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Digital Image Processing Another equation for the Fourier trans-

Lecture 3 form of the impulse train sampled signal
o DFT and the relation to continuous Fourier transform ~ ¢ - _jonft
o 2D convolution G(f) = fg(t) e Jemtdt
o 2D filters: low-pass, high-pass, derivative (sobel) — o0
o Circular convolution b © )
o The magnitude of the gradient and edge enhancement = f g - Z §(t —nA) e J2mftge
—00 n=—o
© (o)

= [ D o —na) emrar

o Gonzales & Woods: —co N=—00

00 oo}

= Chapter 3, 25 pages
= Chapter 4, 65 pages

Z f g(D8(t — nh) e~J2mftg;

n=—0 _oo

o Numbers according to Gonzales & Woods, Global Edition, S 9
4th edition. (Numbers in other editions may vary). T ——— —i2nfnA
= ) gmp) e2mi= ) g, 72
Maria Magnusson, Computer Vision Lab., Dept. of Electrical Engineering, Link6ping University " ne—oo ne—to
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DFT (Discrete Fourier transform), Continuous Fourier transform & DFT
Sym m etri C 20 Signal domain r Fourier domain
o — /_/\"\I C ‘!/MF .
» N N NA il
G = Z Gne TN, 2= k< 77! ‘SAMPLL\'G' “
n=-N/2 )
N/2-1 - &(1) = g(n) - 54(1) N G = 6(h/4
s(r) G(f)
gn=y ). G, Fsnso1 | il :
k=—N/2 ! i T "4\__' : - ] f T T [
: 2 24
Scaling between f k
continuous and = A - k k
, NA G, = Gl55) = 6lx5)/4
discrete frequenses: 2, = gnd) : \Na) ~ P\Na
En = = G,
Comparison with previous slide gives:|G, = G L 7:,,"[!]|.,|13:!'-'7, g /EET\‘ 't§‘.-*1]]h|1|-f"".- -
b b M AN ~5 3 5 3
if g, = 0 outside n:s interval. G, is a scaled variant of G( ), symmetric DFT symmetric DFT
sy normal DET normal DET W




DFT (Discrete Fourier transform).”
symmetric and normal
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About the relations between conti-
nuous Fourier transform and DFT...

A time-limited signal can not be band-limited.

A band-limited signal can not be time-limited.
DFT demands a time-limited signal.

The sampling theorem demands a band-limited
signal.

Therefore, the continuous Fourier transform can only
be calculated approximately with sampling and DFT.
DFT can be calculated fast with FFT (Fast Fourier
Transform).

For N points, the complexity of DFT is O(N23).

For N points, the complexity of FFT is O(N logN).

There are more about FFT (outside the course) in
chapter 4 if you are interested.
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c= £ G= gne SHIN, — 2 <k < -1
5686 S n=-N/2
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EE — G.el2mk/N 1 o q
5o 5 In N € 2 = n= 2
EE| k=-N/2
B N-1
B| Ge= ) gne 7N, 0<k<N-1
g o S n=0
g EE ,f 1 N-1
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Can you write down the
2 D D FT normal 2D Symmetric DFT?
’
N-1M-1
F(u,v) = Z Z f(x, y)e—j2n(xu/N+yv/M) ~(4-67)
x=0 y=0
1 N-1M-1
fy) = Z z F(u, v)ej2mxu/N+yv/M)
u=0 v=0
-1M-1
F(u,v) = Z f X, y)e_jzn'(xu/N"'yV/M)

03/
-1

Mf*ﬁMZ

can be separated = f(x, y)e—jZHyV/M> e—Jj2mxu/N

X

0 \ y=0
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1D and 2D continuous and
discrete convolution

‘ Continuous convolution ‘

w* f(x) = fw(x—a)-f(a)da

—00

W fxy) = f f w(x —a,y - B) - f(a B) dadp

—00 —00

Discrete convolution ‘

wrf = ) wr-a)-f@

AF~P

waf@y= Y ) wE-ay-p§-f@p)

a=—00 ff=—o00 %




1D discrete convolution

p.9

Fo)=00011,1,00 L1 | [1ftfi] [ |
w(x) =0,0,032100 | | | [3]211] | |
(w* f)(x) =0,0,3,5,6,3,1,0 | | |3 slel3]1 | |
WeHW= ) wx—a)-f(@
| i [ Jf@ .
Mirrored 1123 F— w(x —a) N a-space

filter |- - - c | o o e e e e e e -

.. 3 E. (w *f)(x)} in x-space
x =0 R

.\::-:.. o B p 10
The meCha' TT LN The result
. . I L] g(x,y) is put in
nics of linear ZHHEA_| the out-image
. . . Yo sk T | at the place
spatial filtering of the fiter
. origin.
using a 3x3
filter mask
glx,y) = /
w(-1,-1Df(x—1,y—-1) I PP oy o
+ rd Aa=Liy=1 fir=193 |Re=tve F

w(=1,0)f(x — 1, y)+/. +
w(0,0)f(,y)+...+/
w1l Df(x+1,y+1)

W F|g 31238

2D discrete convolution

Ry =wrf@y) = Y > wix—ay—p): @)

a=—00 B=—00

(o] [o9)

hey) = frwiy) = ) > far—ay—p) wah)

a=—00 f=—00

The filter must be

mirrored in the x- and 01

y-axis, i.e. rotated 180°! 0 0 i 0
021 1(-2|00f-2|1 0(0j0|0|0
0]0]0 * 0]0Jj0| = (0|0 0
0j(1|0 030 0(0|0|0|O0
() w(x,y) 010 B 040

Which Fourier transform
has this filter? [112] 1],

o Put dirac impulses at every value in the filter. Set

the sample distance to A. This gives: 1/2%
X

A
FOO=[1-8(x+A)+2-8(x) +1-8(x—A)]/4

o Compute the continuous Fourier transform, use
the formula collection. This gives:

F(uw) = [1. 1.-etjzmdbu £ 2.1 41. 1,e—j2nAu]/4=

= [2 cos(2mAu) + 2]/4

p. 12
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Alternative. Compute
the DFT of the filter:  [1[2]1],

o Here is the filter drawn as fy(n): 1/2%
n

1

o Insert fy(n) into the DFT formula:
N/2-1
Fp(k) = z fo(n) e~ J2mnk/N — [ +04+1-eJ2m(-Dk/N
n=-N/2
o2 e I2ROK/N 4 g = J2RWK/N g 4. ]/4 =
= [2 cos(2mk/N) + 2]/4 =

Scaling between continuous and
discrete frequenses:

u=k/NA
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Which 2D Fourier transform
has this filter? [[2]1],,

o Put dirac impulses 3(x,y)=6(x)d(y) at every value
in the filter. Set the sample distance to A. This
gives

fC,y)=[1-6(x+A)+2-6(x)+1:-6(x—A)]-6(y)/4

o Compute the continuous Fourier transform

Fu,v) =[1-e*/2mhu £ 2 4+ 1. e /2mU] . 1(v) /4 =

= [2 cos(2mAu) + 2]/4

A 1D discrete weighted averag- " “
ing filter is also a low-pass filter

menp

Attenuates high
frequencies

Set the sample @
distance to A. 1/2 -~ h
f <-j\ Px — . \“ u
A ‘ Fourier transform ‘
Filter with
dirac impulses
p. 16

Low-pass filter in
the x- (u-) direction

cos?(mAu)
A =1 here

Fourier transform: cos Z(n\ul. a=1
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Low-pass filter in Low-pass filter in the x- (u-)
the y- (v-) direction direction and the y- (v-) direction

2
cos2(Av) cos?(mAu) - cos?(mAv)
A =1 here A =1 here
y Fourier transform; cos ztmvj. A=1 1 2 1
o Attenuates high
T ) ... 21412 E fr i
= equencies
i\"\"}\:‘\m\ pany
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A 3x3 averaging filter and Smoothing with -===E ==mm

a 3x3 weighted averaging filter averaging filters Hlﬁll ||||Iﬁ|l

(a2}
1 1 1 1 5 1 Noise is attenuated. 2aaaaada8 a.aaaaaaa
- Details and edges
are blurred. --umE W ~ummE B
Lol 1 1 1 Lyl 2 4 2 — . a a
Y 16 Why is it a dark frame see see

(§¥]

around some images? ”” ””“”I
N 1 [l .
Fig. 3.31 “’I;.aaaaaaa »aaaaaaa|®

emml R

>d .

The averaging filter have relatives of size 5x5, 7x7, 9x9, ... I” ”I ” I ! [ 5‘)
They do all have a sincxsinc-like Fourier transform. | - Similar to Fig. 3.33‘ ~||ssaaaadd L :“?

A (weighted) averaging filter must be divided by the
sum of the values of its coefficients.

5x15

I
—
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. . p. 21 . . p. 22
Image size after 2D linear More low-pass filter in the x- (u-)
discrete convolution direction and the y- (v-) direction
o Valid: Values outside the in-image are regarded as undefined =>
The out-image becomes smaller than the in-image. cos*(mAu) - cos*(mwAv)
o Full: Values outside the in-image are regarded as zero => The out- 114161411 A =1 here
image becomes bigger than the in-image. Or equally sized if the
extra values are thrown away. (Same) 4116|2416 4
. y 6 24eR4 6] [=]
4 —— ! To avoid border 4 [16]2416| 4
. \ ! effects, the 114161411
Fa.f) : 9(z,v) ! border pixels in /256
4y = E % [ the image can
bE - : x : be extrapolated 11211 11211
da— : | before
- ’ X i_______________l convolution. 21412 21412
h, rotated - Juatid 11211 11211
o il ; /16 /16 K

Low-pass filtering " Low-pass filtering in P2
in the spatial domain the Fourier domain '| &

16[24{16

e B Y e Y
— |||~




Computational complexity " Computational complexity "
for discrete convolution with and without separation
f11| £12] f13 1] 2 -
pildny (%) | 2]4] 2 [= 1[4]6]4]1 1]
a1l 52 133 1 4 16[24[16] 4 2
o pabokds| [E]
4 |16]2416] 4 2
g922= f11+2-f12+ f13+... 14]6]4]1] 56 1] 156
2-f21 442242 f23+... —
f31+2-f32+ £33
21 multiplications, 6 multiplications,
24 additions and 8 additions and
5 multiplications and 8 additions per pixel! 1 division per pixel 1 division per pixel
Gaussian low-pass filters (GLPFj” Smoothing with === H ]
GLPF filters == d

designed in the Fourier Domain

L ]

2 g The filters on the previous slides belongs to a family with separa-
T 9 g ble weighted averaging filters based on the binomial coefficients.
.Z 8 P They approximates Gaussian functions. However, Gaussian low-
s 21_;; £ | | pass filters can also be designed directly in the Fourier domain.
[~
= 8 Hiu, v) Hiu, v)
2o g t t
F3c
9o (0]
g&o
2" £
Dy= 100

= Diu, v)

1
I
Flg' 4.43 a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter

radial cross sections for various values of Dy,

H(u,v) = e—Dz(u,v)/ZDé

(i

Noise are attenuated.
Details and edges
are blurred.

The smoothing is
symmetric all
directions, i.e.
rotational symmetric.

o
[Sp)

o
©
Similar to Fig. 3.36-3.37 |
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|deal low-pass filters (ILPF)
designed in the Fourier Domain

Note: The
u- and v-axis| . .
should rather| +
pass the
center of
the image.

CHiw, v)
-

D = D{u, v)

1
u
Fig. 4.39 _ . o
n) Perspective plot of an ideal lowpass-filter transfer function. (b) Filter displayed as an image
(c) Filter radial cross section. .
{1 if D(u, v) < D,

Hww =10 itpuv)>p, | @111

o
w
(=)

Smoothing with ~+==mm -
ILPF filters sd .

10 |c

; o
M e | 5
' =
Noise are attenuated. saaaaaad o
Details and edges — —— ] I
are blurred. isamn -»ammE N

Note the Gibbs .o a oo a

ingi facts! | v

ringing artefacts E =3 ””"" @
“-‘oﬁa‘c_._l_'_.“ s3aannag |

The smoothing is

symmetric all -
TS conmEl c-nmmEl
directions, i.e.

rotational symmetric. ® a ° a
aee aee

D(u,v) =y (u—P/2)*+ (v -Q/2)* | (4-112)

E W = I = E
Similar to Fig. 4.41 | ~ B e P A a A BT

Multiplication in the discrete Fourier do-
main corresponds to circular convolution

2D DFT >
SNy Can be pre- Is performed via
Convo- Y REEE calculated multiplication in the
lution Zeros. .. ! Fourier domain.
kernel — = - The out-image gets
Zeros. .. | the same size as
h(xy) H(uy) the in-image.
2D DFT 2D IDFT
Py YR v v /7 N Py
’_IZ -z I_IZ -z
X . u 1 u X
f(x,y) F(u,v) G(u,v) g(x.y)

p. 32

1D circular convolution

N-1
£ hGm) = > @) - h((m =)
n=0

where *p denotes circular convolution

and ( )y

denotes modulo N operation,

i.e. h( ) can be viewed as periodical repeated
or circular.

Theorem: DFT(f %y h(m)) =F(k)-H(k)
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1D circular convolution

A A

YYYYYYYYYYYYYYYYYYYY
e e rrrna e
rrrei rrrei rrrna rrrni
11111 11111 11111 11111

v
o
¢
v

> Py e >
> 9O 99 >

Tt Ll

>

>
>

Zero-padding must be performed before circular convolution

to get the same result as normal linear convolution.

p. 34

Example) 2D linear and
circular convolution

Peter Forsberg, In-image Averaging filter
former Size: 15x15

hockey player

p. 35

Example) 2D linear and
circular convolution

& &

Out-image after Out-image after
linear convolution circular convolution

p. 36

Computing the derivative =
convolution with a derivative operator

P Derivative filter:

7% [1]0]-1]
12A
LJ[Fourir transform | 1] [Fourir transform |

j2mu j sin(2mAu) /A

jsin(QmAu) /A - j2mAu/A=
=j2mu, for small u

Afilter that have a Fourier transform looking like a straight
line through the origin can be used as a derivative filter.




Derivative filter plus low-pass in
the x- (u-) direction

j sin(2mAu) /A,
A =1 here

f’""

Y i
Uit ‘W/ -'r:;
Al :
i
ffm '?m;"f-ﬁr; i
. i

i

i

dimh ";

—|
=2
1
s!
>
e
imaginary axis

Derivative filter plus low-pass in
the y- (v-) direction

j sin(2mAv) /A,

y A =1 here
T \
\_ P
] W u
50 \\\ .,\\\\\\
0] —»x gor R ‘::\m .
) \\\\““\\\\\\““\\ ny ‘).m' it
£ A _.,;.-m-',,;.-: 5
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Derivative filter in the x- (u-) direction
plus low-pass filter in both directions

j sin(2mAu) - cos?(mAv) /A,

A =1 here

K]
5 R
> i 'n‘
g .ﬂrf";.e‘f.’:
(=]
g ;
0
— 05
v 05 05
~Fig. 433
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Derivative filter in the y- (v-) direction
plus low-pass filter in both directions

j sin(2mAv) - cos?(mAu) /A,

A =1 here

11211 2
/8A ]
E ;
-1 05
/4 0]




. . . . .41 . .
Derivative filtering i The magnitude of the gradient
enhances edges in the image
of ()| M=
Ox e In- |mage ‘ Magnitude of the gradient
of (e, y)| ™ -
)
bipol e 9y B f(xy) D
g(l;ell(}),ri:j?)llee: C(I)Iljc())r:ble: 1121 u 6f(x y) IVf(x, y)| = - _
0 = black | |—128 = blue ofofo - af (x,y) af (x,y)
127 = gra whi 2| Vi(x,y) = < ) +<
255 = white 12(;2 redte 12l en ' i Y)‘ [f] J ox % 4
p. 44

Linear discrete convolution when
the center is between the pixels

i . lowpass  _ i
dx filter dx

[T, ) (101, (e,

i . lowpass
filter

A B HE
/A

/2

=black
white

-128
127

B S NS

12A
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In a similar way as on previous slide,

we can construct a Laplace filter

Lab 1
02 f 02 f 0 0 0 O |exercise

2f = —= —x*x—= .. = Mask

vif 6x2 dy? ~ox ox ay*ay aska

Laplace can help to give a shapér"

image gy =f@y) +c[V?f(x,y)]

Vif(x,y)

p. 47|

A normal approximate Laplace filter
mask = a high-pass filter ¢ -1
S[(1,-2,1)/8%]: [1-et/2mAn —2 4 1. ¢ J2mAU] /A2 =

= [2 cos(2mAu) — 2]/A? = —4 - sin?(wAu) /A?

Fourier transform

01110 0
U ELERLE ]
011(0 /A2 | QU
/A2 JA2 05 " \\f//(of i
‘ 4(sin®(mAu) + sin?(wAv))/A? K v 05 05y <

p. 48

Low- and High-pass filterinqm

Hiu, v)

abe

Eq.(4.7-1). We used @ = 0,85 in (c) to obtain (f) (the height of the filter itself is 1), Compare (1) with Fig. 4.2%a). v

Top row: frequency domain filters. Bottom row: corresponding filtered images oblained u®




