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Maria Magnusson, Computer Vision Lab., Dept. of Electrical Engineering, Linköping University

Digital Image Processing 
Lecture 3
 DFT and the relation to continuous Fourier transform
 2D convolution
 2D filters: low-pass, high-pass, derivative (sobel)
 Circular convolution
 The magnitude of the gradient and edge enhancement

 Gonzales & Woods: 
 Chapter 3, 25 pages
 Chapter 4, 65 pages

 Numbers according to Gonzales & Woods, Global Edition, 
4th edition. (Numbers in other editions may vary). 
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Another equation for the Fourier trans-
form of the impulse train sampled signal

𝐺෨ 𝑓 ൌ න 𝑔෤ 𝑡  𝑒ି௝ଶగ௙௧𝑑𝑡
ஶ

ିஶ

ൌ න 𝑔 𝑡 ⋅ ෍ 𝛿 𝑡 െ 𝑛Δ
ஶ

௡ୀିஶ

 𝑒ି௝ଶగ௙௧𝑑𝑡
ஶ

ିஶ

ൌ න ෍ 𝑔 𝑡 𝛿 𝑡 െ 𝑛Δ
ஶ

௡ୀିஶ

 𝑒ି௝ଶగ௙௧𝑑𝑡
ஶ

ିஶ

ൌ ෍ න  𝑔 𝑡 𝛿 𝑡 െ 𝑛Δ  𝑒ି௝ଶగ௙௧𝑑𝑡
ஶ

ିஶ

ஶ

௡ୀିஶ

ൌ ෍ 𝑔 𝑛Δ 𝑒ି௝ଶగ௙௡୼
ஶ

௡ୀିஶ

ൌ ෍ 𝑔௡ 𝑒ି௝ଶగ௙௡୼
ஶ

௡ୀିஶ

≈(4-40)
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DFT (Discrete Fourier transform),
symmetric

𝐺௞ ൌ ෍ 𝑔௡𝑒ି௝ଶగ௡௞/ே, െ
𝑁
2 ൑ 𝑘 ൑

𝑁
2 െ 1

ே/ଶିଵ

௡ୀିே/ଶ

Comparison with previous slide gives:  𝐺௞ ൌ 𝐺෨
𝑘

𝑁Δ
if 𝑔௡ ൌ 0 outside 𝑛:s interval.  𝐺௞ is a scaled variant of 𝐺෨ .

DFT

𝑔௡ ൌ
1
𝑁 ෍ 𝐺௞𝑒௝ଶగ௡௞/ே, െ

𝑁
2 ൑ 𝑛 ൑

𝑁
2 െ 1

ே/ଶିଵ

௞ୀିே/ଶ

Inverse DFT

𝑓 ൌ
𝑘

𝑁Δ
Scaling between 
continuous and 

discrete frequenses:

p. 3 Continuous Fourier transform & DFT
Signal domain Fourier domain

p. 4
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DFT (Discrete Fourier transform),
symmetric and normal

𝐺௞ ൌ ෍ 𝑔௡𝑒ି௝ଶగ௡௞/ே, 
ே/ଶିଵ
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≈(4-42)

≈(4-43)

p. 5

About the relations between conti-
nuous Fourier transform and DFT…
 A time-limited signal can not be band-limited.
 A band-limited signal can not be time-limited.
 DFT demands a time-limited signal.
 The sampling theorem demands a band-limited 

signal.
 Therefore, the continuous Fourier transform can only 

be calculated approximately with sampling and DFT.
 DFT can be calculated fast with FFT (Fast Fourier 

Transform).
 For N points, the complexity of DFT is O(N2).
 For N points, the complexity of FFT is O(N logN).
 There are more about FFT (outside the course) in 

chapter 4 if you are interested.

p. 6

2D DFT, normal
𝐹 𝑢, 𝑣 ൌ ෍ ෍ 𝑓 𝑥, 𝑦 𝑒ି௝ଶగ ௫௨/ேା௬௩/ெ

ெିଵ

௬ୀ଴

ேିଵ

௫ୀ଴

𝑓 𝑥, 𝑦 ൌ
1

𝑀𝑁 ෍ ෍ 𝐹 𝑢, 𝑣 𝑒௝ଶగ ௫௨/ேା௬௩/ெ
ெିଵ

௩ୀ଴

ேିଵ

௨ୀ଴

𝐹 𝑢, 𝑣 ൌ ෍ ෍ 𝑓 𝑥, 𝑦 𝑒ି௝ଶగ ௫௨/ேା௬௩/ெ
ெିଵ

௬ୀ଴

ேିଵ

௫ୀ଴

   ൌ ෍ ෍ 𝑓 𝑥, 𝑦 𝑒ି௝ଶగ௬௩/ெ
ெିଵ

௬ୀ଴

ேିଵ

௫ୀ଴

 𝑒ି௝ଶగ௫௨/ே

≈(4-67)

≈(4-68)

can be separated

Can you write down the 
2D Symmetric DFT? 

p. 7 1D and 2D continuous and 
discrete convolution

Continuous convolution

𝑤 ∗ 𝑓 𝑥 ൌ න 𝑤 𝑥 െ 𝛼 ⋅ 𝑓 𝛼
ஶ

ିஶ

𝑑𝛼

𝑤 ∗ 𝑓 𝑥 ൌ ෍ 𝑤 𝑥 െ 𝛼 ⋅ 𝑓 𝛼
ஶ

ఈୀିஶ

Discrete convolution

𝑤 ∗ 𝑓 𝑥, 𝑦 ൌ න න 𝑤 𝑥 െ 𝛼, 𝑦 െ 𝛽
ஶ

ିஶ

⋅ 𝑓 𝛼, 𝛽
ஶ

ିஶ

𝑑𝛼𝑑𝛽

𝑤 ∗ 𝑓 𝑥, 𝑦 ൌ ෍ ෍ 𝑤 𝑥 െ 𝛼, 𝑦 െ 𝛽 ⋅ 𝑓 𝛼, 𝛽
ஶ

ఉୀିஶ

ஶ

ఈୀିஶ

≈(4.24)

p. 8
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    𝑓 𝑥 ൌ 0,0,0,1,1,1,0,0
   𝑤 𝑥 ൌ 0,0,0,3,2,1,0,0
𝑤 ∗ 𝑓 𝑥 ൌ 0,0,3,5,6,3,1,0

1D discrete convolution
1 11
3 12
5 363 1

𝑥 ൌ 0

1 1
1 32

5 363 1

1 𝑓 𝛼
𝑤 𝑥 െ 𝛼

𝑤 ∗ 𝑓 𝑥 in x-space

in -space

𝑥 ൌ 0

𝛼 ൌ 0

𝑤 ∗ 𝑓 𝑥 ൌ ෍ 𝑤 𝑥 െ 𝛼 ⋅ 𝑓 𝛼
ஶ

ఈୀିஶ

Mirrored
filter

p. 9

Fig. 3.28

𝑔 𝑥, 𝑦 ൌ
𝑤 െ1, െ1 𝑓 𝑥 െ 1, 𝑦 െ 1
൅
𝑤 െ1,0 𝑓 𝑥 െ 1, 𝑦 ൅. . . ൅
𝑤 0,0 𝑓 𝑥, 𝑦 ൅. . . ൅
𝑤 1,1 𝑓 𝑥 ൅ 1, 𝑦 ൅ 1

The mecha-
nics of linear 
spatial filtering 
using a 3x3 
filter mask

The result
g(x,y) is put in
the out-image
at the place
of the filter 

origin.

p. 10

0  0 

𝑓 𝑥, 𝑦 𝑤 𝑥, 𝑦

0
0 -2

1

1

0
0
0

0 0
-2

3

1

0
0
0

0

2D discrete convolution

0
0

-2

1

1

0
00

0
0

0 0

0

3

4
00 0

4 -4

0

0

1

-8
0

0
0

0

0

0

0
0
0

ℎ 𝑥, 𝑦 ൌ 𝑤 ∗ 𝑓 𝑥, 𝑦 ൌ ෍ ෍ 𝑤 𝑥 െ 𝛼, 𝑦 െ 𝛽 ⋅ 𝑓 𝛼, 𝛽
ஶ

ఉୀିஶ

ஶ

ఈୀିஶ

ℎ 𝑥, 𝑦 ൌ 𝑓 ∗ 𝑤 𝑥, 𝑦 ൌ ෍ ෍ 𝑓 𝑥 െ 𝛼, 𝑦 െ 𝛽 ⋅ 𝑤 𝛼, 𝛽
ஶ

ఉୀିஶ

ஶ

ఈୀିஶ

0
0

0 0

0

3

4
00 0

4 -4

0

0

1

-8
0

0
0

0

0

0

0
0
00

0
0 0

0
00 0

0

0
0

0
0

0

0

0

0
0
0*

The filter must be 
mirrored in the x- and 

y-axis, i.e. rotated 180o!

p. 11 Which Fourier transform
has this filter?
 Put dirac impulses at every value in the filter. Set 

the sample distance to . This gives:

 Compute the continuous Fourier transform, use 
the formula collection. This gives:

𝐹 𝑢 ൌ 1 ⋅ 1 ⋅ 𝑒ା௝ଶగ୼௨ ൅ 2 ⋅ 1 ൅ 1 ⋅ 1 ⋅ 𝑒ି௝ଶగ୼௨ /4 ൌ
    

ൌ 2 cos 2𝜋Δ𝑢 ൅ 2 /4 ൌ cosଶ 𝜋Δ𝑢

𝑓 𝑥 ൌ 1 ⋅ 𝛿 𝑥 ൅ Δ ൅ 2 ⋅ 𝛿 𝑥 ൅ 1 ⋅ 𝛿 𝑥 െ Δ /4

1 1 /42

p. 12

𝑥

1/2

Δ
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Alternative. Compute 
the DFT of the filter:
 Here is the filter drawn as fD(n):

 Insert fD(n) into the DFT formula:

𝐹஽ 𝑘 ൌ ෍ 𝑓஽ 𝑛  𝑒ି௝ଶగ௡௞/ே ൌ 
ே/ଶିଵ

௡ୀିே/ଶ

ൣ⋯ ൅ 0 ൅ 1 ⋅ 𝑒ି௝ଶగ ିଵ ௞/ே൅. . . 

    . . . ൅2 ⋅ 𝑒ି௝ଶగ ଴ ௞/ே ൅ 1 ⋅ 𝑒ି௝ଶగ ଵ ௞/ே ൅ 0 ൅ ⋯ ൧/4 ൌ
   ൌ 2 cos 2𝜋𝑘/𝑁 ൅ 2 /4 ൌ   cosଶ 𝜋𝑘/𝑁

1 1 /42

p. 13

𝑢 ൌ 𝑘 𝑁Δ⁄Scaling between continuous and 
discrete frequenses:

𝑛
1

1/2

A 1D discrete weighted averag-
ing filter is also a low-pass filter

cosଶ 𝜋Δ𝑢

Attenuates high 
frequencies1 1 /42

Filter with
dirac impulses

Fourier transform

Set the sample 
distance to 

Filter

𝑢
Δ

1 2⁄

𝑥

p. 14

Which 2D Fourier transform
has this filter? 
 Put dirac impulses (x,y)=(x)(y) at every value 

in the filter. Set the sample distance to . This 
gives

 Compute the continuous Fourier transform

𝐹 𝑢, 𝑣 ൌ 1 ⋅ 𝑒ା௝ଶగ୼௨ ൅ 2 ൅ 1 ⋅ 𝑒ି௝ଶగ୼௨ ⋅ 1 𝑣 /4 ൌ
    

ൌ 2 cos 2𝜋Δ𝑢 ൅ 2 /4 ൌ cosଶ 𝜋Δ𝑢

𝑓 𝑥, 𝑦 ൌ 1 ⋅ 𝛿 𝑥 ൅ Δ ൅ 2 ⋅ 𝛿 𝑥 ൅ 1 ⋅ 𝛿 𝑥 െ Δ ⋅ 𝛿 𝑦 /4

1 1 /42

p. 15 Low-pass filter in 
the x- (u-) direction

cosଶ 𝜋Δu
Δ ൌ 1 here

1 1
/4

2 x

y

u

v

p. 16
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Low-pass filter in 
the y- (v-) direction

cosଶ 𝜋Δv
Δ ൌ 1 here

1

1

/4

2 x

y

u

v

p. 17 Low-pass filter in the x- (u-) 
direction and the y- (v-) direction

cosଶ 𝜋Δu ⋅ cosଶ 𝜋Δv
Δ ൌ 1 here

Attenuates high 
frequencies

11

2

2 *

=
1

1

2

2
2
1

1
4

1

1
/4

/4

/16

2

p. 18

A 3x3 averaging filter and
a 3x3 weighted averaging filter

A (weighted) averaging filter must be divided by the 
sum of the values of its coefficients.

The averaging filter have relatives of size 5x5, 7x7, 9x9, …
They do all have a sinc×sinc-like Fourier transform.

Fig. 3.31

p. 19

Smoothing with
averaging filters

5x
5

15
x1

5

3x
3

9x
9

35
x3

5

The smoothing is not 
symmetric in all 

directions and the 
sinc×sinc-like

Fourier transform 
is not the best choice.

Why is it a dark frame 
around some images? 

Similar to Fig. 3.33

Noise is attenuated.
Details and edges 

are blurred.

p. 20
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Image size after 2D linear 
discrete convolution
 Valid: Values outside the in-image are regarded as undefined => 

The out-image becomes smaller than the in-image.
 Full: Values outside the in-image are regarded as zero => The out-

image becomes bigger than the in-image. Or equally sized if the 
extra values are thrown away. (Same)

To avoid border
effects, the
border pixels in
the image can 
be extrapolated 
before
convolution.

p. 21

h, rotated

More low-pass filter in the x- (u-) 
direction and the y- (v-) direction

cosସ 𝜋Δu ⋅ cosସ 𝜋Δv
Δ ൌ 1 here

24 =
16

16

24

24
24
16

16
36

/256

2
1

1

2

2
2
1

1
4

/16

2
1

1

2

2
2
1

1
4

/16

464

464

6
4

4
6
4

4
1 1

11

*

p. 22

*

Low-pass filtering
in the spatial domain

24
16

16

24

24
24
16

16
36

/256

464

464

6
4

4
6
4

4
1 1

11

p. 23 Low-pass filtering in
the Fourier domain

p. 24
Fourier transform



7

𝑔22 ൌ  𝑓11 ൅ 2 ⋅ 𝑓12 ൅   𝑓13൅. . .
   2 ⋅ 𝑓21 ൅ 4 ⋅ 𝑓22 ൅ 2 ⋅ 𝑓23൅. . .
    𝑓31 ൅ 2 ⋅ 𝑓32 ൅   𝑓33

Computational complexity
for discrete convolution

5 multiplications and 8 additions per pixel!

p. 25

6 multiplications,
8 additions and
1 division per pixel

21 multiplications,
24 additions and
1 division per pixel

2

Computational complexity
with and without separation

24 =
16

16

24

24
24
16

16
36

/256

464

464

6
4

4
6
4

4
1 1

11

21

1

1

1

/256

*

p. 26

2 4
2
4

Gaussian low-pass filters (GLPF) 
designed in the Fourier Domain

𝐻 𝑢, 𝑣 ൌ 𝑒ି஽మ ௨,௩ ଶ஽బ
మ⁄

Fig. 4.43

(4-116)

The filters on the previous slides belongs to a family with separa-
ble weighted averaging filters based on the binomial coefficients. 
They approximates Gaussian functions. However, Gaussian low-
pass filters can also be designed directly in the Fourier domain.

p. 27

N
ot

e:
 T

he
 u

-a
nd

 v
-a

xi
s 

sh
ou

ld
 ra

th
er

 p
as

s 
th

e 
ce

nt
er

 o
f t

he
 im

ag
e.

Similar to Fig. 3.36-3.37

Smoothing with
GLPF filters

30
16

0

C
ut

of
f f

re
q.

=1
0

60
46

0

The smoothing is 
symmetric all

directions, i.e. 
rotational symmetric. 

Noise are attenuated.
Details and edges 

are blurred.

p. 28
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Ideal low-pass filters (ILPF) 
designed in the Fourier Domain

𝐻 𝑢, 𝑣 ൌ ቊ1 if 𝐷 𝑢, 𝑣 ൑ 𝐷଴
0 if 𝐷 𝑢, 𝑣 ൐ 𝐷଴

Fig. 4.39

(4-111)

(4-112)𝐷 𝑢, 𝑣 ൌ 𝑢 െ 𝑃/2 ଶ ൅ 𝑣 െ 𝑄/2 ଶ

p. 29

Note: The 
u- and v-axis 
should rather
pass the
center of 
the image.

Similar to Fig. 4.41

Smoothing with
ILPF filters

30
16

0

C
ut

of
f f

re
q.

=1
0

60
46

0

Noise are attenuated.
Details and edges 

are blurred.

Note the Gibbs
ringing artefacts!

The smoothing is 
symmetric all

directions, i.e. 
rotational symmetric. 

p. 30

Multiplication in the discrete Fourier do-
main corresponds to circular convolution

Is performed via 
multiplication in the
Fourier domain. 
The out-image gets 
the same size as
the in-image.

Convo-
lution
kernel

zeros…

zeros…

Can be pre-
calculated

In-image Out-image

1D circular convolution

𝑓 ∗ே ℎ 𝑚 ൌ ෍ 𝑓 𝑛 ⋅ ℎ 𝑚 െ 𝑛 ே

ேିଵ

௡ୀ଴
where  ∗ே  denotes circular convolution 
and ே
denotes modulo 𝑁 operation,
i.e. ℎ  can be viewed as periodical repeated
or circular.
Theorem: 𝐷𝐹𝑇 𝑓 ∗ே ℎ 𝑚 ൌ 𝐹 𝑘 ⋅ 𝐻 𝑘

p. 32
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**

Zero-padding must be performed before circular convolution
to get the same result as normal linear convolution.

= =

1D circular convolution

p. 33 Example) 2D linear and 
circular convolution

In-image Averaging filter
Size: 15x15

Peter Forsberg,
former 
hockey player

p. 34

Example) 2D linear and 
circular convolution

Out-image after 
linear convolution

Out-image after 
circular convolution

p. 35

Computing the derivative = 
convolution with a derivative operator

Fourier transform

𝑗 sin 2𝜋Δ𝑢 /Δ

Derivative filter:

1 -1
/2

0

A filter that have a Fourier transform looking like a straight 
line through the origin can be used as a derivative filter.

𝜕
𝜕𝑥

𝑗2𝜋𝑢

Fourier transform

p. 36

𝑗 sin 2𝜋Δ𝑢 /Δ → 𝑗2𝜋Δ𝑢/Δ=
=𝑗2𝜋𝑢, for small 𝑢
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Derivative filter plus low-pass in 
the x- (u-) direction

1 -1
/2

0 x

y u
v

p. 37

𝑗 sin 2𝜋Δ𝑢 /Δ,
Δ ൌ 1 here

Derivative filter plus low-pass in 
the y- (v-) direction

𝑗 sin 2𝜋Δ𝑣 /Δ,
Δ ൌ 1 here

1

-1

/2

0 x

y

u

v

p. 38

Derivative filter in the x- (u-) direction 
plus low-pass filter in both directions

𝑗 sin 2𝜋Δ𝑢 ⋅ cosଶ 𝜋Δ𝑣 /Δ,
Δ ൌ 1 here

-11

-2

0

=
-1

-1

0

0
2
1

1
0

1

1
/4

/2

/8

2

Sobel-x

≈Fig. 4.38

*

p. 39

Derivative filter in the y- (v-) direction 
plus low-pass filter in both directions

𝑗 sin 2𝜋Δ𝑣 ⋅ cosଶ 𝜋Δ𝑢 /Δ,
Δ ൌ 1 here

11

0

2

=
-1

1

-2

2
0
-1

1
0

-1

1
/2

/4

/8

0

Sobel-y

*

p. 40
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-1
/8

-2 -1
0 0 0
1 2 1

𝜕𝑓 𝑥, 𝑦
𝜕𝑥

𝜕𝑓 𝑥, 𝑦
𝜕𝑦

x

y

gray scale
colortable:
   0 ⇒ black
127 ⇒ gray
255 ⇒ white

bipolar
colortable:
െ128 ⇒ blue
  0 ⇒ white
127 ⇒ red

𝑓 𝑥, 𝑦

convolve

1
2
1 0

0
0

-1
-2
-1

/8

Derivative filtering p. 41 The magnitude of the gradient 
enhances edges in the image

𝑓 𝑥, 𝑦
∇𝑓 𝑥, 𝑦 ൌ

𝜕𝑓 𝑥, 𝑦
𝜕𝑥

ଶ

൅
𝜕𝑓 𝑥, 𝑦

𝜕𝑦

ଶ

Magnitude of the gradientIn-image

∇𝑓 𝑥, 𝑦 ൌ

𝜕𝑓 𝑥, 𝑦
𝜕𝑥

𝜕𝑓 𝑥, 𝑦
𝜕𝑦

ൌ
𝑓௫
𝑓௬

p. 42

Derivative filtering and edge enhancement

-1
28

=b
la

ck
12

7=
w

hi
te

𝑓: original
𝑓௫

ଶ ൅ 𝑓௬
ଶ

0=
bl

ac
k

25
5=

w
hi

te

𝑓௫ 𝑓௬

p. 43

Linear discrete convolution when
the center is between the pixels

1* =-11 1 -11 0

1* =-1
1 1

-1

1
0

p. 44

𝜕
𝜕𝑥   ∗  lowpass

filter  ൌ   
𝜕

𝜕𝑥 

𝜕
𝜕𝑦   ∗  lowpass

filter  ൌ   
𝜕

𝜕𝑦 

/2

/2/

/ /2

/2
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In a similar way as on previous slide, 
we can construct a Laplace filter

Fig. 3.45

Mask a Mask b

p. 45

Lab 1 
exercise

∇ଶ𝑓 ൌ
𝜕ଶ𝑓
𝜕𝑥ଶ ൅

𝜕ଶ𝑓
𝜕𝑦ଶ ൌ

𝜕
𝜕𝑥 ∗

𝜕
𝜕𝑥 ൅

𝜕
𝜕𝑦 ∗

𝜕
𝜕𝑦 ൌ   …   ൌ Mask a

Laplace can help to give a shaper 
image 𝑔 𝑥, 𝑦 ൌ 𝑓 𝑥, 𝑦 ൅ 𝑐 ∇ଶ𝑓 𝑥, 𝑦

Fig. 3.46

(3-54)

𝑓 𝑥, 𝑦 ∇ଶ𝑓 𝑥, 𝑦

𝑔 𝑥, 𝑦
Using
Mask a

Using
Mask b

𝑔 𝑥, 𝑦

Note that c = -1 !

p. 46

A normal approximate Laplace filter 
mask  = a high-pass filter • -1

1 =
0

0

1

1
1
0

0
-4

/

11 -2
/

1

1
-2

/

+

െ 4 sinଶ 𝜋Δ𝑢 ൅ sinଶ 𝜋Δ𝑣 Δଶ⁄

p. 47

Fourier transform

ℑ ሺ1, െ2,1ሻ Δଶ⁄ :   1 ⋅ 𝑒ା௝ଶగ୼௨ െ 2 ൅ 1 ⋅ 𝑒ି௝ଶగ୼௨ /Δଶ ൌ
    

ൌ 2 cos 2𝜋Δ𝑢 െ 2 /Δଶ ൌ െ4 ⋅ sinଶ 𝜋Δ𝑢 /Δଶ

Fig. 4.30

Low- and High-pass filtering p. 48


