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The Harris Detector and the LK Tracker

Lab Exercise 1

1 Introduction

During this exercise, you will implement the original version of the widely used Lucas-Kanade Feature
Tracker (LK Tracker). Unless implemented in low-level operations, the LK tracking algorithm is com-
putationally heavy, so in this computer exercise we will make the restriction to track just one region
(centered around one pixel) at a time. This means that we need to choose which pixel to track. Due to
the close relationship between the LK tracker and the Harris detector (aka. Harris-Stephens detector) we
will use the Harris detector to find good features to track.

1.1 Preparations

Before the exercise you should have read through this exercise guide and completed the home exercises.
They are all clearly marked with a pointing finger. To be able to do this you should have read, and
understood, the simplified paper on LK tracking that can be found at the course homepage. When we
are asking questions on a specific expression or variable, e.g. T, we are using the same notation as in the
simplified paper supplied together with this document [1]. It is important to have an understanding of
the different steps in the algorithm to be able to complete the computer exercises in time.

Expected preparation time: 4-8h

This exercise should be completed using Python. To use Python in the ISY computer rooms you need
to issue module add courses/TSBB15 at the shell prompt. After that you can use python3 script.py
to run a Python script, or preferably work in an IDE such as pycharm (use module avail to find it). If
you use multiple scripts (recommended) you can save and load data using either the pickle module, or
np.save/load. For interactive work you can optionally use ipython3, which allows e.g. tab-completion
and syntax highlighting (you should still use python3 to run any scripts!).

To access the help code add import labl to your scripts. Now you can use the packaged functions
in your code such as labl.load_lab_image and labl.get_cameraman. You can also use help(labl) to
see a description of the package.

Warning: Bugs in scientific code are easy to introduce and hard to find. It is recommended practise
to always read the documentation for functions that you use, and to write test code that verifies
that they behave as you expect. In particular, be careful not to confuse (z,y) and (row, col) indexing as
you will likely use both in this lab. In later labs we will use nD-indexing, with exponentially more ways
to make such mistakes.



2 Algorithm Outline
It is important to have an understanding of the different steps in the LK tracking algorithm to be able
to complete the computer exercises in time. Before coming to this computer exercise you should have a

clear strategy on how to approach the problem.

Preparation Question: Draw a block diagram that outlines the main steps in the algorithm:

Preparation Question: Write the final equation that is needed to update the displacement:

Preparation Question: Using the notation in [1], explain what T is:

Preparation Question: What is required of T, for the final equation to be solved?

The LK tracking algorithm is computationally heavy if we try to track every pixel in the image. In this
computer exercise we will make the restriction to only a single pixel. This means that we need to choose
one pixel to track.

Preparation Question: Given your knowledge about the aperture problem and the answer to the question
above, what should characterize a pixel (or region) we choose to track?

3 The LK Tracker

Here you will implement the blocks needed to create your LK tracker.

3.1 Regularized derivatives

We start by estimating all the knowns in the LK equation. It is useful to have a function that estimates
all of them in order to ensure that they all have the same regularization. Implement a function that takes
a filter size and a standard deviation as inputs, and returns the reqularized derivatives, and compatible
images.

A possible function signature is: regularized values(I, J, ksize, sigma) — Ig, Jg, Jgdx, Jgdy.
Hint: This was discussed in the computer lesson, and in [1].

3.2 Estimating T

You will need to implement a function that estimates an orientation tensor for a specified region. Make
this function as general as possible, i.e. make it possible to use different window sizes and also non-square



windows.
One possible function signature is estimate_T(Jgdx, Jgdy, X, y, window_size) — T

3.3 Difference Function

To update the displacement with the LK equations we need to estimate e for a specified region. Implement
a function that does this. Make this function as general as possible, i.e. make it possible to use different
window sizes and also non-square windows.

One possible function signature is estimate,e(Ig, Jg, Jgdx, Jgdy, x, v, window,size) — e

3.4 Interpolation Function

During the gradient descent iterations, it is apparent that we need to obtain intensity values for non-
integer pixel values. You need to implement a function to access these values. Create a function that
returns the interpolated intensity values for all sub-pixel positions specified by a region of interest. You
might want to implement more than one interpolating function but that is not required to pass the
computer exercise.

Hint: You can use scipy.interpolate.RectBivariateSpline to get an interpolation function. E.g.
>> imgc = RectBivariateSpline(np.arange(img.shape[0]),np.arange(img.shape([1]), img)

Preparation Question: Use RectBivariateSpline define an interpolation object for an image, and use your
new object to cut out regions of interest in a test image. Make sure you understand
the calling structure fully.

3.5 Finalizing the LK Tracker

Now when you have all the building blocks (the regularized derivative function, the orientation tensor
function, the difference function and the interpolating function) you should be able to finalize the LK
tracker. What you basically need is to solve the displacement equation and a control loop that updates
the displacement vector until some stopping criterion is met, e.g. small enough error or maximum number
of iterations.

Hint: To solve a linear equation system use np.linalg.solve.

Check that your implementation is working correctly. To do this, use the function get_cameraman ()
to obtain I,J and dTrue. I is the original image, J is a shifted version of the same image, and dTrue
is a vector describing the displacement between the images. Track a region with [height,width]=[70,40]
centered around [row,col]=[85,120]. When testing your implementation, your estimated displacement d
should come close to dTrue even after the first iteration. Verify that the estimated displacement is
improved when using several iterations.

Question: What are the estimated displacements after the first and second iteration? What is
the true displacement?



4 The Harris Detector

For the previous exercise we manually selected a region to track, but we would like to be able to automat-
ically detect good features to track. We will use the Harris detector for this due to the close relationship
between the Harris Detector and the LK tracker. Look at the answer to the previous preparation ques-
tion. You should have come to the conclusion that good features to track are basically the same features
that we can detect by using the Harris detector.

Preparation Question: Write down the expression used to calculate the Harris response.

You will implement a function to estimate the Harris response for each pixel in the image. We will later
use this function to extract a good feature to track with our LK tracker.

4.1 Orientation Tensor

Implement a function that returns the orientation tensor for all pixels in an image (i.e. a tensor field).
One possible function signature is:

orientation tensor(img, grad ksize, grad sigma, ksize, sigma) — T_field.

Hint: This was discussed in the computer lesson.

4.2 Implementation of the Harris Detector

Now when we have the orientation tensor you should be able to estimate the Harris response for all pixels.
Implement a function that estimates the Harris response for all pixels in an image.

One possible function signature is: harris(T_field, kappa) — H_field.

Test this function on the image cornertest.png. By choosing a threshold for the Harris response
you should be able to detect good features to track.

Question: When raising the threshold for the Harris response, you will end up with some
distinct features. Are these the expected features?

You will typically end up with clusters of several neigbouring points above the threshold. Such clusters
can be removed by 2D non-max suppression.

Hint: The function scipy.ndimage.filters.maximum filter can do this for you, e.g.
>> img max = maximum filter(img, size=3)
>> [row, col] = np.nonzero(img == img max)

5 Combining LK and the Harris Detector

Now when you are sure that the LK tracker and the Harris detector are working, it is time to combine
them. Use the Harris detector to find the best K features in chessboard/imgl.png that should be tracked
in the subsequent frames chessboard/img2.png,chessboard/img3.png, ..,chesssboard/imgl0.png.
Avoid tracking features near the border of the image, since these might cause trouble.

Question: Show your lab assistant when you got a working implementation of this. Track
the best K = 5 features and make sure that you are displaying the result obtained
between each frame.



Extra

6 Regularised LK

This exercise should be done if there is time left.

You may have noticed that the LK tracker can get stuck in local minima. To get a more robust tracker we
can perform the tracking using gradually reduced regularisation. That is, we start by using a large stan-
dard deviation while extracting the gradients from the image. By reducing the standard deviation each
time our LK tracker has converged, we might be able to avoid local minima. Try this with o =4, 3,2, 1.

Question: Did this improve the performance?
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