still satisfy y′4 · l′1 = 0, i.e., the line
still intersects the point

3.6. Let l be the homogeneous coordinates of a 2D line. This l is represented by a vector in R2. Any
vector y ∈ R3 that is perpendicular to l can then be interpreted as the homogeneous coordinates
of a point on the line, in fact any point on the line has a homogeneous representation y of this
type. Consequently, the 2-dimensional subspace V of R3 that is perpendicular to l represents all 2D
points on the line. Apply an affine transformation to these 2D points by applying a corresponding
transformation matrix M to their homogeneous coordinates, i.e., to V . As a result we get, M(V ),
another 2-dimensional subspace of R3, representing the homogeneous coordinates of the mapped
points on the line. This means that there exists a 1-dimensional subspace perpendicular to M(V ),
representing the homogeneous coordinates of some line l′ that must intersects all these points. Since
all the mapped points lie on a line, it follows that the image of the original line under the affine
transformation must be a line.

3.7. We need to show that [l′]× ∼ L′, i.e., that

[M−>l]× ∼M L M> ∼M [l]×M>

for any vector l ∈ R3 and invertible 3× 3 matrix M. Both left and right hand sides of this relation
are a 3× 3 matrix, and both matrices are anti-symmetric. Any 3× 3 anti-symmetric matrix is the
cross product operator of some vector in R3, i.e., it must be the case that

M [l]×M> = [a]×

for some a ∈ R3. As a projective element, this a is unique in the sense that only this a will satisfy
[a]×a = 0, i.e.,

M [l]×M>a = 0 ⇔ [l]×M>a = 0

This means that l ∼M>a,⇔ a ∼M−>l⇒

M [l]×M> = [M−>l]×

3.8. Using the procedure described in Toolbox Section 8.1.4, and since C = 0, we get the Schur com-
plement S = R, from which follows:

T−1 =

(
R−1 −R−1t · 1

0 1−1

)
=

(
R> −R>t
0 1

)
We verify:

T−1T =

(
R> −R>t
0 1

) (
R t
0 1

)
=

(
R>R R>t−R>t

0 1

)
=

(
I 0
0 1

)
= I

T T−1 =

(
R t
0 1

) (
R> −R>t

0 1

)
=

(
R R> −R R>t + t

0 1

)
=

(
I 0
0 1

)
= I

11



3.9. The product of T1 and T2 is given as

T1T2 =

(
R1 t1

0 1

) (
R2 t2

0 1

)
=

(
R1R2 R1t2 + t1

0 1

)
.

This is a rigid transformation: it first rotates by R1R2 ∈ SO(2), and then translates according to
the vector R1t2 + t1 ∈ R2.

If we do the same calculation for T2T1, we get

T2T1 =

(
R2 t2

0 1

) (
R1 t1

0 1

)
=

(
R2R1 R2t1 + t2

0 1

)
.

This is a rigid transformation: it first rotates by R2R1 ∈ SO(2), and then translates according to
the vector R2t1 + t2 ∈ R2.

Rotations in 2D, SO(2), commute: R1R2 = R2R1. But in general, R1t2 + t1 6= R2t1 + t2.

3.10. 1) The group operation must be closed, this is shown in exercise 3.9.

2) The group operation must be associative. Concatenation corresponds to matrix multiplication,
and this operation is associative.

3) There must be a neutral element: it is given by the rigid transformation where R = I and t̄ = 0
(no rotation and no translation).

4) Each transformation must have an inverse, this is shown in exercise 3.8.

3.11. The requested transformation is obtained by first translating to make t̄ end up at the origin, the a
rotation by R about the origin, and finally a translation that moves the origin back to t̄:(

I t̄
0 1

)(
R 0
0 1

)(
I −t̄
0 1

)
=

(
R (I−R) t̄
0 1

)
.

We verify that this transformation has t̄ as a fix-point:(
R (I−R) t̄
0 1

)(
t̄
1

)
=

(
R t̄ + (I−R) t̄

1

)
=

(
t̄
1

)
!

3.12. From the previous exercise, we get

(I−R) t̄0 = t̄ ⇒ t̄0 = (I−R)−1t̄.

Notice that this requires that R 6= I, but in the case that R = I then T is a pure translation that
cannot be related to any rotation.

3.13. We are looking for conditions that make the two transformation commute, i.e., T1T2 = T2T1. From
the solution of exercise 3.9 we see that the two rotations commute if and only if: R1R2 = R2R1 and
R1t2 + t1 = R2t1 + t2. The first requirement is already satisfied, since all 2D rotations commute.
The second requirement can be reformulated as

(R1 − I) t2 = (R2 − I) t1.

This condition is satisfied for all t1, t2 ∈ R2 when R1 = R2 = I. If only R2 = I, it must then be
the case that t2 = 0, and if only R1 = I we must set t1 = 0. In the general case, neither R1 nor
R2 equals I, and we require that

t2 = (R1 − I)−1 (R2 − I) t1.

12



3.14. We can write

ȳ1 = ȳ0 + ∆ȳ, ȳ2 = ȳ0 −∆ȳ where ȳ0 =
1

2
(ȳ1 + ȳ2), ∆ȳ =

1

2
(ȳ1 − ȳ2).

Similarly for the transformed points:

ȳ′1 = ȳ′0 + ∆ȳ′, ȳ′2 = ȳ′0 −∆ȳ′ where ȳ′0 =
1

2
(ȳ′1 + ȳ′2), ∆ȳ′ =

1

2
(ȳ′1 − ȳ′2).

The two sets of points are related by a rigid transformation:

ȳ′1 = R y1 + t̄ and ȳ′2 = R y2 + t̄.

We can insert these expressions into ∆ȳ′ to get

∆ ȳ′ =
1

2
R(y1 − y2) = R ∆ȳ.

Consequently, R ∈ SO(2) rotates ∆ȳ = (−1,−2) to ∆ȳ′ = (1,−2). The rotation angle α can, e.g.,
be computed from this relation between complex numbers: (1 − 2i) = eiα(−1 − 2i), which gives
α ≈ 0.927 rad. With this result at hand, we can then determine t, e.g., from

t = ȳ′1 −R ȳ1, where R =

(
cosα − sinα
sinα cosα

)
⇒ t =

(
4
1

)
−
(

0.6 −0.8
0.8 0.6

) (
1
1

)
=

(
4.2
−0.4

)
We can easily verify that this unique choice of R and t satisfies ȳ′k = R ȳk + t̄ for k = 1, 2.

3.15. No, they have to represent a set of points before and after a rigid transformation, i.e., the distance
between ȳ1 and ȳ2 must be the same as the distance between ȳ′1 and ȳ′2.

3.16. The requested transformation can be decomposed into a sequence of transformations: first a trans-
lation that moves point ȳ0 to the origin:

Ttransl =

(
I −ȳ0

0 1

)
.

Then a uniform scaling by the factor s:

Tscale =

(
s I 0
0 1

)
.

Finally, we move the origin back to the point ȳ0:

T−1
transl =

(
I ȳ0

0 1

)
.

Consequently, the total sequence of transformations is given as

T−1
translTscaleTtransl =

(
I ȳ0

0 1

) (
s I 0
0 1

) (
I −ȳ0

0 1

)
=

(
s I (1− s) ȳ0

0 1

)
.

This transformation has the property that(
s I (1− s) ȳ0

0 1

) (
ȳ0

1

)
=

(
ȳ0

1

)
.
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4 Homogeneous representations in 3D

4.1. We normalise the homogeneous coordinates of each point such that the fourth element = 1. The
first three element in the resulting vectors are the coordinates of the corresponding 3D point.

x1 ∼


1/4
1/2
3/4
1

 x2 ∼


4
3
2
1


The 3D coordinates of the two points are: (1/4, 1/2, 3/4) and (1, 2, 3).

4.2. We normalise the homogeneous coordinates of the plane such that the sum of squares of the first
three elements =1, and change the sign of the result if the fourth element becomes positive. The
first three element in the resulting vectors are a normal vector of the plane that points away from
the origin. The fourth element is −L, with L = the shortest distance between the origin and the
plane. This normalisation gives

p1 ∼


0.408
−0.408
0.816
−0.408


and the normal vector is (0.408,−0.408, 8.16) and the distance from the origin to the plane is 0.408.

4.3. In order to determine the distance, the homogeneous coordinates of both the plane and the point
must be properly normalised. With these normalised homogeneous coordinates at hand, the signed
distances from the plane to the point is given by a simple scalar product of the homogeneous vectors:

d1 = x1 · l3 =


0.25
0.5
0.75

1

 ·


0.408
−0.408
0.816
−0.408

 = 0.1021

d2 = x1 · l3 =


4
3
2
1

 ·


0.408
−0.408
0.816
−0.408

 = 1.6330

4.4. If the points lie on the same side of the line, their signed distances must have the equal signs. In
this case, both distances are positive: the points both lie on the opposite side of the plane as the
origin.

4.5. The Plücker coordinates of the line that intersects x1 and x2 is given by

L1 = x1x
>
2 − x2x

>
1 =


0 −5 −10 −15
5 0 −5 −10
10 5 0 −5
15 10 50

 ∼


0 −1 −2 −3
1 0 −1 −2
2 1 0 −1
3 2 1 0


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4.6. The duality mapping of L1 gives the corresponding dual Plücker coordinates as

L̃1 =


0 −1 2 −1
1 0 −3 2
−2 3 0 −1
1 −2 1 0

 .

4.7. For example, use the two points with Cartesian coordinates x̄3 = (1, 0, 0) and x̄4 = (0, 1, 0). The
corresponding planes, p3 and p4, are then given as

p3 = L̃1 x3 =


0 −1 2 −1
1 0 −3 2
−2 3 0 −1
1 −2 1 0




1
0
0
1

 =


−1
3
−3
1

 ,

p4 = L̃1 x3 =


0 −1 2 −1
1 0 −3 2
−2 3 0 −1
1 −2 1 0




0
1
0
1

 =


−2
2
2
−2

 .

4.8. The dual Plücker coordinates of the line where the two planes intersect is given as

p3p
>
4 − p4p

>
3 =


0 4 −8 4
−4 0 12 −8
8 −12 0 4
−4 8 −4 0

 ∼ L̃.

4.9. The point x lies on the line L if and only if L̃ x = 0.

4.10. The point of intersection, x0, between the line L1 and the plane p is given by

x0 = L p =


0 −1 −2 −3
1 0 −1 −2
2 1 0 −1
3 2 1 0




1
−1
2
−1

 =


0
1
2
3

 ∼


0
1/3
2/2
1


This are the homogeneous coordinates of the 3D point (0, 1/3, 2/3). The point x0 lies on the plane
p since

x0 · p = (0, 1, 2, 3) · (1,−1, 2,−1) = 0

It also lies in the plane L1 since

L̃1 x0 =


0 −1 2 −1
1 0 −3 2
−2 3 0 −1
1 −2 1 0




0
1
2
3

 = 0

4.11. A necessary condition on L2 to represent the Plücker coordinates of a 3D line is det(L2) =. In this
case this is satisfied.
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4.12. In order to L-normalize L2 we divide it with the norm of the first three elements in the fourth
column:

normL(L2) =
1

‖(3, 6, 6)‖


0 1 3 3
−1 0 4 6
−3 −4 0 6
−3 −6 −6 0

 =
1

9


0 1 3 3
−1 0 4 6
−3 −4 0 6
−3 −6 −6 0


The first three elements in the fourth column is then a unit vector that points in the direction of
the line: t̂ = −(1/3, 2/3, 2/3). The point on the line that lies closest to the origin is given as

x̄′ = A t̂ =
1

9

 0 1 3
−1 0 4
−3 −4 0

 −1
−2
−2

 1

3
=

1

27

−8
−7
11


To verify this result we first notice that

L̃2 x′ =


0 6 −6 4
−6 0 3 −3
6 −3 0 1
−4 3 −1 0



−8
−7
11
27

 = 0

which means that x′ indeed lies on the line L2. Furthermore, we can find a second point on the
line, for example, by moving in the direction of t̂ from x̄′:

x̄′′ = x̄′ + t̂ =
1

27

−8
−7
11

− 1

3

1
2
2

 = − 1

27

17
25
7


The Plücker coordinates of the line that passes through x′ and x′′ is given as

x′(x′′)> − x′′(x′)> ∼ L

4.13. The two lines intersect if and only if L̃1 · L2 = 0 (or vice versa). Here, we use the Frobenius scalar
product! In the case of the specific lines we have here:

L̃1 · L2 =


0 −1 2 −1
1 0 −3 2
−2 3 0 −1
1 −2 1 0

 ·


0 1 3 3
−1 0 4 6
−3 −4 0 6
−3 −6 −6 0

 = −8

This means that the two lines do not intersect.

4.14. Set
L1 = x1x

>
2 − x2x

>
1 , and L̃2 = p1p

>
2 − p2p

>
1 .

Gives
L1L̃2 = x1

(
(x2 · p1)p>2 − (x2 · p2)p>1

)
− x2

(
(x1 · p1)p>2 − (x1 · p2)p>1

)
(1)

We show first that L1L̃2 = 0 requires the two lines to be identical. Since x1 and x2 represent two
distinct points, x1 and x2 are linearly independent as vectors in R4. Therefore, L1L̃2 = 0 implies

0 = L1L̃2 = x1

(
(x2 · p1)p>2 − (x2 · p2)p>1

)︸ ︷︷ ︸
=0

−x2

(
(x1 · p1)p>2 − (x1 · p2)p>1

)︸ ︷︷ ︸
=0
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or

(x2 · p1)p>2 − (x2 · p2)p>1 = 0,

(x1 · p1)p>2 − (x1 · p2)p>1 = 0.

Applying the same arguments on p1,p2, as two distinct planes, leads to the following relations:

x1 · p1 = x1 · p2 = x2 · p1 = x2 · p2 = 0. (2)

This means that both points, x1 and x2, lie in both planes, p1 and p2. Consequently, the first line
L1 must be identical to the second line L2.

If the two lines are identical, then Equation (2) is true. From Equation (1) follows then immediately
that L1L̃2 = 0.

4.15. We can write the two matrices as

L ∼


0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

 , L̃ ∼


0 ã b̃ c̃

−ã 0 d̃ ẽ

−b̃ −d̃ 0 f̃

−c̃ −ẽ −f̃ 0

 .

The equations suggested in the hint are [L L̃]kl = 0 where kl = {11, 12, 13, 22, 23}:

−a ã− b b̃− c c̃ = 0,

−b d̃− c ẽ = 0,

−a d̃− c f̃ = 0,

−a ã− d d̃− e ẽ = 0,

−a b̃− e f̃ = 0.

From these equations we solve for the variables ã, b̃, c̃, d̃, ẽ:

ã = − (cd− be)f̃
a2

=
/

IREG Equation (5.29)
/

=
ff̃

a
,

b̃ = −ef̃
a
, c̃ =

df̃

a
, d̃ =

f̃

a
, ẽ = −bf̃

a
.

Assuming a 6= 0, we can always find λ such that f̃ = λ a. Inserted into L̃ in Equation (4), we get
the final expression for L̃:

L̃ = λ


0 f −e d
−f 0 c −b
e −c 0 a
−d b −a 0

 . (3)

If a = 0, we can solve for a different set of variables from a different set of equations, and still get
the same result.

4.16. With
L ∼ x1x

>
2 − x2x

>
1

we get

L2 ∼ (x1x
>
2 − x2x

>
1 )(x1x

>
2 − x2x

>
1 ) = (x1 · x2)(x1x

>
2 + x2x

>
1 )− ‖x2‖2x1x

>
1 − ‖x1‖2x2x

>
2
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As a projective element, L, and therefore also L2, is independent of which two points x1 and x2

are chosen as long as both lie on the line and they are distinct. Let x0 and x1 be the homogeneous
coordinates of two such points. A third point x2 is then given as

x2 ∼ t x1 + (1− t) x0

for some real number t. Consider the scalar product between homogeneous coordinates of points
x1 and x2:

x1 · x2 = x1 · (t x1 + (1− t) x0) = t x1 · (x1 − x0) + x0)

This means that we can (almost) always determine t such that x1ẋ2 = 0, and since L is independent
of this choice, we can assume that x1 and x2 are orthogonal:

L2 ∼ −‖x2‖2x1x
>
1 − ‖x1‖2x2x

>
2

Furthermore, as a projective element, L is independent of the norms of x1 and x2, so we can replace
both with unit vectors x̂1 and x̂2:

L2 ∼ x̂1x̂
>
1 + x̂2x̂

>
2

This is a projection operator that projects any vector in R4 onto the 2D space in R4 spanned by
the vectors x̂1 and x̂2.

4.17. With reference to the previous exercise: a point x lies on the 3D line if and only if its homogeneous
coordinates can be written as a linear combination of x1 and x2. This, in turn, is equivalent to
L2x ∼ x since L2 is a projection operator onto the 2D space in R4 spanned by the vectors x̂1 and
x̂2. In summary: the point x lies on the line L if and only if L2x ∼ x.
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5 Transformations in 3D

5.1. Two planes with dual homogeneous coordinates

p1 =

(
p̂1

−∆1

)
, p1 =

(
p̂1

−∆1

)
are parallel if and only if the normal vectors are parallel: p̂1 = ±p̂2. The transformation matrix
that transform homogeneous coordinates of points in accordance with an affine transformation looks
like:

T =

(
A t̄
0 1

)
The corresponding dual transformation, transforming the dual homogeneous coordinates of planes,
is then given as T̃−1 = (T−1)>.

T−1 =

(
A t̄
0 1

)−1

=

(
A−1 −A−1t̄

0 1

)
⇒ T̃ = T−> =

(
A−> 0
−A−>t̄ 1

)
=

(
A′ 0
t′ 1

)
We apply this transformation to the two planes:

p′1 = T̃ p1 =

(
A′ p̂1

t′ · p̂1 −∆1

)
, p′2 = T̃ p2 =

(
A′ p̂2

t′ · p̂2 −∆2

)
.

This means that the normal vectors of the resulting planes are, too, parallel: A′ p̂1 = ±A′ p̂2. Since
the normal vectors are parallel, the two planes p′1 and p′2 are parallel.

5.2. If x is a proper point, the canonical form of its homogeneous coordinates is x = ( x̄ 1 ), where x̄ are
the Cartesian coordinates. We apply the affine transformation T, defined in the previous exercise,
to x:

x′ = T x =

(
A t̄
0 1

) (
x̄
1

)
=

(
A x̄ + t̄

1

)
This is, again, a proper point since the third element of x′ is not zero.

A proper line in 3D must intersect with a proper point, in fact with infinitely many proper points. If
we transform the line in accordance with the affine transformation T (using the dual transformation
T̃) then these proper points remain proper. The transformed line must intersect these proper points
and is, therefore, a proper line.

The same argument applies to a proper plane, which must include at least one proper point (or, in
fact, infinitely many proper points).

5.3. If x is a point at infinity, its homogeneous coordinates can be written as x = (x̄0), where x̄ represents
an orientation in 3D space. We apply the affine transformation T, defined in the previous exercise,
to x:

x′ = T x =

(
A t̄
0 1

) (
x̄
0

)
=

(
A x̄ + t̄

0

)
This is, again, a point at infinity since the third element of x′ is zero.

A line at infinity in 3D includes only points at infinity. If we transform the line in accordance with
the affine transformation T, then these points at infinity remain at infinity. The transformed line
includes only these points at infinity and is, therefore, a line at infinity.

The same argument applies to the plane at infinity, which include exactly all points at infinity. They
are transformed by T to the set of all points at infinity and intersect with the plane at infinity.
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5.4. An affine 3D transformation can be described in terms of the Cartesian coordinates of a point
before, (uk, vk, wk), and after, (u′k, v

′
k, w

′
k), the transformation asu′kv′k

w′k

 =

a11 a12 a13

a21 a22 a23

a31 a32 a33

ukvk
wk

+

t1t2
t3


If the coordinates (uk, vk, wk) and (u′k, v

′
k.w
′
k) are known, this last equation represents three linear

equations in the parameters of the affine transformation:

u′kv′k
w′k

 =

 uk vk wk 0 0 0 0 0 0 1 0 0
0 0 0 uk vk wk 0 0 0 0 1 0
0 0 0 0 0 0 uk vk wk 0 0 1





a11

a12

a13

a21

a22

a23

a31

a32

a33

t1
t2
t3


Given four pairs of points, before and after the transformation, for k = 1, . . . , 4, this leads to

u′1
v′1
w′1
u′2
v′2
w′2
u′3
v′3
w′3
u′4
v′4
w′4


︸ ︷︷ ︸

=b

=



u1 v1 w1 0 0 0 0 0 0 1 0 0
0 0 0 u1 v1 w1 0 0 0 0 1 0
0 0 0 0 0 0 u1 v1 w1 0 0 1
u2 v2 w2 0 0 0 0 0 0 1 0 0
0 0 0 u1 v2 w2 0 0 0 0 1 0
0 0 0 0 0 0 u2 v2 w2 0 0 1
u3 v3 w3 0 0 0 0 0 0 1 0 0
0 0 0 u3 v3 w3 0 0 0 0 1 0
0 0 0 0 0 0 u3 v3 w3 0 0 1
u4 v4 w4 0 0 0 0 0 0 1 0 0
0 0 0 u4 v4 w4 0 0 0 0 1 0
0 0 0 0 0 0 u4 v4 w4 0 0 1


︸ ︷︷ ︸

=A



a11

a12

a13

a21

a22

a23

a31

a32

a33

t1
t2
t3


︸ ︷︷ ︸

=z

,

⇒ A z = b, ⇒ z = A−1b

5.5. XXX

5.6. Define a new coordinate system with origin at ∆ p̂, the point on the plane closest to the origin.
An ON-basis is given by t̂1, t̂2, p̂, where t̂1, t̂2 are tangent to the plane. The reflection implies
that if (c1, c2, c3) are the Cartesian coordinates of a point relative to this coordinate system, then
the reflected point has coordinates (c1, c2,−c3). Let x̄ be the Cartesian coordinates of some point
relative to the original coordinate system. Its coordinates in the new coordinate system are then:c1c2

c3

 =

t̂1 · (x̄−∆ p̂)

t̂2 · (x̄−∆ p̂)
p̂ · (x̄−∆ p̂)

 =

 t̂>1 x̄

t̂>2 x̄
p̂>x̄−∆

 ⇒

 c1
c2
−c3

 =

 t̂>1 x̄

t̂>2 x̄
∆− p̂>x̄


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We reconstruct the Cartesian coordinates of the transformed point relative to the original coordinate
system:

x̄′ = t̂1c1 + t̂2c2 − p̂c3 + ∆ p̂ = t̂1t̂
>
1 x̄ + t̂2t̂

>
2 x̄− p̂p̂>x̄ + 2 ∆ p̂

The same expression in homogeneous coordinates read

x′ =

(
x̄′

1

)
=

(
t̂1t̂
>
1 x̄ + t̂2t̂

>
2 x̄− p̂p̂>x̄ + 2 ∆ p̂

1

)
=

(
t̂1t̂
>
1 + t̂2t̂

>
2 − p̂p̂> 2 ∆ p̂

0 1

)
︸ ︷︷ ︸

=T in IREG Equation (6.6)

(
x̄
1

)
︸︷︷︸

=x

5.7. XXX
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6 Introduction to estimation

6.1. We use the computations outlined in IREG, Section 12.1:

(s1, s2) = (0, 0), s11 = 1, s22 = 2, s12 = 0

The line that minimizes εV has parameters given as

kV =
s12

s11
=

0

1
= 0, lV =

s11s2 − s12s1

s11
=

0

1
= 0

This is a horizontal line that intersects the origin. The line that minimizes εH has parameters given
as

kH =
s22

s12
=

2

0
=∞, lH =

s12s2 − s22s1

s12
=

0

0

This is a vertical line. From the symmetry of the data, it too must intersect the origin. In summary,
we get two lines estimated from the same data that are perpendicular.

6.2. We use the parametric representation of the line, as suggested in the exercise:

x̄(t) = x̄0 + t n̂,

where x̄0 is some point on the line, and n̂ is a normalized tangent direction of the line. Using the
same approach as in exercise 1.8, the point x̄(t) on the line that is closest to some point x̄ is given
by t = n̂ · (x̄− x̄0). The distance between x̄ and the line is then

d(x̄) = ‖(x̄− x̄0)− n̂n̂>(x̄− x̄0)‖ = ‖(I− n̂n̂>) (x̄− x̄0)‖ = ‖P (x̄− x̄0)‖.

Notice that P = I− n̂n̂T is a projection operator onto the subspace of R3 that is orthogonal to n̂.
Therefore: P>P = P P = P.

The cost function that we want to minimize is

ε =

N∑
k=1

d(x̄k)2 =

N∑
k=1

‖P (x̄k − x̄0)‖2 =

N∑
k=1

(x̄k − x̄0)>P (x̄k − x̄0).

We want to minimize ε over x̄0 ∈ R3 and n̂ ∈ S2. Starting with x̄0, it should satisfy

0 = ∇x0
ε =

dε

dx̄0
= 2

N∑
k=1

P (x̄k − x̄0).

or,

N P x̄0 = P

N∑
k=1

x̄k, ⇒ P x̄0 = P
1

N

N∑
k=1

x̄k.

A straight-forward choice for x̄0 is

x̄0 =
1

N

N∑
k=1

x̄k = x̄c,

the center of gravity, or mean position, of the 3D points. We can also add an arbitrary component
of n̂ to this x̄0, which is then canceled by P, and this still gives a point on the line.
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By choosing x̄0 = x̄c, we can rewrite ε as

ε =

N∑
k=1

(x̄k − x̄c)
>P (x̄k − x̄0) =

=ε0︷ ︸︸ ︷
N∑
k=1

‖x̄k − x̄c‖2−

=ε1︷ ︸︸ ︷
n̂>

(
N∑
k=1

(x̄k − x̄c) (x̄k − x̄c)
>

)
︸ ︷︷ ︸

=A A>

n̂,

where A is a 3 × N matrix that holds the coordinates of the 3D points relative to the center of
gravity in its columns:

A =
(
x̄1 − x̄c, x̄2 − x̄c, . . . , x̄N − x̄c

)
. (4)

This ε should now be minimized over unit vectors n̂. Notice that the first term, ε0, does not depend
on n̂, and that minimizing ε then means to maximize the second term, ε1. Since n̂ is constrained
by c = ‖n̂‖2 = n̂>n̂ = 1, we need to use Lagrange’s method and choose n̂ such that

∇n̂ε1 = λ∇n̂c ⇒ A A> n̂ = λ n̂. (5)

Here, λ is the Lagrange multiplier of the optimization problem. Notice that A A> is a 3 × 3
symmetric and positive indefinite matrix, i.e., all eigenvalues of AA> are non-negative, and we can
always find an ON-basis of corresponding eigenvectors. The last result in Equation (5) means that
n̂ is a normalized eigenvector of A A>, with eigenvalue λ, which leads to

ε = ε0 − n̂>A A> n̂ = ε0 − λ.

To minimize ε, λ should be the largest eigenvalue of A A>. We can now summarize all this to: x̄0

can be chosen as the mean of the 3D points and n̂ should be a normalized eigenvector corresponding
to the largest eigenvalue of A A>, where A is described in Equation (4).

Notice that this formulation is the same as was derived in IREG Section 12.2 for the case of a 2D
line. An alternative formulation of n̂ is as a right singular vector of A corresponding to the largest
singular value.

6.3. To determine the Plücker coordinates, we need two distinct points on the line. From exercise 6.2,
we know that one point can be chosen as x̄c, the center of gravity of the point set. Another point
on the line is the ideal point (at infinity) in the direction of ±n̂, where n̂ is a normalized eigenvector
corresponding to the largest eigenvalue of A A>. These two points have homogeneous coordinates
given as

x1 ∼
(

x̄c
1

)
, x2 ∼

(
n̂
0

)
.

The Plücker coordinates of the line that passes through these two points is given as

L ∼ x1x
>
2 − x2x

>
1 =

(
x̄cn̂

> − n̂ x̄>c −n̂
n̂> 0

)
.

6.4. XXX

6.5. XXX

6.6. XXX

6.7. XXX
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6.8. The relation L̃kx = 0 for k = 1, . . . , N can also be written as
L̃1

L̃2

...

L̃N


︸ ︷︷ ︸

=A

x = 0 ⇒ A x = 0

6.9. Using the result from the previous exercise:

A>A =
(
L̃>1 L̃>2 . . . L̃>N

)


L̃1

L̃2

...

L̃N

 = L̃>1 L̃1 + L̃>2 L̃2 + . . .+ L̃>N L̃N
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7 Homographies

7.1. The unsophisticated approach (or: don’t think, just do the math).

A 3D line has a parametric representation as

x̄(s) = x̄0 + s t̂ (6)

where x̄0 is the Cartesian coordinates of some point on the line and t̂ is a tangent vector of the line.
We want to show that these points are mapped to points that also corresponds to a parametric
representation of a 3D line. The homography transformation can be expressed in homogeneous
coordinates:

x′(s) =

(
x̄′(s)

1

)
∼ H x =

(
H11 h̄12

h̄>21 h33

)
︸ ︷︷ ︸

4×4

(
x̄(s)

1

) Here, 4×4 matrix H is partitioned into
a 3 × 3 matrix H11, two 3-dim vectors
h̄12 and h̄21, and a scalar h33.

The image of the line under the homography transformation is a curve given by the Cartesian
coordinates

x̄′(s) =
H11x̄(s) + h̄12

h̄>21x̄(s) + h33

We want to show that this curve is a line. We expand this expression using Equation (6):

x̄′(s) =
H11(x̄0 + s t̂) + h̄12

h̄>21(x̄0 + s t̂) + h33

=
H11x̄0 + h̄12

h̄>21x̄0 + h33︸ ︷︷ ︸
=x̄′0

+
H11(x̄0 + s t̂) + h̄12

h̄>21(x̄0 + s t̂) + h33

− H11x̄0 + h̄12

h̄>21x̄0 + h33︸ ︷︷ ︸
=x̄′1(s)

Note that x̄′0 is the image of x̄0 under the homography mapping, and that x̄′1(s) describes the curve
relative to x̄′0. We simplify x̄′1(s):

x̄′1(s) =
H11(x̄0 + s t̂) + h̄12

h̄>21(x̄0 + s t̂) + h33

− H11x̄0 + h̄12

h̄>21x̄0 + h33
=

=
t

(h̄>21(x̄0 + s t̂) + h33)(h̄>21x̄0 + h33)︸ ︷︷ ︸
a scalar function σ(s)

(
(h>21x̄0 + h33)H11t̂− (h>21t̂(H11x̄0 + h12)

)︸ ︷︷ ︸
a vector t̄′, independent of s

In summary:
x̄′(s) = x̄′0 + σ(s) t̄′

This is the parametric representation of a 3D line that passes through the point x̄′0 with t̄′ as
tangent vector.

The sophisticated approach (or: think first, then do the math)

The homogeneous coordinates of all points on a 3D line form a 2D subspace S ⊂ R4. Since a
homography is represented as a non-singular linear transformation on R4, the image of S is, again,
a 2D subspace S′. Also this S′ contains exactly the homogeneous coordinates of all points on a 3D
line.

7.2. The homography transforms a 3D point x to a 3D point x’ in accordance with y′ ∼ H x. The
Plücker coordinates of a 3D line is formed from the homogeneous coordinates of two points on the
line, say x1 and x2:

L = x1x
>
2 − x2x

>
1 .
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We get the transformed Plücker coordinates by first transforming the two points and then forming
the Plücker coordinates:

L′ ∼ x′1x
′
2
> − x′2x

′
1
>

= H x1

(
H x2

)> −H x2

(
H x1

)>
=

= H x1x
>
2 H> −H x2x1H

> = H L H>.

See also IREG Section 6.6.

7.3. The four points to be transformed have Cartesian coordinates given as

ȳ1 =

(
1
1

)
, ȳ2 =

(
1
−1

)
, ȳ3 =

(
−1
−1

)
, ȳ4 =

(
−1
1

)
.

y1

y2y3

y4

The corresponding homogeneous coordinates are inserted into the columns of a matrix Y:

Y =

1 1 −1 −1
1 −1 −1 1
1 1 1 1

 .

The homogeneous coordinates of the transformed points are obtained by multiplying H onto Y,
from left:

Y′ = H Y =

 1 1 1
−1 2 0
0 1 −1

 1 1 −1 −1
1 −1 −1 1
1 1 1 1

 =

3 1 −1 1
1 −3 −1 3
0 −2 −2 0

 .

This means that the first and fourth points are both transformed to points at infinity. y′1 lies
in the direction ±(3, 1) and y′4 lies in the direction ±(1, 3). The Cartesian coordinates of the
transformation of points two and three are

ȳ′2 =
1

(−2)

(
1
−3

)
=

(
− 1

2

3
2

)
, ȳ′3 =

1

(−2)

(
−1
−1

)
=

(
1
2

1
2

)
.

We draw these transformed points in a figure. Missing
in this figure is the line between points y′1 and y′4. Since
both these points are at infinity, this line is the line at
infinity.

y′2

y′3
y′1

y′1

y′4

y′4
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It remains to determine how the interior of the square is mapped to the transformed space. A
simple approach is to transform a set of points that lie between the four corners of the square. For
example, we can look at these points:

ȳ5 =

(
1
0

)
, ȳ6 =

(
0
−1

)
, ȳ7 =

(
−1
0

)
, ȳ8 =

(
0
1

)
.

y1

y2y3

y4

y5

y6

y7

y8

If we apply the homography transformation also to these points, we get the corresponding Cartesian
coordinates:

ȳ′5 =

(
−2
1

)
, ȳ′6 =

(
0
1

)
, ȳ′7 =

(
0
−1

)
, y′8 lies a infinity.

We plot these new points in the figure:

y′2

y′3

y′5 y′6

y′7

y′1

y′1

y′4

y′4

As a result, the square is transformed to the infinitely large shape depicted in the figure below.
Notice that y′1 and y′4 lie at infinity.

y′2

y′3

y′5 y′6

y′7

y′1

y′4

7.4. From the solution of exercise 7.3 follows that both ȳ1 = (1, 1) and ȳ4 = (−1, 1) are mapped to
infinity.
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7.5. The dual homogeneous coordinates of the line that passes through y1 and y4 is given as

l14 ∼ y1 × y4 =

1
1
1

×
−1

1
1

 =

 0
−2
2

 .

The dual transformation of H is given as

H̃ = H−> ∼

 2 1 1
−2 1 1
2 1 −3

 .

We apply this transformation to the line l14:

l′14 = H̃ l =

 2 1 1
−2 1 1
2 1 −3

  0
−2
2

 =

 0
0
−5

 .

This is the line at infinity, which is the line that passes through every point at infinity
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8 Pinhole cameras

8.1. XXX

8.2. Any line that passes through the camera center is mapped to a point in the image instead of a line.
The point is at infinity if the line is parallel to the image plane.

8.3. For example: the three plane with dual homogeneous coordinates given as the three rows of the
camera matrix C. Each such row must be orthogonal to the homogeneous coordinates of the camera
center, n, since C n = 0.

8.4. XXX

8.5. The homogeneous coordinates of the image center, n, in the world coordinate system related to the
camera mapping, must satisfy

C n = 0

In this case, this this leads to the equation

1 2 3 4
4 3 2 1
1 1 2 2



n1

n2

n3

1

 =


0
0
0
0

 ⇔

1 2 3
4 3 2
1 1 2

 n1

n2

n3

 =

−4
−1
−2


where (n1, n2, n3) are the 3D coordinates of the camera center in the world coordinate system.
Solving this equation (e.g., using Matlab) gives (n1, n2, n3) = (5/3,−2,−5/6).

8.6. The images of the two points are given by

y1 ∼ C x1 =

1 2 3 4
4 3 2 1
1 1 2 2




1
2
3
4

 =

30
20
17

 ∼
30/17

20/17
1

 ⇒
(
u
v

)
=

(
30/17
20/17

)

y2 ∼ C x2 =

1 2 3 4
4 3 2 1
1 1 2 2




4
3
2
1

 =

20
30
13

 ∼
20/13

30/13
1

 ⇒
(
u
v

)
=

(
20/13
30/13

)

8.7. The dual homogeneous coordinates of the intersecting line is given by

l = y1 × y2 =

−250
−45
450

 ∼
−50
−9
90



8.8. XXX

8.9. The camera center can be solved from the camera matrix in the same as in the previous exercise,
giving its 3D coordinates in the world coordinate system asn1

n2

n3

 =

 474.1
1116.7
653.5

 [mm]
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Alternatively, we can solve it from the matrix decomposition provided in the exercise. In the camera
centered 3D coordinate system, the camera center is (0, 0, 0). This point is the result of first rotating
(n1, n2, n3) by R and then translating by t, or, vice versa, if −t is rotated by R−1 = R>, the result
is (n1, n2, n3): n1

n2

n3

 = −R>t =

 474.1
1116.7
653.5

 [mm]

8.10. In the camera centered 3D coordinate system, the optical axis has direction (0, 0, 1). This direction
is obtained by taking the direction in the world coordinate system and rotate it with R, or, vice
versa, if we rotate (0, 0, 1) by R−1 = R> we get the direction of the optical axis in the world
coordinate system. The result of this operation is the third column of R> = the third row of R:

optical axis in the world coordinate system =

−0.2591
−0.8330
−0.4888



8.11. In camera centered image coordinates, the homogeneous coordinates of the principal point is (0, 0, 1),
and these camera centered image coordinates are transformed by A, i.e, the homogeneous coordi-
nates of the principal point is given by the third column of A:

homogeneous coordinates of the principal point =

 948.3
1298.2

1


and the corresponding image coordinates are (948.3, 1298.2). These are the pixel coordinates where
the first gives the vertical position and the second the horizontal position relative an origin at the
top left corner. Assuming that the image is 1944 pixels high and 2592 pixels wide, the image center
is at (972, 1296). This is relatively close in the horizontal direction, but more than 20 pixels off in
the vertical direction.

8.12. The square will become slightly wider than high (a rectangle) and on top of that it will be slightly
sheared, i.e., the rectangle will become slightly rhombic.

8.13. It is a point on the projection line generated by the image point y. This follows from the fact that
C C+y = I y = y, it the 3D point given by C+y is projected back to the image point y. Notice
that the 3D point C+y must be distinct from the camera center n, otherwise C C+y = 0.

8.15. XXX

8.16. XXX

8.17. XXX
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9 Estimation of transformations

9.1. The data matrix A, by definition, should be formulated such that A z = 0 in the ideal (noise free)
case, where z is the model to be determined. In this case z = l, the dual homogeneous coordinates
of the 2D line, and the rows should therefore be the homogeneous coordinates of the points:

A =

−4.89 105.4 1
0.88 100.2 1
5.55 95.68 1

 has singular values (σ1, σ2, σ3) = (174.09, 7.43, 0.0014)

This profile is ambiguous since there is indeed one very small singular value, σ3, but also σ2 is
several orders of magnitude smaller than σ1. Therefore it is difficult to state if one or both of σ3

and σ2 should be considered as approximately zero.

9.2. The right singular vector of A corresponding to the smallest singular value, σ3 is

l1 =

−0.0092
−0.0099
0.9999

 ∼
 0.6810

0.7323
−73.8935

 = l10

The vector l1 has norm = 1, the vector l10 is D-normalized to proper dual homogeneous coordinates.

9.3. As a geometric error we can use ‖Al10‖ where A is the data matrix with properly normalized
homogeneous coordinates of the 2D points and l10 is the properly normalized dual homogeneous
coordinates of the estimated line. This is equal to the sum of squares of distances between the
points and the line. We get ‖Al10‖ = 0.102696.

9.4. The centroid of the points is given by

1

3

[(
−4.89
105.4

)
+

(
0.88
100.2

)
+

(
5.55
95.68

)]
=

(
0.5133

100.4267

)
Translating the points by (−0.5133,−100.4267) then produces a new set of points with centroid at
(0, 0): (

−5.4033
4.9733

) (
0.3667
−0.2267

) (
5.0367
−4.7467

)
The mean distance from (0, 0) for these three points is 4.8986. By multiplying the coordinates of
the last three points with

√
2/4.8986 = 0.2887, we get Hartley-transformed points. They have their

centroid at (0, 0) and the mean distance to (0, 0) is =
√

2:(
−1.5599
1.4358

) (
0.1059
−0.0654

) (
1.4541
−1.3704

)
The transformation matrix that produces the corresponding homogeneous coordinates is given by

M =

0.2887 0 0
0 0.2887 0
0 0 1


︸ ︷︷ ︸

uniform scaling

1 0 −0.5133
0 1 −100.4267
0 0 1


︸ ︷︷ ︸

translation

=

0.2887 0 −0.1482
0 0.2887 −28.9932
0 0 1


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9.5.

A′ =

−1.5599 1.4358 1
0.1059 −0.0654 1
1.4541 −1.3704 1

 has singular values (2.9158, 1.7321, 0.0296)

This profile is less ambiguous than before: the first two singular values are of the same order of
magnitude, and the third is several orders of magnitude less and can be assumed to be approximately
zero. It is then more reasonable to assume that this last singular value corresponds to a unique
solution, given by the corresponding right singular vector.

9.6. We start with the right singular vector of A′ corresponding to the smallest singular value. This
gives us the estimated line in the Hartley-transformed coordinate system. In order to transform
point coordinates back to the original system, we multiply their homogeneous representation by
M−1. The corresponding transformation for lines is given by [M−1]−> = M>. Consequently, the
new estimate of the line, l2 is given as the right singular vector of A′ corresponding to the smallest
singular value, multiplied by M>:

l2 =

 0.1966
0.2114
−21.3312

 ∼
 0.6810

0.7322
−73.8870


The second numerical vector above, l10, is normalized to proper dual homogeneous coordinates.
This line is differs only slightly from the previous estimate.

9.7. Using the same geometric error as above gives us ‖Al10‖ = 0.102691. This is only a very small
decrease in the geometric error compared to the first estimate. NOTE: here we are computing the
error in the original coordinate system.

9.8. Based on the relation y′k ∼ H yk for the ideal, noise free, case, several alternatives are possible:

(1): The simplest one is a unsymmetric total L2 error:

ε1 =
∑
k

‖normP(y′k)− normP(H yk)‖2

This error quantifies the discrepancy between the transformed points only in one image, where the
primed coordinates are located.

(2): An alternative is to use a symmetric error and measure the discrepancy in both images:

ε2 =
∑
k

[
‖normP(y′k)− normP(H yk)‖2 + ‖normP(yk)− normP(H−1 y′k)‖2

]
IMPORTANT: With yk = (uk, vk) and y′k = (u′k, vk), each term in the “forward error” ε1 can be
express explicitly as∥∥∥∥(u′k, v

′
k)−

(
h11uk + h12vk + h13

h31uk + h32vk + h33
,
h21uk + h22vk + h23

h31uk + h32vk + h33

)∥∥∥∥2

The corresponding terms for the “backward error” are given as∥∥∥∥(uk, vk)−
(
h′11u

′
k + h′12v

′
k + h′13

h′31u
′
k + h′32v

′
k + h′33

,
h′21u

′
k + h′22v

′
k + h′23

h′31u
′
k + h′32v

′
k + h′33

)∥∥∥∥2
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where h′ij are the elements of H−1. These terms are, in general, different than those of the “forward
error”, and they do not add to the same value. Consequently, the “forward” and “backward” errors
are not the same in general, and should be added to get a proper symmetric error.

(3): Another alternative is to use an L1 error, for example:

ε1 =
∑
k

‖normP(y′k)− normP(H yk)‖

Here, the distances are not squared. This type of error, however, has singularities in the gradient
with respect to H for any H that makes one of the terms = 0, since the sign of the corresponding
derivative changes sign in a discontinuous way. Therefore, this type of error is not suitable for
iterative optimization, unless we can sure that we can avoid these singularities.

9.9. None of the alternatives for a geometric error can be minimized by solving some simple (linear)
equation. Instead iterative methods must be used.

9.10. The lines as related as
l′k ∼ H̃ lk (7)

where H̃ is the dual transformation of H, i.e., H̃ = H−>. This leaves, at least, two options for the
estimation of H.

(1): Rewrite Equation (7) using DLT into

0 = [ l′k ]×H̃ lk

This generates two linear homogeneous equations in H̃ for each pair of corresponding lines, and we
can then estimate H̃ in the same way as H is estimated from points. Once H̃ is determined, we get
H = H̃−>.

(2): rewrite Equation (7) by applying the transformation H> to both sides:

H>l′k ∼ H>H̃ lk = H>H−> lk = lk

Now, use DLT to get
[ lk ]×H>l′k = 0

This generates two linear homogeneous equations in H (or in H>) for each pair of corresponding
lines, and we can then estimate H directly.

In general, the two strategies gives slightly different estimates since the corresponding error functions
are not identical. The minimal number of corresponding lines is 4, which follows for the same reason
as for estimation of H from point pairs.

9.11. XXX

9.12. XXX

9.13. An idea (RANSAC): Select a minimal set of hypothetical correspondences (4 pairs!), estimate a
homography from these hypothetical correspondences, check how many of the other points that
can be brought into correspondence by means of the estimated homography. If the number of
correspondences that emerges is sufficiently high: use them, otherwise select a new minimal set
and start all over again. The selection of hypothetical points can either be made systematically or
randomly. The second option is useful when the number of correct correspondences in relation to
the number of possible selections is small.

9.14. XXX
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10 Representations of 3D rotations

10.1. Set

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33


As parameters we can choose, for example, r11, r12, and r21. Notice that, except for the sign, r31 is
given directly from r11 and r21:

r2
31 = 1− r2

11 − r2
21, (8)

which is derived from one of the constraints on R: r2
11 + r2

21 + r2
31 = 1. This means that we cannot

use r31 as a free parameter together with r11 and r21. Similarly, r32 is given from r12 and r22:

r2
32 = 1− r2

12 − r2
22.

To determine also r22 we can use the constraint

r11r12 + r21r22 + r31r32 = 0,

which together with the two constraints above leads to

(1− r2
11 − r2

21)(1− r2
12 − r2

22)− (r11r12 + r21r22)2 = 0.

The left hand side is a second order polynomial in the unknown r22, that can be solved by standard
methods.

Once r11, r12, and r21 are determined, then r31, r22 and r32 can be determined, although with
multiple choices. In order to satisfy Equation (8) we must require that r2

11 + r2
21 ≤ 1. There is also

a constraint
r2
13 = 1− r2

11 − r2
12

which can be satisfied only if r2
11 + r2

12 ≤ 1.

For each values of (r12, r12, r21) within these ranges, there are two possible values for r31 and for
r22. For r31 these two values only differ by a sign, while for r22 the absolute values of the two
possibilities are distinct, in general. This means that r32 can have 4 different values for each set of
(r12, r12, r21).

Once the values of the first two columns in R have been determined from (r12, r12, r21), with 4
different outcomes, the third columns if given uniquely as the cross product of the first and second
column.

In summary, this representation of R ∈ SO(3) is ambiguous (one-to-many) since the remaining
elements cannot be uniquely determined from only three of them. There are no singularities,
however. But because of the ambiguities, the representation is not very useful.

10.2. Given a rotation axis n̂ and rotation angle α, Rodrigues formula gives the rotation matrix R as

R = I + (1− cosα)[ n̂ ]2× + sinα[ n̂ ]×

For small angles: cosα ≈ 1 and sinα ≈ α, leading to

R ≈ I + α[ n̂ ]× = I + [α n̂ ]×

Assuming that this approximation is valid, we get

[α n̂ ]× = R− I, ⇒ α n̂ = [ R− I ]×

This allows us to uniquely determine both n̂ and α, at least if the right hand side is 6= 0.
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10.3. XXX

10.4. By definition R2 and R1 form a twisted pair if Q1 = R>2 R1 is a rotation by 180◦ about some
axis n̂, so the first combination Q1 is already checked. The inverse of this rotation must also be a
rotation by 180◦, about the same axis n̂, and it is given as (R>2 R1)−1 = (R>2 R1)> = R>1 R2 = Q2.
This Q2 is the second combination in the list. Notice that Q1 = Q2 since rotating by 180◦ twice
gives an identity operation.

The third combination is R2R
>
1 , which can be rewritten as

Q3 = R2R
>
1 = R2R

>
1 R2R

>
2︸ ︷︷ ︸

=I

= R2 R>1 R2︸ ︷︷ ︸
=Q2

R>2 = R2Q2R
>
2

We can then interpret Q3 as: it does the same thing as Q2 does, i.e., rotates by 180◦, but in a
coordinate system that is rotated by R>2 . Consequently, instead of rotating about n̂, Q3 rotates
about n̂′ that is related to n̂ by n̂ = R>2 n̂′, or n̂′ = R2n̂.

For the same reason that Q1 = Q2, it follows that Q3 = Q4 where Q4 = R1R
>
2 . Consequently,

Q4 too is rotation by 180◦ about n̂′. But, in a similar way as for Q3 it can also be rewritten as
Q4 = R1Q1R

>
1 . We can interpret this as: Q4 does the same thing as Q1 does, i.e., rotates by 180◦,

but in a coordinate system that is rotated by R>1 . The rotation axis for Q1 is n̂ and for Q4 it is
n̂′. They must be related as n̂ = R>1 n̂′, or n̂′ = R1n̂.

10.5. See the previous exercise.

10.6. Let q1 and q2 be two quaternions, each with its four elements given as:

q1 =


s1

a1

b1
c1

 , q2 =


s2

a2

b2
c2

 .

We can also represent the two quaternions in terms of a combination of a scalar (the real part) and
a vector (the imaginary part):

q1 :

s1,

a1

b1
c1

 , q2 :

s2,

a2

b2
c2

 , ⇒ q∗2 :

s2,

−a2

−b2
−c2

 .
The scalar component of the quaternion product q∗2 ◦ q1 is given as (see IREG Equation (7.10)):

s1s2 −

−a2

−b2
−c2

 ·
a1

b1
c1

 = s1s2 + a1a2 + b1b2 + c1c2 = q1 · q2

This means that the scalar component vanishes, corresponding to a rotation by 180◦, exactly when
the vectors representing the quaternions are orthogonal: q1 · q2 = 0.
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11 Estimation involving transformations

11.1. XXX
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