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* RANSAC: Random Sample
Cconsensus

lterate rtimes
1. Pick nrandom points from D
2. Determine a model M from these points

3. Form the consensus set C, together with
Number of points in C (i.e. |ICl)

Average likelihood of the elements in set C given
the model M

4. If Cis larger than ever before, then keep this
model.

After the iterations: the best kept model is the
RANSAC model estimate
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A
“* RANSAC: Random Sample

Consensus

lterate rtimes
1. Pick nrandom points from D 4@ n should be small!
2. Determine a model M from these points @ Must be fast!

3. Form the consensus set C, together with
Number of points in C (i.e. |ICl)

Average likelihood of the elements in set C given
the model M

4. If Cis larger than ever before, then keep this
model.

After the iterations: the best kept model is the
RANSAC model estimate
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* RANSAC: Random Sample
Cconsensus

- A minimal solver is an algorithm that finds a
solution to a geometric problem using the
smallest possible number of points.

- E.g. for line fitting, draw 2 points, and use cross-
product to find a line.

- There is a large body of work that studies efficient
minimal solvers for specific problems. These are
intended for use with RANSAC.

« The 8pt algorithm is not minimal (7 pts is enough).
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After RANSAC is done, we can:

1. optionally re-estimate the found model from
C, using a more accurate estimation
method.

Beware: Re-estimation of F using the 8-
point algorithm may degrade the solution
(the size of C could shrink).

2. use the found model to look for more
correspondences.

Variations/Extensions
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The 8-point algorithm revisited

* The epipolar constraint

yiTFy,=0

« defines one linear constraint on F for each pair of
corresponding points y, and y,,

* The 8-point algorithm uses n = 8 such constraints to determine

* If n = 8, the data matrix A has a well-defined 1-dimensional
null space that contains F

* May not satisfy det F =0
e This condition can be enforced!
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The 7-point algorithm

The nullspace of the 7 x 9 data matrix is spanned by two vectors
f,.f5 € R?, which can be reshaped into matrices F1, Fy € R3%3.
The sought F should be a linear combination of these, i.e.

F =F1 —|—OéF2.

The internal constraint det(F; + aF2) = 0 is a polynomial
equation of order three, with 1 or 3 real solutions.

LINKOPING
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Generalised eigenvalue problems

For A,B € R™*" (or C"*"), the linear matrix pencil A — \B
arises in relation to the generalised eigenvalue problem

Av=)Bv, AeC, v#0.
(Ordinary eigenvalue problems are special cases where B =1.)

The characteristic equation for this problem is det(A — AB) = 0,
which is a polynomial equation of order n in .
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Generalised eigenvalue problems (cont.)

Generalised eigenvalue problems are well studied, and thus
implemented in many software packages for linear algebra:

SciPy: scipy.linalg.eig
NOTE: not numpy.linalg.eig!

Eigen3: Eigen: :GeneralizedEigenSolver
Armadillo: eig_pair

Matlab: eig
LAPACK: xGGEV

LINKOPING
II." UNIVERSITY



The 7-point algorithm
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Pros and cons:
+ Only 7 correspondences needed
= Smaller r for same w

+ No constraint enforcement needed (why?)
+ No Hartley normalization needed (why?)
+ Slightly more accurate solution

- Slightly more complicated calculations

- Multiple solutions (1 — 3)
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RANSAC speedup
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Example: w=0.5and p=0.99
8-point: r = log(1-p) / log(1-w8) = 1180
7-point: r =log(1-p) / log(1-w7) = 590
Caveats:

1. In the 7-point case we must test up to 3 possible F
which makes each iteration slightly more
computationally expensive = less than 50% speedup

2. The 7pt method is more accurate, and thus the r value
is underestimated more for the 8pt method
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Tentative Matches

Score matrix

Y 4

Each entry in the matching matrix describes
how well a certain point in image 1 matches

another point in image 2.
For example: high score = good match
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Brute force matching

Given P, points in image 1 and P, points in image 2
. Form a P, x P, matching matrix

- Each entry (i) is a hypothetical correspondence between
point i in image 1 and point jin image 2

Set entry (i,)) =
a matching score between point j and point j

For each column and/or row: keep only the largest entry
« wincreases = rdecreases for fixed p

Such tentative correspondences are the input to
RANSAC [See CES3]
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Tentative matches

» The matching score is usually based on similarity of visual
appearance, not geometric properties (why?)

* For example
» SIFT descriptor, BRIEF/BRISK/ORB etc [See LES8]
 Color descriptors
 Tracking quality score

* For most matching matrices, brute force matching is

needlessly expensive (and the Hungarian method is
even worse!).

* Instead a search tree can be formed for one of feature sets

* If min() along one dimension is used, one could also
compute the ratio score instead [LE 8]
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Two-threshold RANSAC

Correct
correspondence

High-scoring
correspondence

Medium-scoring
correspondence
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Two-threshold RANSAC

L
-

« Use a high threshold on correspondences to
get a set Do, which is used in the sampling

stage of RANSAC
= fewer iterations are needed

« Use a low threshold (or none) to obtain a
bigger set D, which is used to check for
inliers in the consensus set C.
= more correspondences are found
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PROSAC

2

A variant of this idea is to:
* First sort the matching scores
Remove low-probability correspondences (as before)
Set D, = the n, best ranked correspondences
- In principle, n, = n works here
- D, = remaining part of the correspondences
Do RANSAC as before (selecting from D, and matching against D,)

If a good solution cannot be found with this S, extend it with more of
the best correspondences and do RANSAC again
lterate this extension of D, until a sufficiently good solution is found

A more systematic approach along these lines is referred to as
PROSAC

« Chum & Matas: Matching with PROSAC — Progressive Sample
Consensus, CVPR 2005
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RANSAC speedups

2

In summary:

« Using matching of visual appearance is a very
effective way of pruning the set D of tentative
correspondences

 This leads to

* Increased w (= prob. of picking an inlier)

* Reduced r (= number of RANSAC iterations for a
specific p)

« Faster RANSAC algorithm / higher p possible
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- Given two camera matrices C, and C, we can compute F:

Epipolar geometry

F = [elg]XClC;
F = (C7)' C;lean]x

« Assuming we know the camera projection matrices, we
can instead apply RQ-factorisation to them...
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Epipolar geometry

(;ﬂ&

In this case we can write:

v N

C,=K [R, t,] Internal

C,=K,[R; t,] parameters

Now, um\ﬁ camera to define the 3D coordinate

camera

system:
C.=K/ [l 0]
C,=K,[R t]
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Epipolar geometry

Finally, we assume that the two cameras are
identical: K, = K, =K

C,=K[1 0]
C,=K[R t]

K is known from the calibration, and constant
R, t change as the camera moves
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‘ Relative camera
transformation
From
C,=K[I 0]
C,=K[R t]

follows that C, = C, T, where Tis a (4 x 4)
rigid transformation:

(o 1
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Relative camera
transformation

2

Apply T to the homogeneous coordinates of a 3D
point X:

(-3 (-4

The result are the homogeneous coordinates of x
after first being rotated by R and then
translated by t
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Relative camera
transformation

« T transforms from the camera centred
coordinate system (CCS) of camera 1 to the
CCS of camera 2

« T-1 transforms in the other way:
R t) /R” —-RTt 10
—1 L p—

- Example: the camera centre of camera 2 has 3D
coordinates 0 in CCS2

* Its coordinates in CCS1 are given by —RTt

L
-
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Normalised image coordinates

Pixel coordinates are given by

y1 ~Cix=K
Y2NC2X:K

1 0]x
R t]|x

Normalised image coordinates remove the
iInfluence of the internal camera parameters:

yi ~K ly; =
yo ~ K lys =

I 0]x =C'x

R t]x = Cix

Normalised
cameras
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Normalised image coordinates

Image Plane Image Grid
S v o
® O(CX) h
f
0 0 1
W

Optical Centre

- Image plane origin is at the principal point
z (the intersection of the optical axis with the
image plane)

 Usually this puts the origin in the image
centre, so negative normalized image
coordinates are perfectly normal.

Computer Vision lecture 11 25



Two types of normalised

coordinates

2

Normalised image coordinates are
sometimes also discussed in relation to
Hartley normalisation

These two normalisations are unrelated!
H-normalisation vs C-normalisation
Here: camera normalisation is used to refer

to image coordinates that are normalised
relative to the camera coordinate system
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Normalised image coordinates

When K (and lens distortion) are known it
Is often more efficient to work with
camera normalized image coordinates

Calibrated epipolar geometry
The epipolar constraint becomes

0=y, Fy: = (Ky})'FKy), = yi' K' FKy}
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We can define a matrix E = KTFK
E is called the essential matrix

Inherits the properties of F, but refers specifically
to C-normalised image coordinates

For example, the epipolar constraint becomes:

The essential matrix

F and E represent the

O p— yllT Ey/2 same constraint but in

different coordinate

systems
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The essential matrix

A=

In the same way as for F, E is given by

E = [912]><C/1(3/2Jr — C/1+TC/2T[9/21]><

In camera

e’,, and e’,, are the epipoles ~ormalised
image

C’, and C’, are the camera matrices | |[LiRlres
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The essential matrix

In this case we get
=10 = C =1 0]

— [R t] — Cll_l_TC/QT — RT ,€91 = t

|eadln9 to E encodes the

relative rotation

_ RT[ t ] and translation
— % between the two

cameras
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The essential matrix

- E is defined only from the rotation R and the
translation t

» In practice E is a projective element (why?)
= t and At refer to the same essential matrix

E,=RT[t] ~RT[At] =E,

- E has 5 degrees of freedom (why?)
« Compare to F with 7 DOF
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Internal constraints on E

- det E = 0 applies (similar to F)

« Since E has fewer DOF than F there
must be additional constraints

- They can be summarized as:
- Singular values of E = (o, 0, 0) (why?)
- Or: E ETE — % tr(ETE) E = 0 (why?)
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E in the literature

 E was introduced in

Longuet-Higgins: A computer algorithm for
reconstructing a scene from two projections,
Nature (1981)

- Remained more or less unnoticed by the
computer vision community until F
was introduced some 12 years later
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| Estimation of E

E can be estimated from image data in the same way as F,
e.g. the 8-point algorithm
The difference is that normalized image coordinates must

be used
- Hartley-normalization can still be used to increase the accuracy.

Alternatively, estimate F from pixel coordinates and
transform: E = KTFK
- 8/7-point algorithm for F
+ Gold Standard estimation of F
« K must be known!
Best is of course to use Gold Standard directly on

normalized image coordinates, with R,t (in C’2), and 3D
points as unknowns.
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The internal constraints on E imply that it can be
estimated from only 5 corresponding points

« Gives up to 10 solutions

Nistér: An efficient solution to the five-point pose
problem, CVPR 2003

 Relatively complex algorithm, e.g., finding roots of 10th order
polynomials, root polishing etc.

RANSAC speedup

- E has n=5 instead of 7 (for F) = rdecreases considerably

The 5-point algorithm

Reduced sensitivity to dominant planes, compared to F
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Relative pose

« Given an E that satisfies the internal constraints
we know:

E=RT[t].

« what can be said about R and t?

* (R, t) is referred to as the pose of camera 2
relative to camera 1

- i.e. the relative pose of C1 and C»
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Relative pose from E

he translation t:
t is a right null vector of E

t can be determined from svd(E)
but only up to an undetermined scaling
including an unknown sign of t
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* SVD of E gives

Relative pose

Always possible!

E=USVT ///

 with Uand V € SO(3), and S = diag(o, o, 0)

o t ~ v, =3 column of V (why?)
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Cross product operator

&

[V;], expressed in the basis system of the
columns in V:

0 —1 0
vs]x =2V |1 0 0] V!=+Ves] V!
0 0 0

e3 = (030)1 )T
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" Relative pose

0
Set W=|-1

0
Try setting R =V WTUT, leading to

o O =
_— O O

Rt =UWVTv,]. =UWVTV[e,] VT=
=UW[e,]VT~USVT=E
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Ambiguity in R

However, also R =V W UT gives
RT[t] =E (check this!)

Consequently, there are two possible rotations
that give the same E:

— TLIT These two rotations are
R, =V WTU

always distinct!
= T They form a twisted pair
R,=VWU
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Relative pose: summary

- Given an essential matrix E=RT[ t ]
- There are two possible rotations R: R, and R,

* tis determined up to scale: two possible
directions are opposite : +t

* |In total we have 4 possible camera configurations:

C,=[R, t]
C,=[R, t]  withC,=[1 0]
C,=[R, t]
C,=[R, -t]
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Reality check

 Take a pair of corresponding points in the two
Images and determine the corresponding 3D
point
- Triangulation
- The 3D point is in front of both cameras for
only one of the 4 configurations
- See figure

- Thus: only one of the 4 possible configurations
corresponds to a real stereo rig

 tis then determined in terms of direction, but still
not in terms of scale
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The camera matrices C, and C,

£

(a) (b)

From Hartley & Zisserman,
’ B’ A Multiple View Geometry in
Computer Vision
(c) (d)
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» Given a set of corresponding points, E can be estimated
 8-point algorithm, 7-point alg., ..., 5-point alg.
» Possibly multiple solutions
 Test the epipolar constraint with more points to get only one
solution for E

 For this E, we can determine the 4 possible camera
configurations

« Reality check:

 Triangulate a 3D point to determine which one of the four
configurations that has the point in front of both cameras

* This determines R and sign of t but not its absolute scale

Relative pose: summary (ll)
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Relative pose: two cameras

» Given corresponding points in camera
normalized coordinates, we can determine
R uniquely and t up to scale

Possible rotations < | only one
and translations
of C, after the

reality check

%/ along a line in
one direction
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E or F?

If K is known there are several advantages of using
E instead of F:

Relative camera pose (rotation and translation)
can be determined from E
* Not possible from F
Fewer points are needed in RANSAC to
determine E
 ris reduced = faster RANSAC

Reduced sensitivity to dominant planes
Also lens distortion can be undone
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PnP

We can add another camera to an already
estimated EG using the perspective n-point
problem (PnP):

given: a set of 2D « 3D correspondences

N
{Yn A Xn}nzl

sought: the absolute camera pose, such that
vn ~ [RIt]x, ,forn=1,...,N
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 Geometric loss:

PnP

ZdPP Yns [R[t] x5)

 Feed loss to a non-linear solver e.g.
scipy.optimize.least squares

- Use SO(3) parametrization of R to restrict the
problem to 6dof
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Robust PnP

- The minimal case for PnP is N=3, i.e. P3P
has 1-4 real solutions. See e.qg.
Mikael Persson, Klas Nordberg, Lambda Twist: An Accurate
Fast Robust Perspective Three Point (P3P) Solver, ECCV18
- With a minimal solver the problem can be solved
robustly using RANSAC

* In general, robust PnP is better at removing
outliers than a robust estimation of E. (why?)

» Many efficient solvers exist (see pointers on

project page), and you are encouraged to use
one in project #2.

L
-
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Summary

Fast minimal solvers are important for RANSAC

RANSAC for correspondences can be improved
by sampling according to similarity
(PROSAC)

Use calibrated epipolar geometry when you
can, it is faster and more accurate

The essential matrix encodes calibrated EG, a
relative rotation and a translation up to scale.

perspective n-point (PnP) estimation can be
used to add more views to an existing EG
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