
12 Dual bases

12.1. The metric G is defined as

G =

 
h b

1

| b
1

i h b
2

| b
1

i

h b
1

| b
2

i h b
2

| b
2

i

!
=

✓
1 1
1 2

◆

Its inverse it then

G�1 =
1

detG

 
G

22

�G
12

�G
21

G
11

!
=

1

1

✓
2 �1
�1 1

◆
=

✓
2 �1
�1 1

◆

12.2. The dual basis vectors are given as

b̃
1

= b
1

G�1

11

+ b
2

G�1

21

= 2 b
1

� b
2

=

✓
1
�1

◆

b̃
1

= b
1

G�1

12

+ b
2

G�1

22

= �b
1

+ b
2

=

✓
0
1

◆

12.3. The dual basis vectors should satisfy
 
h b̃

1

| b
1

i h b̃
2

| b
1

i

h b̃
1

| b
2

i h b̃
2

| b
2

i

!
=

 
1 0

0 1

!

Inserting the numerical values of the original and the dual basis vectors shows that this is correct.

12.4. The coordinates of v relative to the basis {b
1

,b
2

} are given as

c
1

= h v | b̃
1

i = �3

c
2

= h v | b̃
2

i = 2

12.5. The dual coordinates of v are given as

c̃
1

= h v | b
1

i = �1

c̃
2

= h v | b
2

i = 1

12.6. The last two results can be verified by using the coordinates in a linear combination with the basis
vectors, or the dual coordinates in a linear combination with the dual basis vectors. In both cases
the result should be v:

c
1

b
1

+ c
2

b
2

=

✓
�1
2

◆
= v

c̃
1

b̃
1

+ c̃
2

b̃
2

=

✓
�1
2

◆
= v
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12.7. The metric is

G = B>G
0

B =

✓
1 0
1 1

◆✓
2 �1
�1 2

◆✓
1 1
0 1

◆
=

✓
2 1
1 2

◆

and its inverse is

G�1 =
1

3

✓
2 �1
�1 2

◆

12.8. The dual basis matrix B̃ is

B̃ = BG�1 =

✓
1 1
0 1

◆
1

3

✓
2 �1
�1 2

◆
=

1

3

✓
1 1
�1 2

◆

This means that the two dual basis vectors are

b̃
1

=
1

3

✓
1
�1

◆
, and b̃

2

=
1

3

✓
1
2

◆

We can verify this result by looking at the pairwise scalar products between basis vectors and dual
basis vectors:

B>G
0

B̃ =

✓
1 0
1 1

◆✓
2 �1
�1 2

◆
1

3

✓
1 1
�1 2

◆
=

✓
1 0
0 1

◆
= I

This means that the basis and the dual basis are in a dual relation to each other.

12.9. The coordinates of v are computed as

c
1

= h v | b̃
1

i = b̃>
1

G
0

v =
1

3

�
1 �1

�✓ 2 �1
�1 2

◆✓
�1
2

◆
= �3

c
2

= h v | b̃
2

i = b̃>
2

G
0

v =
1

3

�
1 2

�✓ 2 �1
�1 2

◆✓
�1
2

◆
= 2

Notice that these coordinates are the same as we computed in Exercise 12.4. This is reasonable
since we are still determining the coordinates of the same vector relative to the same basis.

12.10. The dual coordinates of v are given as

c̃
1

= h v | b
1

i = b>
1

G
0

v =
1

3

�
1 0

�✓ 2 �1
�1 2

◆✓
�1
2

◆
= �4

c̃
2

= h v | b
2

i = b>
2

G
0

v =
1

3

�
1 1

�✓ 2 �1
�1 2

◆✓
�1
2

◆
= 1

The dual coordinates have changed relative to Exercise 12.6 since the dual basis has changed due
to the new scalar product. We verify this result by computing the linear combination of the dual
coordinates and the dual basis vectors:

c̃
1

b̃
1

+ c̃
2

b̃
2

= �4 · 1
3

✓
1
�1

◆
+ 1 · 1

3

✓
1
2

◆
=

✓
�1
2

◆
= v

12.11. All properties of the scalar product are trivially satisfied except that h v | v i > 0 for all v 6= 0.
To check this property we need to check that G

0

is positive definite, i.e., that its eigenvalues are
positive. They are the roots of the characteristic polynomial of G

0

:

det (G
0

� � I) = det

✓
2� � �1
�1 2� �

◆
= (2� �)2 � 1 = 0, ) �

1

= 1, �
2

= 3
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12.12. The basis matrix is

B =

✓
i 1
0 i

◆
,

which gives the Gram matrix as

G = B?G
0

B =

✓
�i 0
1 �i

◆ ✓
3 �2 + i

�2� i 2

◆ ✓
i 1
0 i

◆
=

✓
3 �2� 2i

�2 + 2i 3

◆
.

12.13. To determine the dual basis, we need the inverse of G:

G�1 =
1

detG

✓
G

22

�G
12

�G
21

G
11

◆
=

1

1

✓
3 2 + 2i

2� 2i 3

◆
=

✓
3 2 + 2i

2� 2i 3

◆
.

The dual basis matrix is then given as

B̃ = BG�1 =

✓
i 1
0 i

◆ ✓
3 2 + 2i

2� 2i 3

◆
=

✓
2 + i 1 + 2i
2 + 2i 3i

◆

The corresponding dual basis vectors are found in the columns of B̃:

b̃
1

=

✓
2 + i
2 + 2i

◆
, b̃

2

=

✓
1 + 2i
3i

◆

We can verify this result by checking the scalar products between basis vectors and dual basis
vectors:

h b
1

| b̃
1

i = b̃?

1

G
0

b
1

=
�
2� i 2� 2i

� ✓ 3 �2 + i
�2� i 2

◆ ✓
i
0

◆
= 1,

h b
1

| b̃
2

i = b̃?

2

G
0

b
1

=
�
1� 2i �3i

� ✓ 3 �2 + i
�2� i 2

◆ ✓
i
0

◆
= 0,

h b
2

| b̃
1

i = b̃?

1

G
0

b
2

=
�
2� i 2� 2i

� ✓ 3 �2 + i
�2� i 2

◆ ✓
1
i

◆
= 0,

h b
2

| b̃
2

i = b̃?

2

G
0

b
2

=
�
1� 2i �3i

� ✓ 3 �2 + i
�2� i 2

◆ ✓
1
i

◆
= 1.

This means that h b
i

| b̃
j

i = �
ij

, which is the defining relation between a basis and its dual basis.

12.14. The coordinates of v relative to the basis b
1

,b
2

are computed as

c
1

= h v | b̃
1

i = b̃?

1

G
0

v =
�
2� i 2� 2i

� ✓ 3 �2 + i
�2� i 2

◆ ✓
�1
2

◆
= 2 + i,

c
2

= h v | b̃
2

i = b̃?

2

G
0

v =
�
1� 2i �3i

� ✓ 3 �2 + i
�2� i 2

◆ ✓
�1
2

◆
= �2i,

We can verify this result:

c
1

b
1

+ c
2

b
2

= (2 + i)

✓
i
0

◆
� 2i

✓
1
i

◆
=

✓
�1
2

◆
= v.
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12.15. The dual coordinates are given as scalar products between the vector v and the basis vectors:

c̃
1

= h v | b
1

i = b?

1

G
0

v =
�
�i 0

� ✓ 3 �2 + i
�2� i 2

◆ ✓
�1
2

◆
= 2 + 7i,

c̃
2

= h v | b
2

i = b?

2

G
0

v =
�
1 �i

� ✓ 3 �2 + i
�2� i 2

◆ ✓
�1
2

◆
= �6� 4i,

We can verify this result:

c̃
1

b̃
1

+ c̃
2

b̃
2

= (2 + 7i)

✓
2 + i
2 + 2i

◆
+ (�6� 4i)

✓
1 + 2i
3i

◆
=

✓
�1
2

◆
= v.

12.16. G
0

is Hermitian, i.e., G?

0

= G
0

(where G?

0

denotes transpose and complex conjugation). As a
consequence, all eigenvalues of G

0

are real, but they should also be positive to assure that G
0

represents a scalar product. We check this by determining the eigenvalues of G
0

, for example as
roots of the characteristic polynomial of G

0

:

�
1

⇡ 4.79, �
2

⇡ 0.21.

Since both eigenvalues are positive and G
0

is Hermitian, we conclude that it represents a scalar
product.

12.17. XXX
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13 Subspaces

13.1. The metric is computed as

G =

 
h b

1

| b
1

i h b
2

| b
1

i

h b
1

| b
2

i h b
2

| b
1

i

!
=

 
b>
1

G
0

b
1

b>
1

G
0

b
2

b>
2

G
0

b
1

b>
2

G
0

b
2

!
=

✓
2 1
1 2

◆
.

The inverse metric is

G�1 =
1

detG

✓
G

22

�G
12

�G
21

G
11

◆
=

1

3

✓
2 �1
�1 2

◆
.

13.2. The basis matrix B holds the basis vectors in its columns:

B =

0

@
1 0
1 1
0 1

1

A .

The dual basis matrix is computed as

B̃ = BG�1 =

0

@
1 0
1 1
0 1

1

A 1

3

✓
2 �1
�1 2

◆
=

1

3

0

@
2 �1
1 1
�1 2

1

A .

The columns of B̃ contain the dual basis vectors:

b̃
1

=
1

3

0

@
2
1
�1

1

A , b̃
2

=
1

3

0

@
�1
1
2

1

A .

13.3. The basis vectors and the dual basis vectors should be related as h b
i

| b̃
j

i = �
ij

. This can also be
expressed in terms of the basis matrices as B̃>G

0

B = I. We check this last expression:

B̃>G
0

B =
1

3

✓
2 1 �1
�1 1 2

◆0

@
1 0
1 1
0 1

1

A =

✓
1 0
0 1

◆
= I, OK!

13.4. The coordinates of v
1

are given as the scalar products between the dual basis vectors and the vector
v:

c = B̃>G
0

v =
1

3

✓
2 1 �1
�1 1 2

◆0

@
1
1
1

1

A =
1

3

✓
2
2

◆
.

13.5. To obtain the vector v
1

we form a linear combination of the basis vectors in B and the coordinates
in c:

v
1

= B c =

0

@
1 0
1 1
0 1

1

A 1

3

✓
2
2

◆
=

1

3

0

@
2
4
2

1

A .
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13.6. The component of v that lies in the orthogonal complement of the subspace is determined as

v
0

= v � v
1

=

0

@
1
1
1

1

A� 1

3

0

@
2
4
2

1

A =
1

3

0

@
1
�1
1

1

A .

We can verify that v
0

lies in the orthogonal complement of the subspace by checking that v
0

is
orthogonal to the subspace basis. To do this we compute the scalar products between the subspace
basis and v

0

:

B>G
0

v
0

=
1

3

✓
1 1 0
0 1 1

◆0

@
1
�1
1

1

A =

✓
0
0

◆
.

13.7. The metric is computed in the same way in exercise 13.1, but now with a di↵erent scalar product:

G =

 
h b

1

| b
1

i h b
2

| b
1

i

h b
1

| b
2

i h b
2

| b
1

i

!
=

 
b>
1

G
0

b
1

b>
1

G
0

b
2

b>
2

G
0

b
1

b>
2

G
0

b
2

!
=

✓
3 2
2 3

◆
.

The inverse metric is

G�1 =
1

detG

✓
G

22

�G
12

�G
21

G
11

◆
=

1

5

✓
3 �2
�2 3

◆
.

13.8. The dual basis vectors are computed in the same way in as exercise 13.2, but now with a di↵erent
metric:

B̃ = BG�1 =

0

@
1 0
1 1
0 1

1

A 1

5

✓
3 �2
�2 3

◆
=

1

5

0

@
3 �2
1 1
�2 3

1

A .

The columns of B̃ contain the dual basis vectors:

b̃
1

=
1

5

0

@
3
1
�2

1

A , b̃
2

=
1

5

0

@
�2
1
3

1

A .

13.9. The vector v
1

is computed in the same way as in exercises 13.4 and 13.5, but now with a di↵erent
dual basis. First, we determine the coordinates of v

1

:

c = B̃>G
0

v =
1

5

✓
3 1 �2
�2 1 3

◆0

@
1
1
1

1

A =
1

5

✓
3
3

◆
.

Then, these coordinates are used in a linear combination with the basis vectors to form v
1

:

v
1

= B c =

0

@
1 0
1 1
0 1

1

A 1

5

✓
3
3

◆
=

1

5

0

@
3
6
3

1

A .

13.10. The vector v
1

is still the orthogonal projection of v into the subspace spanned by b
1

and b
2

. But
since the scalar product has changed, the notion of orthogonality has changed, and therefore how
to orthogonally project a vector into the subspace has changed. As a consequence, v

1

changes when
G

0

changes.
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13.11. XXX

13.12. We get

P2 = PP = B (B?G
0

B)�1B?G
0

B| {z }
=I

(B?G
0

B)�1B?G
0

= B (B?G
0

B)�1B?G
0

= P

This shows that P is a projection operator. We can decompose P as follows:

P = B|{z}
forms a lin-

ear combina-

tion with the

subspace ba-

sis

(B?G
0

B)�1

| {z }
transforms

dual coord.

to standard

coord.

B?G
0| {z }

forms scalar

products with

subspace basis

= dual coord.

Consequently, P performs an orthogonal projection onto the subspace spanned by the basis B.

13.13. We get

kv
1

k2 = h v
1

| v
1

i = v⇤
1

G
0

v
1

=
�
B (B?G

0

B)�1B?G
0

v
�⇤

G
0

B (B?G
0

B)�1B?G
0

v =

= v⇤G
0

B (B?G
0

B)�1B⇤G
0

B| {z }
=I

(B?G
0

B)�1B?G
0

v =

= v⇤G
0

B (B?G
0

B)�1B?G
0

v| {z }
=v1

= v⇤G
0

v
1

= h v
1

| v i

The identity h v
1

| v
1

i = h v | v
1

i follows from the symmetry of the scalar product.
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14 Normalized convolution, 1D signals

14.1. The basis vectors represented as columns vectors which are also functions of a discrete variable k,
with the origin of the variable at the center element of the vector. The two basis vectors are then

b
1

=

0

BBBB@

1
1
1
1
1

1

CCCCA
b
2

=

0

BBBB@

�2
�1
0
1
2

1

CCCCA
They are collected into a basis matrix: B =

0

BBBB@

1 �2
1 �1
1 0
1 1
1 2

1

CCCCA

14.2. Formally, the filter functions are given from the basis functions as

g
l

[k] = a[�k] b
l

[�k] = a[k] b
l

[�k] (1)

The complex conjugation can be skipped since we assume a real signal space. The applicability a
is symmetric: a[�k] = a[k]. In this case we get

g
1

=

0

BBBB@

1
2
3
2
1

1

CCCCA
point-wise multiplied with

0

BBBB@

1
1
1
1
1

1

CCCCA
=

0

BBBB@

1
2
3
2
1

1

CCCCA

g
2

=

0

BBBB@

1
2
3
2
1

1

CCCCA
point-wise multiplied with

0

BBBB@

2
1
0
�1
�2

1

CCCCA
=

0

BBBB@

2
2
0
�2
�2

1

CCCCA

14.3. In this case, with signal certainty = 1, the scalar product G
0

is only defined by the applicability
function. G

0

is a diagonal matrix with the applicability function in its diagonal elements:

G
0

=

0

BBBB@

1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1

1

CCCCA

14.4. The metric G is the scalar product between all pairs of basis vectors:

G =

 
h b

1

| b
1

i h b
2

| b
1

i

h b
1

| b
2

i h b
2

| b
2

i

!
=

 
b>
1

G
0

b
1

b>
2

G
0

b
1

b>
1

G
0

b
2

b>
2

G
0

b
2

!
= B>G

0

B =

 
9 0

0 12

!

Its inverse is then

G�1 =

 
1

9

0

0 1

12

!
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14.5. The filter results computed at the center of the signal is given as

c̃
1

=

0

BBBB@

11
13
14
20
17

1

CCCCA
dot multiplied with

0

BBBB@

1
2
3
2
1

1

CCCCA
= 136

c̃
2

=

0

BBBB@

11
13
14
20
17

1

CCCCA
dot multiplied with

0

BBBB@

�2
�2
0
2
2

1

CCCCA
= 26

These filter responses are dual coordinates of the local signal relative to the basis. They can be
transformed into proper coordinates by means of G�1:

c
1

= G�1

11

c̃
1

+G�1

12

c̃
2

⇡ 15.11

c
2

= G�1

21

c̃
1

+G�1

22

c̃
2

⇡ 2.17

If we approximate the Taylor expansion of the local signal with a first order polynomial, these
two coordinates correspond to the mean and the first order derivative of the local signal. These
numerical values appear reasonable given the values of the signal.

14.6. XXX

14.7. In this case the scalar product matric G
0

contains in the diagonal the product of the applicability
function and the signal certainty, i.e., it is a function of the position along the signal. At the center
point it becomes

G
0

=

0

BBBB@

1 · 1 0 0 0 0
0 2 · 0 0 0 0
0 0 3 · 1 0 0
0 0 0 2 · 1 0
0 0 0 0 1 · 1

1

CCCCA
=

0

BBBB@

1 0 0 0 0
0 0 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1

1

CCCCA

14.8. The metric is also a function of position along the signal, and at the center point it becomes:

G = B>G
0

B =

 
7 2

2 10

!

Its inverse is then

G�1 =
1

66

 
10 �2

�2 7

!

9



14.9. Multiplying the certainty function c onto the signal and then convolving the result with the two
filters gives the following filter responses at the center of the signal:

c̃
1

=

0

BBBB@

11
0
14
20
17

1

CCCCA
dot multiplied with

0

BBBB@

1
2
3
2
1

1

CCCCA
= 110

c̃
2

=

0

BBBB@

11
0
14
20
17

1

CCCCA
dot multiplied with

0

BBBB@

2
2
0
�2
�2

1

CCCCA
= 52

They can be transformed into proper coordinates:

c
1

= G�1

11

c̃
1

+G�1

12

c̃
2

⇡ 15.09

c
2

= G�1

21

c̃
1

+G�1

22

c̃
2

⇡ 2.18

14.10. Not taking the signal certainty into account, just multiplying setting unknown signal elements = 0,
gives the same filter responses as above (c̃

1

, c̃
2

) = (110, 52). They will, however, be transformed to
the proper coordinates using the G in exercise 14.4:

c
1

= G�1

11

c̃
1

+G�1

12

c̃
2

⇡ 12.22

c
2

= G�1

21

c̃
1

+G�1

22

c̃
2

⇡ 4.33

This deviates quite a bit from the estimates in exercises 14.5 and 14.9, and also does not reflect the
behavior of the local signal with the unknown sample disregarded.

14.11. The dual coordinates are functions of signal position given as

c̃
1

[k] = (f ⇤ g
1

)[k]

c̃
2

[k] = (f ⇤ g
2

)[k]

They are then transformed into proper coordinates:

c
1

[k] = G�1

11

c̃
1

[k] +G�1

12

c̃
2

[k] =
�
f ⇤ (G�1

11

g
1

+G�1

12

g
2

)
�
[k]

c
2

[k] = G�1

21

c̃
1

[k] +G�1

22

c̃
2

[k] =
�
f ⇤ (G�1

21

g
1

+G�1

22

g
2

)
�
[k]

14.12. This means that the proper coordinates can be obtained directly by convolving the signal by the
dual filters

g̃
1

= G�1

11

g
1

+G�1

12

g
2

⇡

0

BBBB@

0.11
0.22
0.33
0.22
0.11

1

CCCCA
g̃
2

= G�1

21

g
1

+G�1

22

g
2

⇡

0

BBBB@

0.17
0.17
0

�0.17
�0.17

1

CCCCA

Notice, that these filters are dependent on the applicability function a, so changing a also changes
the dual basis filters.
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14.13. In this case the single basis function is b[k] = 1, and the corresponding filter function is

g[k] = a[k] b[�k] = a[k]

The signal is multiplied by the signal certainty function c before being convolved by the filter
function, and the result is the dual coordinate relative to the basis

c̃[k] = ((f · c) ⇤ g)[k] = ((f · c) ⇤ a)[k]

The scalar product G
0

[k] is a position dependent diagonal matrix given as

G
0

[k] = diag(a · c[k])

where the “·” in this case denotes point-wise multiplication by the fixed applicability and the
position dependent certainty function, the latter as it appears within the local signal window. The
metric G[k], also a position dependent entity, is given as

G[k] = b>G
0

[k] b =

With the basis function b as a vector of only elements = 1, this leads to

G[k] =
X

l

c[k + l]a[l] = /a is symmetric/ =
X

l

c[k � l]a[l] = (c ⇤ a)[k]

Finally, to get the proper coordinate relative to the basis, we transform the dual coordinate with
the inverse of G, leading to

c =
(f · c) ⇤ a

c ⇤ a (point-wise division)

11



15 Normalized convolution, 2D signals

15.1. The basis functions can initially be represented as three 2D neighborhoods of size 3⇥ 3:

basis
1

=

0

@
1 1 1
1 1 1
1 1 1

1

A , basis
2

=

0

@
�1 0 1
�1 0 1
�1 0 1

1

A , basis
3

=

0

@
1 1 1
0 0 0
�1 �1 �1

1

A .

These functions can be vectorized, e.g., by stacking each columns of the neighborhood on top of
each other. In that case, the basis matrix becomes

B =

0

BBBBBBBBBBBB@

1 �1 1
1 �1 0
1 �1 �1
1 0 1
1 0 0
1 0 �1
1 1 1
1 1 0
1 1 �1

1

CCCCCCCCCCCCA

.

15.2. The filters are obtained by multiplying (point-wise) each basis function with the applicability func-
tion, followed by a mirroring operation, f

m

[k
1

, k
2

] = basis
m

[�k
1

,�k
2

] a[�k
1

,�k
2

]. Since the filters
are 2D, they are represented as 3⇥ 3 matrices:

filter
1

=

0

@
1 2 1
2 3 2
1 2 1

1

A , filter
2

=

0

@
1 0 �1
2 0 �2
1 0 �1

1

A , filter
3

=

0

@
�1 �2 �1
0 0 0
1 2 1

1

A .

15.3. The scalar product matrix G
0

is in this case (certainty = 1) defined as a diagonal matrix that
contains the applicability. The applicability needs to be vectorized before it is put in the diagonal
of G

0

:

G
0

=

0

BBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 3 0 0 0 0
0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCA

15.4. The metric G is defines as the scalar products between all di↵erent basis vectors:

G = B>G
0

B =

0

@
15 0 0
0 8 0
0 0 8

1

A , G�1 =

0

@
1

15

0 0
0 1

8

0
0 0 1

8

1

A .

12



15.5. The mean and the horizontal and vertical derivatives are the coordinates of the local signal rela-
tive the basis {1, x, y}. The corresponding dual coordinates are given as the filter responses from
the three filters, generated at the center of the image neighborhood. The dual coordinates are
equivalently given as the scalar products between the local signal vector v and the basis vectors:

v =

0

BBBBBBBBBBBB@

10
11
12
11
12
14
12
14
17

1

CCCCCCCCCCCCA

, c̃ = B>G
0

v =

0

@
187
13
�13

1

A .

To obtain the proper coordinates relative to the basis, the dual coordinates need to be transformed
by means of the inverse metric:

c = G�1 c̃ =

0

@
1

15

0 0
0 1

8

0
0 0 1

8

1

A

0

@
187
13
�13

1

A ⇡

0

@
12.5
1.6
�1.6

1

A

The (weighted) mean is approximately 12.5, the horizontal derivative is 1.6 (increasing to the right)
and the vertical derivative is �1.6 (decreasing when going up). These figures are consistent with
the numerical values of the pixels in the image neighborhood.

15.6. XXX

15.7. XXX

13



16 Filter optimization

16.1. A general result that is used in this exercise is Parseval’s theorem for discrete signals:

1X

k=�1
a[k] b⇤[k] =

1

2⇡

Z
⇡

�⇡

A(u)B⇤(u) du,

where a and b are two sequences with Fourier transforms A and B. By setting a = b we get

1X

k=�1
|a[k]|2 =

1

2⇡

Z
⇡

�⇡

|A(u)|2 du,

Applied to the terms in ✏, this gives

1X

k=�1
|h[k]� h

ideal

[k]|2 =
1

2⇡

Z
⇡

�⇡

|H(u)�H
ideal

(u)|2 du =

=
1

2⇡

Z
⇡

�⇡

|G(u) F (u)�G(u) F
ideal

(u)|2 du =

=
1

2⇡

Z
⇡

�⇡

|G(u)|2 |F (u)� F
ideal

(u)|2 du

Applying E , as the expectation value operator over all signals, then gives

✏ = E
1X

k=�1
|h[k]� h

ideal

[k]|2 =
1

2⇡

Z
⇡

�⇡

⇣
E |G(u)|2

⌘
|F (u)� F

ideal

(u)|2 du =

=
1

2⇡

Z
⇡

�⇡

S
g

(u) |F (u)� F
ideal

(u)|2 du

Minimizing this expression over F is then a weighted least squares problem, the same as in standard
filter optimization, where the weighting in the frequency domain is defined by S

g

.

16.2. For the di↵erent dimensions, we get the following volumes of the hyper-cube (V
c

) and volume of
the enclosed hyper-sphere (V

s

).

• n = 1 :V
c

= P , V
s

= P , ratio 1/1 = 1.

• n = 2 :V
s

= ⇡ (P/2)2, ratio ⇡/4 ⇡ 0.78.

• n = 3 :V
s

= 4⇡/3 (P/2)3, ratio ⇡/6 ⇡ 0.52.

• n = 4 :V
s

= ⇡2/2 (P/2)4, ratio ⇡2/32 ⇡ 0.31.

16.3. We want to minimize
✏ = k

X

k

f [k]e�iuk � F
ideal

(u)k2
W

,

where W is the frequency weighting function, over the filter coe�cients in f . In vector/matrix
notation the problem can be formulated as follows. The frequency function of the resulting filter is
a vector f̂ :

f̂ = B f

where f is the vector of filter coe�cients and B is a basis matrix that hold the functions e�iuk in
its columns. The ideal frequency function is denoted f̂

ideal

. The error function can be expressed as

✏ = h f̂ � f̂
ideal

| f̂ � f̂
ideal

i = h f̂ | f̂ i � h f̂ | f̂
ideal

i � h f̂
ideal

| f̂ i+ h f̂
ideal

| f̂
ideal

i

14



where the scalar product is defined in terms of the diagonal matrix W that holds the frequency
weighting function W . Since f̃ is the optimal choice of filter frequency function is satisfies h f̂ | f̂ i =
h f̂ | f̂

ideal

i = h f̂
ideal

| f̂ i, see exercise 13.13. Thus:

✏ = h f̂
ideal

| f̂
ideal

i � h f̂ | f̂
ideal

i = kf̂
ideal

k2 � f̂⇤
ideal

W f̂ = kf̂
ideal

k2 � f̂⇤
ideal

WB f .

We define a vector of the same size as f : f
ideal

= B?W f̂
ideal

:

✏ = kf
ideal

k2 � f⇤
ideal

f .

The spatial mask removes basis vectors in B, by setting elements in f equal to zero. How much
the error ✏ increases when a coe�cient is removed in f depends both on the size of that element in
f and on the corresponding element in f

ideal

. It may be the case that the smallest element in f is
not the one that cases the smallest increase in ✏ if the corresponding element in f

ideal

is relatively
large.

16.4. The filter coe�cients can be seen as the Fourier coe�cients of the periodic function F (u) = the
frequency function of the filter (sic). This means that if the spatial mask reduces the magnitude of
the coe�cients far from the center, i.e., corresponding to high frequencies in F (u), then F (u) has
smoother appearance since it contains less of high frequencies.

15



17 Principal Component Analysis

17.1. We want to minimize
✏ = Ekv �BB>vk2, where B>B = I

where E is the expectation operator over all signals/data v. Expanding the squared norm gives

kv �BB>vk2 = (v �BB>v)>(v �BB>v) =

= v>v � v>BB>v � v>BB>v + v>B B>B| {z }
=I

B>v =

= kvk2 � v>BB>v

Since we minimize ✏ over all possible B that satisfy B>B = I, this is the same as minimizing

E
�
kvk2 � v>BB>v

�

over these B, but since the first term in this expression is independent of B, this becomes equivalent
to minimizing only the second term, or, maximizing

✏
1

= E
�
v>BB>v

�

17.2. In the case that B has only a single column b, we can write B = b, and we now want to maximize

✏
1

= E
�
v>b b>v

�
= E

�
b>v v>b

�
= b>E

�
v v>� b = b>C b

with the additional constraint
c = b>b = 1

In accordance with Lagrange’s method the solution b must satisfy

r✏
1

= �rc

for some scalar multiplier (the Lagrange multiplier) �. Inserting the above expressions for ✏
1

and c
gives

2C b = 2�b ) C b = � b

This shows that b must be an eigenvector of C, and � is the corresponding eigenvalue. In fact, since
kbk = 1, it follows that b must be a normalized eigenvector of C with corresponding eigenvalue �.

We insert this fact into the expression for ✏
1

to see what its maximum value is

✏
1,max

= b> C b|{z}
=� b

= � b>b = �

Since we want to maximize ✏
1

, we must choose � as the largest eigenvalue of C: � = �
1

. To
summarize: b is a normalized eigenvector of C corresponding to the largest eigenvalue �

1

.

17.3. The original problem is to minimize

✏ = E
�
kvk2 � v>BB>v

�
= E

�
v>v � v>b b>v

�
= E

�
trace(vv>)� b>v v>b

�
=

= traceC� b>C b =
NX

k=1

�
k

� �
1

=
NX

k=2

�
k

16



17.4. The error function in PCA is formulated as

✏ = Ekv �BB>vk,

that is minimized over all choices of orthogonal basis matrix B. Let B be the basis that minimizes
✏, and let B0 = B Q be another basis of the same subspace that is obtained by rotating the first
basis within the subspace, using Q 2 O(N). Then

Ekv �B0 B0>vk = Ekv �B QQ>
| {z }

=I

B>vk = Ekv �BB>vk = ✏

This means that basis B and basis B0 both give the same value for ✏.

17.5. XXX

17.6. XXX

17.7. XXX

17



18 Frames

18.1. Insert the definition of F directly into the left hand side, and use the standard properties of the
scalar product:

h F u | v i = h
MX

k=1

h u | b
k

i b
k

| v i =
MX

k=1

h u | b
k

i h b
k

| v i =
MX

k=1

h u | b
k

i h v | b
k

i =

h u | h v |
MX

k=1

b
k

i b
k

i = h u | F v i

18.3. The middle term in the frame condition can be expanded as
X

k

|h v | b
k

i|2 =
X

k

h v | b
k

ih v | b
k

i⇤ =
X

k

h v | h v | b
k

ib
k

i = h v | h v |
X

k

b
k

ib
k

i = h v | F v i

This means that we can formulate the frame condition as: there must exists constants A and B,
where 0 < A  B < 1, such that for all v 2 V it is the case that

A kvk2  h v | F v i  B kvk2

18.4. Assuming v 6= 0, the frame condition can be formulated as

A  h v

kvk | F v

kvk i  B

which means that it is su�cient to examine the condition only for a normalized vector v̂:

A  h v̂ | F v̂ i  B

This inequality is the same as
A  h F v̂ | v̂ i  B

and with the assumption that G
0

= I, this is the same as the condition

A  v̂>F v̂  B

Maximizing v̂>Fv̂ over a normalized v̂ leads to a maximum that is reached for v that is a normalized
eigenvector of F corresponding to the largest eigenvalue of F (see previous exercises). Hence, B =
the largest eigenvalue of F. Similarly, A becomes the smallest eigenvalue of F.

18.5. XXX

18.6. In this case we can set v = r(cos↵, sin↵). The center term in the frame condition then becomes:

1X

k=1

|h v | b
k

i|2 = |h v | b
1

i|2 +
1X

k=2

|h v | b
k

i|2 = r2 cos2 ↵+
1X

k=2

(r/k)2 sin2 ↵ =

r2
"
cos2 ↵+ sin2 ↵

1X

k=2

1

k2

#
= r2


cos2 ↵+ (

⇡2

6
� 1) sin2 ↵

�

Since kvk2 = r2, this leads to

(
⇡2

6
� 1) · kvk2 

1X

k=1

|h v | b
k

i|2  1 · kvk2

which demonstrates that the frame condition is satisfied for the set b
k

. The lower frame bound is
(⇡

2

6

� 1) ⇡ 0.64 and the upper frame bound is 1.

18



18.7. Doing the same computations as in the previous exercise, we see that

1X

k=1

|h v | b
k

i|2 = |h v | b
1

i|2 +
1X

k=2

|h v | b
k

i|2 = r2 cos2 ↵+
1X

k=2

(r/k) sin2 ↵ =

r2
"
cos2 ↵+ sin2 ↵

1X

k=2

1

k

#

Since the infinite sum does not converge to a finite value, we draw the conclusion that in this case
the upper frame bound B = 1 which implies that the set b

k

fails to be a frame.

18.8. Direct insertion of known quantities gives

c?
0

c = c?
0

B?G
0

v = (B c
0

)?G
0

v = 0?G
0

v = 0

Compute the squared norm of the general reconstructing coe�cient c+ c
0

:

(c+ c
0

)?(c+ c
0

) = c?c+ c?
0

c+ c?c
0

+ c?
0

c
0

= kck2 + 0 + 0 + kc
0

k2 = kck2 + kc
0

k2

This expression is minimized over all c
0

for c
0

= 0.

18.9. The frame operator F applied to u = (u
1

, u
2

) 2 R2 is given by

F u =
3X

k=1

h u | b
k

i b
k

=

✓
1
0

◆ �
1 0

�
+

✓
0
1

◆ �
0 1

�
+

✓
1
1

◆ �
1 1

�� ✓u
1

u
2

◆
=

✓
2 1
1 2

◆ ✓
u
1

u
2

◆

This means that

F =

✓
2 1
1 2

◆

The eigenvalues of F are given as �
1

= 3 and �
2

= 1. This means that the frame bounds are A = 1
and B = 3, and it is not a tight frame.

18.10. The dual frame vectors are given as b̃
k

= F�1b
k

. With

F�1 =
1

3

✓
2 �1
�1 2

◆

this means

b̃
1

=
1

3

✓
2
�1

◆
b̃
2

=
1

3

✓
�1
2

◆
b̃
3

=
1

3

✓
1
1

◆

18.11. The reconstructing coe�cients are found as the scalar product between v and the dual frame
vectors:

c
1

= h v | b̃
1

i = 1 c
2

= h v | b̃
2

i = 0 c
3

= h v | b̃
3

i = 1

Used in a linear combination with the frame vectors, the result is

c
1

b
1

+ c
2

b
2

+ c
3

b
3

= 1 ·
✓
1
0

◆
+ 0 ·

✓
0
1

◆
+ 1 ·

✓
1
1

◆
=

✓
2
1

◆
= v
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18.12. With B as the matrix holding the frame vectors in its columns:

B =

✓
1 0 1
0 1 1

◆

we can add any vector in the null space of B to any set of reconstructing coe�cients and still get
a set of reconstructing coe�cients. That null space is spanned by the single vector

c
0

=

0

@
1
1
�1

1

A

20



19 Sampling, over-sampling and reconstruction

19.1. In the case the expectation operator E represents the mean over all observed sample noise n[·].
Property A’:

E{n
rec

(t)} = E

( 1X

k=�1
n[k] sinc(t� k)

)
=

1X

k=�1
E {n[k]}| {z }

=0

sinc(t� k) = 0

Property B’:

E{n
rec

(t
1

) n
rec

(t
2

)} = E

( 1X

k=�1
n[k] sinc(t

1

� k)
1X

l=�1
n[l] sinc(t

2

� l)

)
=

= E

(
X

k l

n[k] n[l] sinc(t
1

� k) sinc(t
2

� l)

)
=

=
X

k l

E {n[k] n[l]}| {z }
=�

2
�kl

sinc(t
1

� k) sinc(t
2

� l) =

=
X

k l

�2�
kl

sinc(t
1

� k) sinc(t
2

� l) = /Summation over l/ =

= �2

X

k

sinc(t
1

� k) sinc(t
2

� k)

This last expression can be interpreted as Poisson’s summation formula that reconstruct the band-
limited function sinc(t

1

� k) that is sampled at integers k 2 Z. Thus:

E{n
rec

(t
1

) n
rec

(t
2

)} = �2sinc(t
1

� t
2

)

19.2. The new signal is

n(t) =
n
1

(t) + n
2

(t)

2

where n
1

and n
2

are the two noise signals reconstructed from the two independent noise signals.
The mean of n is given as

n̄ = E{n(t)} = E{n
1

(t) + n
2

(t)}/2 = (E{n
1

(t)}| {z }
=0

+E{n
2

(t)}| {z }
=0

)/2 = 0

From this we compute the variance of n as

E{(n(t)� n̄)2} = E{n(t)2} = E

(✓
n
1

(t) + n
2

(t)

2

◆
2

)
=

1

4

0

B@E{n2

1

(t)}| {z }
=�

2

+2 E{n
1

(t)n
2

(t)}+ E{n2

2

(t)}| {z }
=�

2

1

CA =

=
�2

2
+ E{n

1

(t)n
2

(t)} = /n
1

and n
2

are independent/ =
�2

2
+ E{n

1

(t)}| {z }
=0

E{n
1

(t)}| {z }
=0

=
�2

2
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19.3. It is su�cient to show that sinc(t) is orthogonal to sinc(t� k) for integers k 6= 0:

h sinc(t) | sinc(t� k) i =
Z 1

�1
sinc(t) sinc(t� k) dt = /Parseval/ =

=
1

2⇡

Z 1

�1
rect(

u

2⇡
) e�iuk rect(

u

2⇡
) dt =

1

2⇡

Z
⇡

�⇡

e�iuk dt = �[k]

This shows that the functions sinc(t � k) form an ON-set of vectors. According to the sampling
theorem they must span the space of 2⇡-band-limited functions since any such function can be
reconstructed as a linear combination of these functions together with samples from the function.
The ON-property assures that the function set is linearly independent. In short: it forms an
ON-basis of the space of 2⇡-band-limited functions.

19.4. Since the functions sinc(t�k), k 2 Z form an ON-basis for the space V of 2⇡-band-limited functions,
it follows that for any f 2 V :

f(t) =
1X

k=�1
h f(·) | sinc(·� k) i sinc(t� k)

where h f(·) | sinc(·� k) i is the coordinate of f relative to basis function sinc(t� k). The sampling
theorem, on the other hand, states that

f(t) =
1X

k=�1
f(k) sinc(t� k)

Since coordinates are unique, it follows that

f(k) = h f(·) | sinc(·� k) i

19.5. The set sinc(t� k/2), k 2 Z cannot be a basis since it is linearly dependent. For example, we have

sinc(t� 1

2
) =

1X

k=�1
sinc(k � 1

2
) sinc(t� k)

as proven by the sampling theorem. The frame operator is in this case defined as

F g =
1X

k=�1
h g(t) | sinc(t� k) i sinc(t� k) +

1X

k=�1
h g(t) | sinc(t� (k + 1/2)) i sinc(t� (k + 1/2))

where g is an arbitrary 2⇡-band-limited function. Using the result from the previous exercise, the
frame operator can be written

F g = g + g = 2 g

which means that F = 2 I. This frame operator has frame bounds A = B = 2, and is a tight frame.

19.6. Since the half unit spaced sinc-functions form a tight frame with frame bound A = 2, it follows
that

g(t) =
1

A

1X

k=�1
h g(t) | sinc(t� k/2) i sinc(t� k/2) =

1

2

1X

k=�1
f(t� k/2) sinc(t� k/2)
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20 Continuous Wavelet Transform

20.1. The squared norm of  
a,b

is given as

k 
a,b

k2 = h  
a,b

|  
a,b

i =
Z 1

�1

����
1p
a
 

✓
t� b

a

◆����
2

dt =
1

|a|

Z 1

�1

���� 
✓
t� b

a

◆����
2

dt =

=

�
Variable transformation: ⌧ =

t� b

a

�
=

Z 1

�1
| (⌧)|2 dt = k k2

20.2. We have

g(t) =

Z 1

�1

Z 1

�1

1

|a|2 W
f

(a, b)  
a,b

(t) da db = /insert (1)/ =

=

Z 1

�1

Z 1

�1

1

|a|2

Z 1

�1
f(y)  

a,b

(y) dy

�
 
a,b

(t) da db = /Change order of integration/ =

=

Z 1

�1
f(y)

Z 1

�1

Z 1

�1

1

|a|2  a,b

(y)  (t) da db dy = /insert (2)/ =

=

Z 1

�1
f(y)

Z 1

�1

Z 1

�1

1

|a|3  
✓
y � b

a

◆
 

✓
t� b

a

◆
da db dy

20.3. We have

I(t, y) =

Z 1

�1

Z 1

�1

1

|a|3  
✓
y � b

a

◆
 

✓
t� b

a

◆
da db = /Change order of integration/ =

=

Z 1

�1

1

|a|3

Z 1

�1
 

✓
y � b

a

◆
 

✓
t� b

a

◆
db da = /Insert p and q from (6)/ =

=

Z 1

�1

1

|a|3

Z 1

�1
p(b) q(b) db da

20.4. We have

J =

Z 1

�1
p(b) q(b) db = /Parseval/ =

1

2⇡

Z 1

�1
P (u)Q(u) du

where P and Q are the Fourier transforms of p and q, respectively. Both p and q are seen as functions
of a single variable, here denoted ”b”. Since both p and q are simple variable transformations of  ,
we get

P (u) = |a|eiut (�au) Q(u) = |a|eiuy (�au).

Inserted into J this leads to

J =
|a|2

2⇡

Z 1

�1
eiu(t�y)| (�au)|2 du.

20.5. Inserting J back into I(t, y) gives

I(t, y) =
1

2⇡

Z 1

�1

1

|a|

Z 1

�1
eiu(t�y) | (�au)|2 du da = /Change order of integration/ =

=
1

2⇡

Z 1

�1
eiu(t�y)

Z 1

�1

1

|a| | (�au)|2 da du
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20.6. We have

K =

Z 1

�1

1

|a| | (�au)|2 da = /Variable transformation: v = �au/ =

Z 1

�1

| (v)|2

|v| dv

Notice that here we replace �au with v, and |a| with |u|/|v|, but also da with dv/|u|. This last
replacement works if we also keep the integration limits, from �1 to 1. In all these expressions
is u considered as a constant parameters.

20.7. Putting the constant K back into the expression for I(t, y) gives

I(t, y) =
K

2⇡

Z 1

�1
eiu(t�y) du

This integral (together with 1

2⇡

) can be seen as the inverse Fourier transform of the frequency
function ”1”, which is the delta function �, evaluated in the time domain at t� y:

I(t, y) = K �(t� y)

20.8. We can now express g as

g(t) =

Z 1

�1
f(y)K �(t� y) dy = K f(t)

20.9. From (8), which should be valid for general functions f , follows that the inverse wavelet transform
exists only if K 6= 0 and K 6= 1. By definition K � 0, so the inverse transform exists only if
0 < K < 1.

20.10. XXX

20.11. (a) � b

|a|3/2 e�
1
2 (

b
a )

2

(b) e�
1
2 (

b
a )

2

/
p
|a|

(c)
p
|a|

e

(1�2b)2

8a2 � e
(1+2b)2

8a2

�

(d) �
p
2⇡ |a|3/2e� a2

2 sin b

20.12. XXX

20.13. XXX
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21 Filterbanks

21.1. The e↵ect of down-sampling followed by up-sampling is to set every second sample to zero:

x0[k] = x[k] · 1 + (�1)k

2
Here all odd samples are set to zero

Multiplication of functions in the signal domain corresponds to 2⇡-circular convolution in the fre-
quency domain

X 0(u) =
1

2⇡
X(u) ⇤

✓
⇡(2 �(u) + �(u+ ⇡) + �(u� ⇡))

2

◆
=

=
X(u) + 1

2

X(u+ ⇡) + 1

2

X(u� ⇡)

2
= /X is 2⇡-periodic/ =

X(u) +X(u+ ⇡)

2

21.2. In the frequency domain, we get

U
0

(u) = S(u) ·H
0

(u) V
0

(u) = S(u) ·G
0

(u)

where S is the Fourier transform of the input signal s. Furthermore

U
1

(u) =
1

2
(U

0

(u) + U
0

(u+ ⇡)) =
1

2
(S(u)H

0

(u) + S(u+ ⇡)H
0

(u+ ⇡))

V
1

(u) =
1

2
(V

0

(u) + V
0

(u+ ⇡)) =
1

2
(S(u)G

0

(u) + S(u+ ⇡)G
0

(u+ ⇡))

and

S0(u) = U
1

(u)H
1

(u) + V
1

(u)G
1

(u) =

=
1

2
(S(u)H

0

(u) + S(u+ ⇡)H
0

(u+ ⇡))H
1

(u) +
1

2
(S(u)G

0

(u) + S(u+ ⇡)G
0

(u+ ⇡))G
1

(u) =

=
1

2
(H

0

(u)H
1

(u) +G
0

(u)G
1

(u))| {z }
=2

S(u) +
1

2
(H

0

(u)H
1

(u+ ⇡) +G
0

(u)G
1

(u+ ⇡))| {z }
=0

S(u+ ⇡)

We require that S0 = S for all choices of S, leading to the two constraints

H
0

(u)H
1

(u) +G
0

(u)G
1

(u) = 2

H
0

(u)H
1

(u+ ⇡) +G
0

(u)G
1

(u+ ⇡) = 0
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23 Stereo Geometry

23.1 The set of all 3D points that project onto the image point x form a 3D line (or ray) that goes

through the camera center n, and the 3D-point

˜X = C+x. The projection of a 3D line in an image

is in general a 2D line.

23.2 See figure below.

x

Camera 1 Camera 2

1n
2n

1pp 2pp

1y
2y

1L 2L

12e 21e

1l
2l

23.3 For two image points y1, y2 in image 1 and 2 respectively, the epipolar constraint reads yT
1 Fy2 = 0,

if y1, y2 are given in homogeneous coordinates.

23.4 All epipolar lines should go through this point, see 1. Denote the point by e. This point should lie

on the line l = Fx 8x. This means eT l = 0 = eTFx 8x. For this to be true we must have eTF = 0,
i.e. e is a left null vector of F.

23.5 XXX

23.6 XXX

23.7 XXX

23.8 XXX

23.9 XXX

23.10 XXX

23.11 XXX

23.12 XXX

23.13 XXX

24 Triangulation

24.1 XXX

24.2 XXX

24.3 XXX

24.4 XXX
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25 Rectification

25.1 XXX

25.2 XXX

25.3 XXX

25.4 XXX

25.5 XXX

25.6 XXX

25.7 XXX
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