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Estimation of local orientation
• A very simple description of local orientation 

at image point p = (u,v) is given by:

• Here, ∇I is the gradient at point p of the 
image intensity I. In practice:
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Estimation of local orientation
• Problem 1: ∇I may be zero, even though there is a 

well defined orientation.
• Problem 2: The sign of ∇I  changes across a line.
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Estimation of local orientation
• Partial solution:
• Form the outer product of the gradient with itself: ∇I ∇TI.
• This is a symmetric 2 × 2 matrix (tensor)
• Problem 2 solved!
• Also: The representation is unambiguous
•  Distinct orientations are mapped to distinct matrices
•  Similar orientations are mapped to similar matrices
•  Continuity / compatibility

• Problem 1 remains
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The structure tensor
• Compute a local average of the outer product of the gradients around the 

point p:

• Here, x represent an offset from p
• w2(x) is some LP-filter (typically a Gaussian)

• T is a symmetric 2 × 2 matrix: Tij = Tji

• This construction is called the structure tensor
• Solves also problem 1 (why?)
• T is computed for each point p in the image
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Orientation representation
• For a signal that is approximately i1D in the 

neighborhood of a point p, with orientation ±n:
∇I  is always parallel to n  (why?)

• The gradients that are estimated
around p are a scalar multiple of n

• The average of their outer products
results in 

T = λnnT

• for some value λ
• λ depends on w1, w2, and the local signal I
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Motivation for T
• The structure tensor has been derived based on 

several independent approaches
For example
• Stereo tracking (Lucas & Kanade, 1981) (Lec. 5)
• Optimal orientation (Bigün & Granlund, 1987)
• Sub-pixel refinement (Förstner & Gülch, 1987)
• Interest point detection (Harris & Stephens, 

1988)

7



Local orientation in the Fourier domain

• Structures of different orientation end up in different 
places in the frequency domain

Spatial domain
Frequency domain
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Optimal orientation estimation
• Basic idea:
• The local signal I(x) has a Fourier transform F(u).
• We assume that f is a i1D-signal

• F has its energy concentrated mainly on a line
through the origin

• Find a line, with direction n, in the frequency 
domain that best fits the energy of F

• Described by Bigün & Granlund [ICCV 1987]
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Optimal orientation estimation
• The solution to this constrained maximization 

problem must satisfy

• Means: n is an eigenvector of T with eigenvalue λ
• In fact: Choose the eigenvector with the largest 

eigenvalue for best fit
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Sub-pixel refinement
• Consider a local region and let ∇I(p) denote the 

image gradient at point p in this region
• Let p0 be some point in this region
•  〈∇I(p) | p – p0〉 i is then a measure of compatibility 

between the gradient ∇I(p) and the point p0

•  Small value = high compatibility
•  High value = small compatibility A p0 that lies on the edge/line 

that creates the gradient 
minimizes
|  〈 ∇I(p) | p – p0 〉 |
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Sub-pixel refinement
• In the case of more than one 

line/edge in the local region:
• We want to find the point p0 

that optimally fits all these 
lines/edges

• We minimize

• where w is a weighting function 
that defines the local region

p0
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Sub-pixel refinement
• The normal equations of this least squares 

problem are:

• Solve the linear equation: T p0 = b

The structure 
tensor!

This equation is 
solved for each 
local region of the 
image!
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The Harris-Stephens detector
• A Taylor expansion of the image intensity I at 

point (u, v):
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The Harris-Stephens detector
• S(nu, nv) is a measure of how much I(u, v) 

deviates from I(u+nu,v+nv) in a local region ,
as a function of (nu, nv):
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The Harris-Stephens detector
• If  contains a linear structure, then S is 

small (=0) when n is parallel to the line/edge
•  T must have one small (≈ 0) eigenvalue

• If  contains an interest point (corner) any 
displacement (nu, nv) gives a relatively large S 

•  Both eigenvalues of T must be relatively large
• By analyzing the eigenvalues λ1, λ2 of T:
•   If λ1 large and λ2 small: line/edge
•   If both λ1 and λ2 large: interest point

• See Harris measure below
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Example: Structure tensor

Original image
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Example: Structure tensor

Gradient imagesfx fy
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Example: Structure tensor

T11 imageBefore 
averaging

After 
averaging
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Example: Structure tensor

T22 imageBefore 
averaging

After 
averaging
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Example: Structure tensor

T12 imageBefore 
averaging

After 
averaging
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Example: Structure tensor in 2D
• In the general 2D case, we obtain

• where λ1 ≥ λ2 are the eigenvalues of T and ê1, ê2 are 
the corresponding normalized eigenvectors

• We have already shown that for locally i1D signals 
we get λ1 ≥ 0 and λ2 = 0

(why?)
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Structure tensor in 2D, i0D

• If the local signal is constant (i0D), 
then ∇I = 0

• Consequently: T = 0
• Consequently: λ1 = λ2 =  0
• The idea of optimal orientation 

becomes less relevant the closer λ1 
gets to 0
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Structure tensor in 2D, i2D
• If the local signal is i2D, ∇I is not parallel 

to some n for all points x in the local 
region, i.e. the terms in the integral that 
forms T are not scalar multiples of each 
other

• Consequently: λ2 > 0 if f not i1D
• The idea of optimal orientation becomes 

less relevant the closer λ2 gets to λ1
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Isotropic tensor
• If we assume that the orientation is uniformly 

distributed in the local integration support, we 
get λ1 ≈ λ2:

• i.e. T is isotropic: nTT n = nTI n = 1
• Why is the parenthesis equal to I?

The identity matrix
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Confidence measures
• From det T and tr T we can define 

two confidence measures:
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Confidence measures
• Using the identities

– tr T  = T11 + T22 = λ1 + λ2

– det T = T11T22 – T12
2 = λ1λ2

• we obtain

• and c1 + c2 = 1 (why?)
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Confidence measures
• Easy to see that

•  i1D signals give c1 = 1 and c2 = 0

•  Isotropic T gives c1 = 0 and c2 = 1

•  In general: an image region is somewhere 
between these two ideal cases

• An advantage of these measures is that they can 
be computed from T without explicitly computing the 
eigenvalues λ1 and λ2
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Decomposition of T
• We can always decompose T into 

an i1D part and an isotropic part:

λ1 ≥ λ2
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Double angle representation
• With this result at hand:

• z is a double angle representation of the local orientation

Remember: 
λ1 ≥ λ2

z cannot distinguish 
between i0D and 
i2D
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Color coding of the double angle representation
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Example

trace of T determinant of T
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Example

c1 c2
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Example

λ1
λ2
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Example

Double angle 
descriptor
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Rank measures
• The rank of a matrix (linear map) is 

defined as the dimension of its range
• We can think of c1 and c2 as (continuous) 

rank measures, since
– i1D signal  ⇒ T has rank 1 ⇒

c1 = 1  and  c2 = 0.

– Isotropic signal  ⇒ T has rank 2 ⇒
c1 = 0  and  c2 = 1.
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Harris measure
• The Harris-Stephens detector is based on cH, 

defined as

λ1

λ2

cH > 0

Different values for κ 
have been proposed 
in the literature!
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Harris measure
• By detecting points of local maxima in cH,

where cH > τ, we assure that the eigenvalues 
of T at such a point  lie in the colored region 
below

λ1λ2
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Example

HarrisOrigina
l
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