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Exercises marked with (A) are on an advanced level and can be deferred until the others are solved.
Exercises marked with (M) lead to numerical computations that are not straight-forward to do by hand,
and are recommended to be carried out using Matlab or similar numerical calculation tools.



12 Dual bases

The vector space R2 has two basis vectors

b1 =

✓
1
0

◆
b2 =

✓
1
1

◆

There is also a vector

v =

✓
�1
2

◆

The scalar product between vectors a,b 2 R2 is given as a>b.

12.1 What is the metric G in this case? What is G�1?

12.2 What is the dual basis {b̃1, b̃2} corresponding to the basis {b1,b2}?

12.3 Verify that the resulting basis satisfies the dual relation relative to the original basis.

12.4 What are the coordinates of v relative to the basis {b1,b2}?

12.5 What are the dual coordinates of v relative to the dual basis {b̃1, b̃2}?

12.6 Verify the last two answers.

Change the scalar product in R2 so that it is now given as a>G0b with

G0 =

✓
2 �1
�1 2

◆

12.7 What is the metric G in this case? What is G�1?

12.8 What is the new dual basis {b̃1, b̃2}? Verify your result.

12.9 What are the coordinates of v relative to the basis {b1,b2}? Verify your result.

12.10 What are the dual coordinates of v? Verify.

12.11 (A) Verify that G0 represents a valid scalar product.

Consider the vector space C2. The scalar product between two vectors a,b 2 C2 is here defined as

h a | b i = b?G0a where G0 =

✓
3 �2 + i

�2� i 2

◆

In the following exercises, pay attention to how exactly the scalar product between two vectors in C is
defined! In this vector space there is a basis {b1,b2} and a vector v:

b1 =

✓
i
0

◆
, b2 =

✓
1
i

◆
, v =

✓
�1
2

◆
.

12.12 What is the metric G in this case? What is G�1?

12.13 What is the new dual basis {b̃1, b̃2}? Verify your result.

12.14 What are the coordinates of v relative to the basis {b1,b2}? Verify your result.

12.15 What are the dual coordinates of v? Verify.

12.16 (A) Verify that G0 represents a valid scalar product.

12.17 (A) Show that any set of vectors {ẽ
k

} that satisfy the duality relation h e
k

| ẽ
l

i = �
kl

relative to a
basis {e

k

} must itself be a basis, the dual basis. Hint: Consider a finite dimensional vector space.
It then su�ces to show that the dual basis cannot be linearly dependent.
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13 Subspaces

Consider the two-dimensional subspace of R3 that is spanned by the two basis vectors

b1 =

0

@
1
1
0

1

A , b2 =

0

@
0
1
1

1

A .

The scalar product in R3 is here defined by G0 = I. There is also a vector

v =

0

@
1
1
1

1

A

13.1 What is the metric G in this case? What is G�1?

13.2 What is the dual basis {b̃1, b̃2} corresponding to the subspace basis {b1,b2}?

13.3 Verify that the resulting dual basis satisfies the dual relation relative to the original basis.

13.4 What are the coordinates of v1, the orthogonal projection of v onto the subspace, relative to the
subspace basis {b1,b2}?

13.5 What is v1?

13.6 What is v0, the component of v that lies in the orthogonal complement of the subspace? Verify
that it lies in the orthogonal complement.

Consider the same subspace in R3, spanned by b1,b2, but now the scalar product in R3 is defined by

G0 =

0

@
1 0 0
0 2 0
0 0 1

1

A

13.7 What is the metric G in this case? What is G�1?

13.8 What is the dual basis {b̃1, b̃2} corresponding to the subspace basis {b1,b2}?

13.9 What is v1 in this case?

13.10 You are dealing with the same subspace as before. Why is v1 not the same as before?

Return to the general case of a real vector space, when B is a basis of some subspace and the scalar
product is defined by some symmetric and positive definite matrix G0.

13.11 (A) Use the equation
v1 = B (B?G0B)�1B?G0v

to show that the orthogonal projection v1 is independent of the choice of basis B in the subspace.

13.12 (A) Show that P = B (B?G0B)�1B?G0 is a projection operator, i.e., P2 = P P = P. What
subspace does it project onto?

13.13 (A) Let v1 be the orthogonal projection of v 2 V onto the subspace spanned by P. Show that
kv1k2 = h v | v1 i = h v1 | v i.
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14 Normalized convolution, 1D signals

A time discrete signal f has the following values

f [k] = {10, 10, 11, 13, 14, 20, 17, 13, 10}

We want to analyze this signal with a basis consisting of the polynomials {1, x} in a 5 sample window,
with the origin x = 0 at the center element. The applicability function a is a triangular function:

a[k] = {1, 2, 3, 2, 1}

14.1 What is the basis matrix in this case?

14.2 What filters are convolved with the signal?

14.3 What is the scalar product matrix G0?

14.4 What is the metric G in this case? What is G�1?

14.5 Estimate the local mean and local first order derivative of the signal at the center point using
normalized convolution. Verify that the values you obtain are reasonable.

14.6 (A) Extend the basis functions so that is also includes a “x2” function. Then redo Exercises 14.4
and 14.5. Did the coordinates of the first two basis functions change? Motivate this result.

The previous calculations are based on the signal having full certainty for all samples. Assume instead
that the signal certainty is given by

c[k] = {1, 1, 1, 0, 1, 1, 1, 1, 1}

14.7 How does this modify the scalar product G0? In particular, what is G0 at the center point of the
signal?

14.8 What is the metric G and its inverse G�1 at the center point of the signal?

14.9 Re-estimate the local average and first order derivatives for this signal with missing data.

14.10 Compare this result to what happens if you do not take the certainty information into account,
and just set missing data = 0.

In normalized convolution, we first apply the filters corresponding to the di↵erent basis functions, and
then transform the result to proper coordinates relative to the basis functions. In the case of signal
certainty = 1, however, the resulting coordinates can also be obtained directly by first transforming the
filters to “dual” filters that correspond to the dual basis functions and then convolve with the dual filters.

14.11 Show that the inverse metric G�1 can be used to transform the filters so that the filter responses
directly give proper coordinates relative to the basis functions. You can restrict yourself to the case
of two basis functions.

14.12 What are the dual filters in the case of the full certainty signal above? Verify that they give the
expected result.

14.13 Normalized averaging of a signal f refers to the special case of normalized convolution where there
is only a single basis function, which in addition is constant = 1, and g has variable certainty c. In
this case the local signal’s coordinate relative to the single basis function is given by

c1 =
(f · c) ⇤ a

c ⇤ a (point-wise division)

Show that this expression follows from applying normalized convolution to this particular basis.
What is the practical interpretation of the signal c1?
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15 Normalized convolution, 2D signals

A 3⇥ 3 region in an image is illustrated to the left and has the pixel values given by f to the right.

f [k1, k2] =

0

@
10 11 12
11 12 14
12 14 17

1

A

The image is analyzed with the basis functions 1,x,y with the origin centered in a 3 x 3 region, where we
assume that the x-axis points right and the y-axis points up. The applicability function is

a[k1, k2] =

0

@
1 2 1
2 3 2
1 2 1

1

A

15.1 What is the basis matrix in this case?

15.2 What filters are applied/convolved onto the signal?

15.3 What is the scalar product matrix G0?

15.4 What is the metric G and its inverse G�1?

15.5 Estimate the local mean and first order derivatives in horizontal and vertical direction using nor-
malized convolution. Verify the result.

A 2D signal is analyzed in terms of Cartesian separable basis functions (for example polynomials), using
an applicability function a that is also Cartesian separable, based on normalized convolution.

15.6 (A) Show that also the convolution operations that correspond to the computations involved in
normalized convolution are Cartesian separable. What is the advantage of this observation?

15.7 (A) A reasonable applicability function a should also be circular symmetric, i.e., a function only of
the distance to the origin. Why is circular symmetry important? Give an example of a Cartesian
separable applicability function that is also circular symmetric.
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16 Filter optimization

The spectrum S
g

of a signal g is defined as the expected squared magnitude of the signal’s Fourier
transform:

S
g

(u) = E |G(u)|2 where G = Fg.

The concept of the signal spectrum is therefore connected to the idea that the observed signal is drawn
from a statistical distribution of signals and that E is the expectation operator over this distribution.
We assume in the following that the signal is of a single discrete variable. This signal is convolved
by an FIR-filter f , that has a Fourier transform F . Ideally we want F = Fideal, where Fideal is some
suitable frequency function. One way to determine the filter coe�cients f is to minimize the expected
di↵erence between the resulting filter output, h = g ⇤f , and the filter output produced by the ideal filter,
hideal = g ⇤ fideal. This error is defined as

✏ = E
1X

k=�1

��h[k]� hideal[k]
��2.

16.1 Show that the minimization of ✏ is equivalent to filter optimization where the frequency weight
function W (u) is the signal spectrum S

g

. This motivates why W (u) in filter optimization should be
related to the signal spectrum. In general, this result also motivates why filter optimization should
be done relative to a weighting function in the frequency domain. Hint: Use Parseval’s relation for
discrete signals.

Filter optimization can be done with a spatial mask that, e.g., can be used to set coe�cients close to the
“corners” of the filter = 0. Assume that the filter is applied to a signal of outer dimension n. This signal
is filtered with an FIR-filter that initially has its coe�cients in an n-dimensional hyper-cube with side P .
Using a spatial mask, the coe�cients which are further away from the filter center than P/2 are set = 0.
The remaining coe�cients, which are optimized, represent an n-dimensional hyper-sphere of radius P/2.

16.2 How much fewer are the optimized coe�cients relative to the initial hyper-cube for a given n? Use
the approximation that the number of coe�cients in both cases is proportional to the volume of
the hyper-cube and the hyper-sphere, respectively. You may restrict your analysis to the cases
n = 1, 2, 3, 4. Hint: Wikipedia has an entry on n-sphere that gives the volume of a hyper-sphere
with a given radius and for di↵erent dimensions n.

The spatial mask can be used to reduce the computational complexity of the resulting filter, i.e., each
filter output can be computed with fewer additions and multiplications the fewer filter coe�cients that
are 6= 0 (assuming the corresponding convolution operation can skip the zero valued coe�cients in a filter
kernel). The process of removing coe�cients is typically incremental, and implies that a “full” filter is
optimized first and then suitable filter coe�cients are removed by means of the spatial mask, and the
filter is re-optimized.

16.3 (A) Intuitively, it may seem like a good idea to remove the filter coe�cients that have the smallest
magnitudes. Show that it is not necessary correct to say that removing the filter coe�cient of the
smallest magnitude also always makes the smallest increase in the optimization error. Hint: use
the result from exercise 13.13.

Filter optimization can also be made with a spatial term that punishes large coe�cients at large distance
from the origin.

16.4 Reducing filter coe�cients far from the filter center a↵ects the resulting frequency function of the
filter in a particular way. How?
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17 Principal Component Analysis

In Principal Component Analysis (PCA) we want to determine an ON-basis B of an M -dimensional
subspace such that

✏ = E
⇥
kv �BB>vk2

⇤

is minimized over B, where E is the expectation value operator over all observations of the signal v. We
assume a real and N -dimensional vector space V and a scalar product given by G0 = I.

17.1 Show that minimizing ✏ is equivalent to maximizing

✏1 = E
⇥
v>BB>v

⇤
.

17.2 For the case M = 1, i.e., when B has only a single column b1, show that the solution to the above
minimization problem is given by

b1 is a normalised eigenvector corresponding to the largest eigenvalue of C

where C is the signal’s correlation matrix, defined as

C = E
⇥
v v>⇤ .

17.3 Show that in this case, M = 1, follows that

✏ =
NX

k=2

�
k

,

where �
k

are the eigenvalues of C, sorted in descending order, i.e., �1 is the largest.

17.4 For the general case, when M > 1, the subspace ON basis matrix B that minimizes ✏ is not unique.
In this case, show that B0 = BQ also is an ON-basis that solves the minimization problem, where
Q is M ⇥M orthogonal.

17.5 (A) For the case M = 2, apply Langrange’s method on the PCA minimization problem with
constraint B>B = I. Show that the resulting equations do not provide a unique solution to the
problem (consistent with the result of the previous exercise).

17.6 (A) Show that introducing the additional constraint of B>C B being diagonal we obtain the
relations

C b
k

= �
k

b
k

, k = 1, . . . ,M,

where b
k

is the k-th subspace basis vector, i.e., column k in B. Also show that this allows us to
generalize the statement about the solution to the PCA problem as

B is an ON-basis of the eigenvectors corresponding to the M largest eigenvalues of C

You may simplify to the case M = 2.

17.7 Show that in the general case, M > 1, it follows that

✏ =
NX

k=M+1

�
k

.
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18 Frames

Given a set of M vectors {b
k

2 V, k = 1, . . . ,M} the corresponding frame operator F is defined as a
mapping V ! V given by

F v =
MX

k=1

h v | b
k

i b
k

for every v 2 V .

18.1 Show that this leads to F being self-adjoint, i.e., for all u,v 2 V it is the case that

h F u | v i = h u | F v i

Investigate the case when V is a real vector space. Hint: use the linear property of the scalar
product, in combination with fact that it is symmetric in its two arguments for this case.

18.2 (A) Show that the same property holds also for the case that V is a complex vector space.

18.3 Show that the frame condition can be expressed in terms of the frame operator as

Akvk2  h v | F v i  Bkvk2

18.4 (A) In the finite dimensional case, and when the scalar product is defined by G0 = I, show that
the frame bounds A and B correspond to the smallest and largest eigenvalues of the matrix F.

18.5 (A) A set of vectors b
k

constitute a basis of V . Show that they satisfy the frame condition, i.e.,
they constitute a frame.

18.6 With V = R2, define an infinite set of vectors as b1 = (1, 0) and b
k

= (0, 1/k), k = 2, . . .. Show
that this infinite set satisfy the frame condition and, therefore, constitute a frame. What are the
frame bounds?

18.7 With V = R2, define an infinite set of vectors as b1 = (1, 0) and b
k

= (0, 1/
p
k), k = 2, . . .. Show

that this infinite set does not satisfy the frame condition and, therefore, does not constitute a frame.

18.8 For v 2 V and B a matrix that holds a frame of V in its columns, a set of reconstructing coe�cients
for v is given as

c = B?G0v

An other set of reconstructing coe�cients is given by c+ c0, where c0 is a null vector of B. Show
that c?0c = 0, i.e., c0 is orthogonal to c, Also show that this implies: c is the shortest vector of
reconstructing coe�cients.

Consider the following four vectors in R2:

b1 =

✓
1
0

◆
b2 =

✓
0
1

◆
b3 =

✓
1
1

◆
v =

✓
2
1

◆

The scalar product in R2 is given by G0 = I.

18.9 Show that the vectors b1,b2,b3 form a frame for R2. What is the corresponding frame operator
F? What are the frame bounds A and B? Is it a tight frame?
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18.10 What are the dual frame vectors?

18.11 Compute a set of reconstructing coe�cients of v relative to the frame. It should have minimum
norm. Verify that v can be reconstructed from the frame vectors with the reconstructing coe�cients.

18.12 Describe the full set of reconstructing coe�cients for v relative to the frame.
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19 Sampling, over-sampling and reconstruction

A discrete noise signal n[k] has the following properties

A. The samples have zero mean: E{n[k]} = 0.

B. The samples are independent and have variance �2: E{n[k] n[l]} = �2 �
kl

.

This discrete noise signal is reconstructed to a continuous time signal as

nrec(t) =
1X

k=�1
n[k] sinc(t� k)

19.1 Show that properties A+B lead to the following properties for the reconstructed noise signal:

A’ n(t) has zero mean for all t.

B’ E{n(t1) n(t2)} = �2 sinc(t1 � t2) ) E{n2(t)} = �2.

19.2 Construct a signal n(t) as the mean of n1(t) and n2(t), where both n1 and n2 have properties A’+B’
and they are independent. Show that the variance of n is reduced to by a factor of 2 relative to n1

a and n2.

19.3 Show that the set of unit spaced sinc functions form an ON-basis for the space of 2⇡-band-limited
functions.

19.4 Show that for a 2⇡-band-limited function f , a sample value at position t = k is given by

f(k) = h f(t) | sinc(t� k) i =
Z 1

�1
f(t) sinc(t� k) dt

19.5 Show that the set of half unit spaced sinc functions is not a basis of the same space, but instead
form a frame. What are the frame bounds? Is it a tight frame?

19.6 Using the result from the previous exercise, how can a 2⇡-band-limited function f be reconstructed
from samples from f at half integer positions?
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20 Continuous Wavelet Transform

The continuous wavelet transform of a one-variable function f is defined as

W
f

(a, b) =

Z 1

�1
f(t)  

a,b

(t) dt (1)

where  
a,b

is a family of wavelet functions generated from the mother wavelet  according to

 
a,b

(t) =
1p
a
 

✓
t� b

a

◆
(2)

20.1 Show that the factor 1p
a

, that is used in the definition of the wavelet family above, makes the norm

of each wavelet function  
a,b

a constant independent of a, b.

Given the wavelet transform W
f

of a function f , define an auxiliary function g as

g(t) =

Z 1

�1

Z 1

�1

1

|a|2 W
f

(a, b)  
a,b

(t) da db (3)

20.2 By inserting the above expression for W
f

into (3), show that g can be rewritten as

g(t) =

Z 1

�1
f(y)

Z 1

�1

Z 1

�1

1

|a|3  
✓
y � b

a

◆
 

✓
t� b

a

◆
da db dy (4)

Hint: assume that changing order of integration is allowed here.

20.3 The innermost double integral in (4) is

I(t, y) =

Z 1

�1

Z 1

�1

1

|a|3  
✓
y � b

a

◆
 

✓
t� b

a

◆
da db

Show that I(t, y) can be rewritten as

I(t, y) =

Z 1

�1

1

|a|3

Z 1

�1
p(b) q(b) db da (5)

with

p(b) =  

✓
t� b

a

◆
q(b) =  

✓
y � b

a

◆
(6)

Notice that the functions p and q still depend on a, b and t or y.

20.4 The innermost integral in (5) is

J =

Z 1

�1
p(b) q(b) db

Show that J can be rewritten as

J =
|a|2

2⇡

Z 1

�1
eiu(t�y) | (�au)|2 du

where  is the Fourier transform of  . Hint: Parseval’s formula is useful here.
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20.5 Insert J back into (5) and show that I(t, y) can be rewritten as

I(t, y) =

Z 1

�1

eiu(x�y)

2⇡

Z 1

�1

1

|a| | (�au)|2 da du (7)

20.6 The innermost integral in (7) is

K =

Z 1

�1

1

|a| | (�au)|2 da

Show that K can be rewritten as

K =

Z 1

�1

1

|v| | (v)|
2 dv

This means that K is a constant that only depends on the choice of the mother wavelet  .

20.7 Put the constant K back into (7) and show that

I(t, y) = K �(t� y)

20.8 Put this I(t, y) back into (4) and show that this leads to

g(t) = K f(t)

Congratulation! You have now proven that f can be reconstructed from its continuous wavelet transform
W

f

:

f(t) =
1

K

ZZ 1

�1

1

|a|2Wf

(a, b)  
a,b

(t) da db (8)

20.9 Why do we need to make the requirement 0 < K < 1. Hint: consider (8).

20.10 Choose a mother wavelet as  (t) = t e�
1
2 t

2

. Show that this mother wavelet satisfies the feasibility
condition with K = 4⇡.

20.11 Based on the mother wavelet  defined in the previous exercise, compute the wavelet transform
W

f

of some functions:

1. f(t) = �(t)

2. f(t) = step(t)

3. f(t) = rect(t)

4. f(t) = cos t

20.12 Validate your result in the previous exercise, by in each case proving that f can be reconstructed
from W

f

in accordance to (8).

20.13 Translation and scaling of the variable of f have well-defined corresponding operations in the
Fourier domain. What operations on W

f

correspond to translation and scaling of f?
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21 Filter banks

A two-channel filter bank looks like this

The down-sampling operation, denoted with #, implies that every second sample is removed, producing
a sequence that has half as many samples per time unit. For example

a[k] = u0[2 k].

The up-sampling operation, denoted with ", implies that a zero is inserted between every sample in the
input sequence. For example

u1[k] =

(
a[k/2] k even,

0 k odd.

The four discrete filters h0, h1, g0, g1 have Fourier transforms that are denoted as H0, H1, G0, G1. These
transforms are all 2⇡-periodic functions.

21.1 Let x[k] be a discrete signal, with corresponding Fourier transform X(u). Show that the down-
sampling operation followed by the up-sampling operation of x[k] can be represented as the function
X 0(u) = 1

2 [X(u) +X(⇡ + u)] in the Fourier domain.

21.2 Use the result from the previous exercise to show that a necessary and su�cient condition for s = s0,
for general s, is described by

H0(u)H1(u) +G0(u)G1(u) = 2, (9)

H0(u)H1(u+ ⇡) +G0(u)G1(u+ ⇡) = 0. (10)

21.3 (A) Given (9) and (10) it may seem reasonable to design a filter bank by choosing, e.g., filters h0

and g0 in an arbitrary way and then solve h1 and g1 from (9) and (10). Set h1 = (1, 1, 1) and
g1 = (1,�1, 1). What filters h0 and g0 solve (9) and (10)? Why is this choice of filters not useful?
Hint: start by determining H1 and G1 and insert them into (10) which allows you to express G0

in terms of H0. This can be inserted into (9) to give an expression for H0 which, finally, can
be transformed back to the filter h0. Hint: the calculations may become simpler if you use the
z-transform instead of the Fourier transform.

Instead of choosing two of the filters in an arbitrary way, there are better design methods. One is the
conjugate mirror filter bank, where three of the filters depend on the fourth one, e.g., h1, as follows

H0(u) = H1(u), G1(u) = e�iu H1(u+ ⇡), G0(u) = eiu H1(u+ ⇡) = G1(u). (11)

21.4 Show that (11) leads to (10) being satisfied and (9) becomes the (O) condition

|H1(u)|2 + |H1(u+ ⇡)|2 = 2. (12)

This means that (11) together with (12) lead to a perfect reconstruction filter bank.
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21.5 Show that (11) can be formulated in the signal domain as

h0[k] = h1[�k], g1[k] = (�1)1�k h1[1� k], g0[k] = g1[�k]. (13)

21.6 Assume that H1 satisfies condition (O) in (12) and that the other three filters of the filter bank are
given by (11). Show that in fact all four filters satisfy condition (O) in this case.

21.7 (A) Show that the first term in the left hand side of (12) can be written

|H1(u)|2 =
X

m,n2Z
h1[m+ n] h1[n�m] e�2ium +

X

m,n2Z
h1[m+ n+ 1] h1[n�m] e�iu(2m+1).

21.8 (A) Use the result from the previous exercise to show that the entire left hand side of (12) can be
written

|H1(u)|2 + |H1(u+ ⇡)|2 = 2
X

m

h h1[·] | h1[·� 2m] i e�2ium. (14)

This is a general result for arbitrary h1 and does not depend on the conjugate mirror filter property.

21.9 (A) Show that (12) and (14) together imply that

h h1[·] | h1[·� 2m] i = �[m].

This means that the filter h1 generates an orthonormal set of discrete functions by shifting it
multiples of 2.

21.10 (A) Use the result from the previous exercise to show that the filter choices in (11) imply that
each of the four filters g0, g1, h0, h1 generate an orthonormal set of discrete functions by shifting
them multiples of 2.

21.11 (A) Show that the filter choice in (11) leads to

G1(u)H1(u) +G1(u+ ⇡)H1(u+ ⇡) = 0. (15)

21.12 (A) Use the same type of approaches as previously to show that (15) implies that

h g1[·] | h1[·� 2m] i = 0.

This means that all multiple-of-2-shifts of g1 are orthogonal to all multiple-of-2-shifts of h1.

21.13 (A) Show that the conjugate mirror filter bank implies analyzing a input signal with a set of or-
thogonal functions, corresponding to the convolution with h0 and g0 and subsequent down-sampling,
and reconstructing the input signal again by a linear combination with the same set of orthogonal
functions, corresponding to the up-sampling and convolution with h1 and g1. This implies that the
conjugate mirror filter bank constitutes an orthogonal filter bank.

The simplest type of orthogonal filter bank is generated from h1 = ( 1p
2
, 1p

2
).

21.14 Show that this h1 has a Fourier transform H1 that satisfies (12).
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21.15 What are the corresponding filters g1, h0, g0?

21.16 With this choice of filters, what is the delay in the reconstructed signal s0 relative to the input
signal s if we shift all filters the minimum amount to make them causal?

Another conjugate mirror filter bank is generated by h1 = ( 12 ,
1
2 ,�

1
2 ,

1
2 ).

21.17 Show that this h1 has a Fourier transform H1 that satisfies (12).

21.18 What are the corresponding filters g1, h0, g0?

21.19 If we shift all filters the minimum amount to make them causal, what is the delay in the recon-
structed signal s0 relative to the input signal s?

21.20 How would you characterize the four filters of the filter bank, e.g., as low-pass, band-pass, high-
pass, etc?

21.21 (A) Give a general expression for the coe�cients of an arbitrary FIR filter of length 4, h1 =
(a, b, c, d), that produces a conjugate mirror filter bank. Assume real filter coe�cients. Hint: use
the constraints that emerge in exercise 21.9.

21.22 (A) Prove that the filters in a conjugate mirror filter bank must be of even length. Hint: use the
constraints that emerge in exercise 21.9.
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22 Discrete Wavelet transform

A scaling function �(t) satisfies the following properties

(a) �(t� k), k 2 Z is an ON-basis for some function space V0.

(b) �(t) can be written as a linear combination of the scaled functions �(2 t� k), k 2 Z.

Here orthogonality is defined in terms of the standard scalar product between functions:

h �1 | �2 i =
Z 1

�1
�1(t) �2(t) dt.

22.1 Show that from (a) follows also that the function set {21/2�(2 t� k), k 2 Z} is an orthonormal set
of functions.

22.2 Show that they span some space V1 that includes V0.

From property (b) of the scaling function follows that

�(t) =
1X

k=�1
h[k] 21/2 �(2 t� k), (16)

for some sequence h[k], k 2 Z.

22.3 Show that (16) implies that any integer shifted version of � can be written as a linear combination
of the ON-basis {21/2 (2 t� k), k 2 Z} according to

�(t� l) =
1X

m=�1
h[m� 2l] 21/2 �(2 t�m), l 2 Z.

22.4 (A) Show that property (a) is equivalent to choosing � such that

1X

k=1
|�(v + 2⇡k)|2 = 1, (17)

where �(u) is the Fourier transform of �(t). Hint: use Parseval’s theorem.

22.5 (A) Take the Fourier transform of (16) to show that

�(u) = 2�1/2 H
⇣u
2

⌘
�
⇣u
2

⌘
(18)

where H is the discrete Fourier transform of the sequence h[k], defined in (16).

22.6 Show that (18) inserted into (17) leads to

|H(u)|2 + |H(u+ ⇡)|2 = 2

Notice that this is the same condition as condition (O) in (12). Hint: split the sum into separate
sums for even k and for odd k.
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Given the Fourier transform H(u), define a new function as

G(u) = e�iu H(u+ ⇡). (19)

H(u) is the transform of a time-discrete function h[k], therefore it is 2⇡-periodic. This means that also
the new function, G(u), is 2⇡-periodic and can be associated with a time-discrete function g[k] as its
inverse time-discrete Fourier transform. Finally, define a new function  (t) in such a way that its Fourier
transform  (u) is given by

 (u) =
1p
2
G
⇣u
2

⌘
�
⇣u
2

⌘
,

22.7 Use Parseval’s theorem, together with (17) and the fact that G is 2⇡-periodic to show that

g[n] = h (x)|21/2�(2x� n)i.

22.8 (A) Show that

 (t� l) =
1X

k=�1
(�1)k h[k] 21/2 �(2t� k + 2l + 1), l 2 Z,

which means that all functions  (t� l) lie in V1.

22.9 (A) Show that
h  (t�m) | �(t� l) i = 0 for l,m 2 Z,

which means that all functions  (t�m) are orthogonal to V0.

22.10 (A) Show that
h  (t� n) |  (t) i = �[n] for n 2 Z,

which means that all functions  (t� n) form an orthonormal set.

Let f 2 V1, i.e., it can be written as a linear combination of the ON-basis 21/2 �(2 t� k):

f(t) =
X

n

s[n] 21/2 �(2t� n),

for some sequence s of coordinates of f relative the basis.

22.11 (A) Show that a function f 2 V1 also can be written as a linear combination of the two orthonormal
sets {�(t� k)} and { (t� k)} for k 2 Z:

f(t) =
X

n

a[n] �(t� n) +
X

n

d[n]  (t� n).

This means that these two ON sets together span V1. Hint: show that sequences a[n] and d[n] have
discrete Fourier transforms given by

A(u) =
1

2
S
⇣u
2

⌘
H

⇣u
2

⌘
+

1

2
S
⇣u
2
+ ⇡

⌘
H

⇣u
2
+ ⇡

⌘
, (20)

D(u) =
1

2
S
⇣u
2

⌘
G
⇣u
2

⌘
+

1

2
S
⇣u
2
+ ⇡

⌘
G
⇣u
2
+ ⇡

⌘
. (21)
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22.12 (A) Show that (20) and (21) imply that sequences a and d are computed from s as

a = (s[ · ] ⇤ h[� ·])[2 k] = Convolve s[k] with h[�k] and down-sample with a factor 2,

d = (s[ · ] ⇤ g[� ·])[2 k] = Convolve s[k] with g[�k] and down-sample with a factor 2.

22.13 (A) Show that the sequence s can be reconstructed from sequences a and d as:

s[k] =
1X

n=�1
a[n] h[k � 2n] +

1X

n=�1
d[n] g[n� 2n]. (22)

22.14 Show that (22) implies that sequence s is computed from sequences a and d as:

s =up-sample a with a factor 2 and convolve with h+

up-sample d with a factor 2 and convolve with g

where “up-sample with a factor 2” means insert a zero between every original sample.

22.15 Show that the simple scaling function

�(t) =

(
1 0  t < 1,

0 otherwise
(23)

leads to a  function in terms of the so-called Haar wavelet:

 (t) =

8
><

>:

1 0  t < 1
2 ,

�1 1
2  t < 1,

0 otherwise

(24)

Hint: First find the sequence g and construct � from g.

22.16 Draw both � and  and use the figures to motivate why the two sets of functions given by �(t�k),
and  (t� k), k 2 Z, form two ON-bases which are mutually orthogonal.
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23 Stereo Geometry

23.1 In a pair of stereo images, a point in one image corresponds to a line in the other image. Motive
why this is so.

23.2 The figure below shows a 3D point x. This point is observed by two pinhole cameras; camera1 and
camera2. In the figure, draw points, lines, and planes, corresponding to the following geometric
objects:

• The camera centers, n1 and n2, and the virtual image planes, p1 and p2, of each of the two
cameras.

• The projection lines from x to each of the two cameras, L1 and L2, and the projections of x
in the two images, as the image points y1 and y2.

• The epipoles (epipolar points) e12 and e21.

• The epipolar lines, l1 and l2, corresponding to the image points y1 and y2.

You need to draw each object in such a way that its defining properties are clearly illustrated, and
also correctly label each of the requested objects in the figure.

rx

23.3 The fundamental matrix F defines a matching constraint between points in stereo images, called
the epipolar constraint. How is this constraint formulated? Describe the additional variables that
occur in the constraint.

23.4 Two cameras, with camera centers at n1 and n2, observe a scene. The fundamental matrix F,
which defines the epipolar geometry between images from the two cameras, is known. How can you
determine the projection of n2 into the first image from F?

23.5 Two points in stereo images, y1 in image 1 and y2 in image 2, have been classified as being
corresponding points.
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a) What does this mean?
b) How can you test if they really are corresponding points?

23.6 The epipolar constraint yT
1 Fy2 = 0 must be satisfied if y1 and y2 are the homogeneous coordinates

of corresponding image points. The opposite may not be true, however. Explain how two image
points can satisfy the epipolar constraint without corresponding to the same 3D point.

23.7 How are the epipoles e12 and e21 in a pair of stereo images related to the fundamental matrix?

23.8 How many constraints on the fundamental matrix, F, are provided by one pair of corresponding
image points?

23.9 Epipolar geometry in terms of the fundamental matrix F can be estimated from a set of n � 8
corresponding points in the images of two pinhole cameras, e.g., using the 8-point algorithm. The
estimated F is well-defined only under certain basic assumptions. Describe at least one situation
that leads to a degenerate F.

23.10 The 8-point algorithm for estimating the fundamental matrix from stereo correspondences has
a step which sets det(F) = 0 on the estimated fundamental matrix F. What are the practical
consequences for the epipolar lines and epipolar points if this step is not made?

23.11 Why is it correct to say that the fundamental matrix F, which is a 3⇥ 3 matrix, has 7 degrees of
freedom (rather than 3⇥ 3 = 9)?

23.12 Given two camera matrices C1 and C2, the corresponding fundamental matrix is computed as
F = [e12]⇥C2C

T
1 (C1C

T
1 )

�1. Explain how e21 is determined from C1 and C2, and explain why it
follows that detF = 0 from this expression.

23.13 Given two camera matrices C1 and C2, the corresponding fundamental matrix F can be computed
as F = [e21]⇥C2C

+
1 where e21 is the epipole in image 2 and C+

1 is the pseudo-inverse of C1. Why
is it su�cient to know only C1 and C2 in order to compute F?

24 Triangulation

24.1 Reconstruction of a 3D point based on the positions of its projections in a pair of stereo images
can be done using a linear method. How can you derive linear equations in the unknown 3D point
x based on the usual camera projection equations:

y1 ⇠ C1 x and y2 ⇠ C2 x

24.2 The mid-point method for triangulation of 3D points cannot give a reliable result for a particular
case that can occur in practice. Which case?

24.3 Let y1 and y2 be two points in a pair of stereo images, one in each image. Why is not meaningful
to triangulate a 3D point from y1 and y2 unless the two image points satisfy (approximately) the
epipolar constraint?

24.4 We want to triangulate a 3D point from its projections onto a stereo image pair. This is done by
determining the intersection of the two projection lines. Describe how we can determine if the two
lines really intersect.

The figure below shows two cameras, with their image planes and camera centers n1 and n2. It
also shows two image points, one in each image, with homogeneous coordinates given by y1 and y2.
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Finally, the figure shows the reprojection lines of the two image points. How can you determine
if the two lines intersect at some point x without explicitly computing the two reprojection lines?
What information do you use instead?

25 Rectification

25.1 Rectification of two stereo images corresponds to a virtual adjustment of the principal axes of the
two cameras in a specific way. In what way?

25.2 An alternative to rectification of images taken by a stereo rig is to make a mechanical adjustment
of the cameras in the rig. What type of adjustment is that?

25.3 Where are the epipolar points located for a pair of rectified stereo images?

25.4 The two images produced by a stereo rig should be rectified. This is done by applying a rectifying
homography transformation H1 and H2 onto the respective image. What is the defining algebraic
relation for H1 and H2 to make them rectifying homographies? Which additional matrix appears
in this relation?

25.5 A pair of stereo images are related by a fundamental matrix F. We apply homographies, H1 and
H2, to the two images in order to rectify the images. How are H1,H2, and F related in this case?

25.6 Why do we want to rectify stereo images?

25.7 What is the geometric consequence of applying rectifying transformations on a pair of stereo images?
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