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Why image enhancement?
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• Example of artifacts caused by image 
encoding



Why image enhancement?
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Example of motion blur



Why image enhancement?
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• Example of an image with sensor 
noise

– ultrasound image of a beating 
heart



Why image enhancement?
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• IR-image

– fixed pattern noise =  spatial variations in gain and offset

– Possibly even variations over time!

– Hot/dead pixels

• A digital camera with short exposure time

– Shot noise (photon noise)



Methods for image enhancement
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• Inverse filtering: the distortion process is modeled and estimated 
(e.g. motion blur) and the inverse process is applied to the image

• Image restoration: an objective quality
(e.g. sharpness) is estimated in the image.
The image is modified to increase the quality

• Image enhancement: modify the image to improve the visual 
quality, often with a subjective criteria



Additive noise
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• Some types of image distortion can be described as

– Noise added on each pixel intensity

– The noise has the identical distribution and is independent at each pixel 
(i.i.d.)

• Not all type of image distortion are of this type:

– Multiplicative noise

– Data dependent noise

– Position dependent

• The methods discussed initially assume additive i.i.d.-noise

What about pixel shot 
noise?



Removing additive noise
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• Image noise typically contains higher frequencies than images generally do

=> a low-pass filter can reduce the noise

• BUT: we also remove high-frequency signal components, e.g. at edges and 
lines

• HOWEVER: A low-pass filter works in regions without edges and lines 
(ergodicity)



Example: LP filter
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Image with some noise

Filter, σ = 1

Filter, σ = 2



Basic idea
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The problem of low-pass filters is that we apply the same filter on the whole 
image

We need a filter that locally adapts to the image 
structures

A space-variant filter



Ordinary filtering / convolution
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• Ordinary filtering can be described as a convolution of the signal f and the 
filter g:

For each x, we compute the integral between the filter g and a 
shifted signal f



Adaptive filtering
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• If we apply an adaptive (or position dependent, or space-variant) filter gx, the 
operation cannot be expressed as a convolution, but instead as

For each x, we compute the integral between a shifted signal 
f and the filter gx where the filter depends on x



Scale space recap (from lecture 2)
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• The linear Gaussian scale space related to the image f  is a family of images 
L(x,y;s)

parameterized by the scale parameter s, where

Convolution over (x,y) 
only!

A Gaussian LP-filter with σ
2
 = s

Note: gs(x,y) = δ(x,y) for s = 0



Scale space recap (from lecture 2)
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• L(x,y;s) can also be seen as the solution to the PDE

with boundary condition L(x,y;0) = f(x,y)

The diffusion equation

Example:

L = temperature

s = time
Left hand side:
the change in L
at (x,y) between
s and s+∂s



Repetition: Vector Analysis

• Nabla operator

• On a scalar function

• On a vector field

• Laplace
operator
note: 
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Enhancement based on linear 
(homogeneous) diffusion
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• This means that L(x,y;s) is an LP-filtered version of f(x,y) for s > 0.

• The larger s is, the more LP-filtered is f
– High-frequency noise will be removed for larger s

• Also high-frequency image components (e.g. edges) will be removed

• We need to control the diffusion process such that edges remain - How?



Step 1
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• Modify the PDE by introducing a parameter μ:

• This PDE is solved by

μ can be seen as a “diffusion speed”:

Small μ: the diffusion process is slow when s 
increases

Large μ: the diffusion process is fast when s 
increases

Same as before

Slightly different



Step 2
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• We want the image content to control μ

– In flat regions: fast diffusion (large μ)

– In non-flat region: slow diffusion (small μ)

• We need to do space-variant diffusion

–  μ is a function of position (x,y)

We will introduce another space- variant filter gx in 

adaptive filtering



Inhomogeneous diffusion
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• Perona & Malik suggested to use

where ∇f is the image gradient at (x,y)
and λ is a fixed parameter

– Close to edges: |∇f| is large ) μ is small

– In flat regions: |∇f| is small ) μ is large



Inhomogeneous diffusion
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Funtional View: Variational Methods

• Minimize the local integral of a Lagrange 
function 

• gives the Euler-Lagrange equation on Ω

• if we require
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Variational View: linear denoising

• Assume f0 = f + noise. Minimizing

• Gives the Euler-Lagrange equation
(note:                            )
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Non-Linear case

• Minimizing

• Gives the Euler-Lagrange equation

 
where we exploited

23



Exemple: Perona-Malik Flow
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• Special cases:

• Such that gradient descent gives Perona-Malik Flow



Total Variation (TV) / ROF

• Minimizing

means

• Stationary point

and after some calculations
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Efficient TV Algorithms

• In 1D: Chambolle’s algorithm (JMIV, 2004)

• In 2D:

– Alternating direction method of multipliers (ADMM, 
variant of augmented Lagrangian): Split Bregman by 
Goldstein & Osher (SIAM 2009)

– Based on threshold Landweber: Fast Iterative 
Shrinkage-Thresholding Algorithm (FISTA) by Beck 
& Teboulle (SIAM 2009)

– Based on Lagrange multipliers: Primal Dual 
Algorithm by Chambolle & Pock (JMIV 2011)
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Demo: TV Image Denoising

• Paramters:    =0.0005,   =0.5, noise(0,0.001), 
TVdemo_script.m
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Inhomogeneous diffusion
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• Noise is effectively removed in flat regions

• Edges are preserved

• Noise is preserved close to edges

We want to be able to LP-filter along but not across 
edges



Orientation-selective gx
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• If the signal is ≈ i1D the filter can maintain the signal by reducing the 
frequency components orthogonal to the local structure 

• The human visual system is less sensitive to noise along linear structures than 
to noise in the orthogonal direction 

• Results in good subjective improvement of image quality



Oriented noise
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White noise in the
image domain



Oriented noise
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White noise in the
Fourier domain



Oriented noise
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Oriented white noise in the Fourier 
domain



Oriented noise
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Oriented white noise in the image 
domain



Oriented noise
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Edges and lines

A. Without noise

B. With oriented noise along

C. With isotropic noise

D. With oriented noise across

A

D

B

C



Local structure information
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• We compute the local orientation tensor T(x) at all points x to control / steer 
gx

• At a point x that lies in a locally i1D region, we obtain

ê is normal to the linear 
structure

ê



Step 3 (making the PDE anisotropic)
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• The previous PDEs are all isotropic

=> The resulting filter g is isotropic

• The Perona-Malik flow can be rewritten:

Gradient of L,
a 2D vector field

Divergence of (…)
maps 2D vector field to scalar field



Step 3
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• Change μ from a scalar to a 2x2 symmetric matrix D

• The solution is now given by

<= Same as before



Ansiotropic diffusion
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• The filter g is now anisotropic, i.e., not necessary circular symmetric

• The shape of g depends on D

• D is called a diffusion tensor

– Can be given a physical interpretation, e.g. for anisotropic heat diffusion



The diffusion tensor
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• Since D is symmetric 2x2:

     where α1, α2 are the eigenvalues of D, and
e1 and e2 are corresponding eigenvectors

e1 and e2 form an ON-basis



The filter g
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• The corresponding shape of g is given by

e1

e2

α1

α2

The width of the filter in 
direction ek is given by αk

Iso-curves for g =>



Step 4
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• We want g to be narrow across edges and wide along edges

• This means: D should depend on (x,y)

– A space-variant anisotropic diffusion

• This is referred to as anisotropic diffusion in the literature

• Introduced by Weickert



Anisotropic diffusion
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• Information about edges and their orientation can be provided by an 
orientation tensor, e.g., the structure tensor T in terms of its eigenvalues λ1, λ2

• However:

– We want αk to be close to 0 when λk is large

– We want αk to be close to 1 when λk is close to 0



From T to D

43

• The diffusion tensor D is obtained from the orientation tensor T by modifying 
the eigenvalues and keeping the eigenvectors, e.g.

m is a control parameter

For example



Anisotropic diffusion: summary
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1. At all points:
1. compute a local orientation tensor T(x)

2. compute D(x) from T(x)

2. Apply anisotropic diffusion onto the image by locally iterating

This defines how scale space level

L(x,y;s+∂s) is generated from L(x,y;s)

Right hand side:
can be computed
locally at each
point (x,y)



Implementation aspects
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• The anisotropic diffusion iterations can be done with a constant diffusion 
tensor field D(x), computed once from the original image (faster)

• Alternatively: re-compute D(x) between every iteration (slower)



Simplification
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• We assume D to have a slow variation with respect to x 

• This means (see [EDUPACK – ORIENTATION (22)])

The Hessian of L = second order derivatives of L



Numerical implementation
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• Several numerical schemes for implementing anisotropic diffusion exist

• Simplest one:

– Replace all partial derivatives with finite differences (see also lecture 14)

The Hessian of L can 
be approximated by 
convolving L with:



Algorithm Outline
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1. Set parameters

e.g.: k, ∆s, number of iterations, …

2. Iterate

1. Compute orientation tensor T

2. Modify eigenvalues => D

3. Computer Hessian H L

4. Update L according to:



Comparison
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Inhomogenous diffusion Anisotropic diffusion



Deblurring

• Minimizing

• Gives the Euler-Lagrange equation

• g: point spread function (PSF)

• g(-x): correlation operator / adjoint operator

• definition of adjoint operator

• cmp le14:
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Demo: Deblurring

● DBdemo.m
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Optical Flow

• Minimizing (lecture 4)

• Under the constraint

• Using Lagrangian multiplier leads to the minimization 
problem

• This is the total least squares formulation to 
determine the flow
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Optical Flow

• Solution is given by the eigenvalue problem

• The matrix term T is the spatio-temporal structure 
tensor

• The eigenvector with the smallest eigenvalue is the 
solution (up to normalization of homogeneous 
element)
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Optical Flow

• Local flow estimation

– Design question: 
w and R

– Aperture problem: 
motion at linear 
structures can only be 
estimated in normal 
direction 
(underdetermined)

– Infilling limited

• Global flow instead
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Optical Flow

• Minimizing BCCE over the whole image
with additional smoothness term

• Gives the Euler-Lagrange equation

• Laplacian is approximately 

BCCE

1 1 1 - 3 · 0 1 0 = 1 -2 1
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Optical Flow

• Plugging into the EL-equation gives

• Explicitly solving for v results in
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Optical Flow

• Iterating the solution

results in the Horn & Schunck iteration

• Significant improvement: use median instead of    !
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Demo: Horn & Schunck

• HSdemo.m
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