Image enhancement

Computer Vision, Lecture 15 Michael Felsberg Computer Vision Laboratory Department of Electrical Engineering

• Example of artifacts caused by image encoding

- Example of an image with sensor noise
 - ultrasound image of a beating heart

- IR-image
 - fixed pattern noise = spatial variations in gain and offset
 - Possibly even variations over time!
 - Hot/dead pixels
- A digital camera with short exposure time
 - Shot noise (photon noise)

Methods for image enhancement

- <u>Inverse filtering</u>: the distortion process is modeled and estimated (e.g. motion blur) and the *inverse* process is applied to the image
- <u>Image restoration</u>: an *objective* quality (e.g. sharpness) is estimated in the image. The image is modified to increase the quality
- <u>Image enhancement</u>: modify the image to improve the visual quality, often with a subjective criteria

Additive noise

- Some types of image distortion can be described as
 - Noise added on each pixel intensity
 - The noise has the identical distribution and is independent at each pixel (i.i.d.)
- Not all type of image distortion are of this type:
 - Multiplicative noise
 - Data dependent noise
 - Position dependent

• The methods discussed initially assume additive i.i.d.-noise

What about pixel shot noise?

Removing additive noise

- Image noise typically contains higher frequencies than images generally do
 => a low-pass filter can reduce the noise
- BUT: we also remove high-frequency signal components, e.g. at edges and lines
- HOWEVER: A low-pass filter works in regions without edges and lines (ergodicity)

Example: LP filter

Image with some noise

0.8 0.6 0.4 0.2

Basic idea

The problem of low-pass filters is that we apply the same filter on the whole image

We need a filter that locally adapts to the image structures

A space-variant filter

Ordinary filtering / convolution

• Ordinary filtering can be described as a convolution of the signal *f* and the filter *g*:

$$h(\mathbf{x}) = (f * g)(\mathbf{x}) = \int f(\mathbf{x} - \mathbf{y})g(\mathbf{y}) \, d\mathbf{y}$$

For each \mathbf{x} , we compute the integral between the filter g and a shifted signal f

Adaptive filtering

• If we apply an adaptive (or position dependent, or space-variant) filter g_x , the operation cannot be expressed as a convolution, but instead as

$$h(\mathbf{x}) = \int f(\mathbf{x} - \mathbf{y}) g_{\mathbf{x}}(\mathbf{y}) \, d\mathbf{y}$$

For each **x**, we compute the integral between a shifted signal *f* and the filter *g*_x where the filter depends on **x**

Scale space recap (from lecture 2)

The linear Gaussian scale space related to the image *f* is a family of images • L(x,y;s)

$$L(x, y; s) = (g_s * f)(x, y)$$

parameterized by the scale parameter *s*, where

$$g_s(x,y) = \frac{1}{2\pi s} e^{-\frac{x^2 + y^2}{2s}}$$
A Gaussian LP-filter with $\sigma^2 = s$

Convolution over (*x*,*y*) only!

 $\delta(x,y)$ for s = 0

Scale space recap (from lecture 2)

• L(x,y;s) can also be seen as the solution to the PDE

with boundary condition L(x,y;0) = f(x,y)

Repetition: Vector Analysis

- Nabla operator
- On a scalar function

$$\nabla = \begin{bmatrix} \partial_x \\ \partial_y \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix}$$
$$\nabla f = \operatorname{grad} f = \begin{bmatrix} \partial_x f \\ \partial_y f \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$

• On a vector field

$$\langle \nabla | \mathbf{f} \rangle = \nabla^T \mathbf{f} = \operatorname{div} \mathbf{f} = \partial_x f_1 + \partial_y f_2$$

• Laplace $\Delta = \nabla^2 = \langle \nabla | \nabla \rangle = \text{div grad} = \partial_x^2 + \partial_y^2$ operator note:

$$\partial_x^2 f = f_{xx} \neq f_x^2$$

Enhancement based on linear (homogeneous) diffusion

- This means that L(x,y;s) is an LP-filtered version of f(x,y) for s > 0.
- The larger s is, the more LP-filtered is f
 - High-frequency noise will be removed for larger *s*
- Also high-frequency image components (e.g. edges) will be removed
- We need to control the diffusion process such that edges remain How?

Step 1

• Modify the PDE by introducing a parameter μ :

$$\frac{\partial}{\partial s}L = \frac{\mu}{2}\nabla^2 L$$

• This PDE is solved by

 μ can be seen as a "diffusion speed": Small μ : the diffusion process is slow when s increases

Large μ : the diffusion process is fast when s increases

$$\begin{split} L(x,y;s) &= (g_s*f)(x,y) \\ g_s(x,y) &= \frac{1}{2\pi\mu s} e^{-\frac{x^2+y^2}{2\mu s}} \end{split} \text{Sightly different} \end{split}$$

Step 2

- We want the image content to control μ
 - In flat regions: fast diffusion (large μ)
 - In non-flat region: slow diffusion (small μ)
- We need to do *space-variant* diffusion
 - μ is a function of position (*x*,*y*)

We will introduce another space- variant filter g_x in adaptive filtering

Inhomogeneous diffusion

• Perona & Malik suggested to use

$$\mu(x,y) = \frac{1}{1 + |\nabla f|^2 / \lambda^2}$$

where ∇f is the image gradient at (x,y)and λ is a fixed parameter

- Close to edges: $|\nabla f|$ is large) μ is small
- In flat regions: $|\nabla f|$ is small) μ is large

Inhomogeneous diffusion

Funtional View: Variational Methods

• Minimize the local integral of a Lagrange function $L(f, f_x, f_y, x, y)$

$$\varepsilon(f) = \int_{\Omega} L(f, \nabla f, \mathbf{x}) \, d\mathbf{x}$$

• gives the Euler-Lagrange equation on $\boldsymbol{\Omega}$

$$L_f - \operatorname{div} L_{\nabla f} = L_f - \partial_x L_{f_x} - \partial_y L_{f_y} = 0 \quad \forall x, y$$

• if we require $\langle \nabla f | \mathbf{n} \rangle = 0$ on $\partial \Omega$

Variational View: linear denoising

• Assume
$$\mathbf{f}_0 = \mathbf{f} + \text{noise. Minimizing}$$

$$\varepsilon(f) = \frac{1}{2} \int_{\Omega} \underbrace{(f - f_0)^2 + \lambda(f_x^2 + f_y^2)}_{L(f, f_x, f_y, x, y)} dx \, dy$$

• Gives the Euler-Lagrange equation (note: $L_f = f - f_0, L_{f_x} = \lambda f_x, L_{f_y} = \lambda f_y$) $\underbrace{f - f_0 - \lambda \Delta f}_{L_f} = 0$ $(\partial_x f_x + \partial_y f_y) = \Delta f$

Non-Linear case

- Minimizing $\varepsilon(f) = \int_{\Omega} \frac{1}{2} (f f_0)^2 + \lambda \Psi(|\nabla f|) \, dx \, dy$
- Gives the Euler-Lagrange equation

$$f - f_0 - \lambda \operatorname{div}\left(\frac{\Psi'(|\nabla f|)}{|\nabla f|}\nabla f\right) = 0$$

where we exploited

$$\partial_x \frac{\Psi'(|\nabla f|)}{|\nabla f|} f_x + \partial_y \frac{\Psi'(|\nabla f|)}{|\nabla f|} f_y = \operatorname{div} \left(\frac{\Psi'(|\nabla f|)}{|\nabla f|} \nabla f \right)$$

Exemple: Perona-Malik Flow

- Special cases:
 $$\begin{split} \Psi(|\nabla f|) &= -K^2/2 \cdot \exp(-|\nabla f|^2/K^2) \\ \Rightarrow \Psi'(|\nabla f|) &= |\nabla f| \exp(-|\nabla f|^2/K^2) \\ \Psi(|\nabla f|) &= K^2/2 \cdot \log(K^2 + |\nabla f|^2) \\ \Rightarrow \Psi'(|\nabla f|) &= |\nabla f|(1 + |\nabla f|^2/K^2)^{-1} \end{split}$$
- Such that gradient descent gives Perona-Malik Flow

$$f^{(s+1)} = f^{(s)} + \alpha \operatorname{div} \left(\frac{\Psi'(|\nabla f^{(s)}|)}{|\nabla f^{(s)}|} \nabla f^{(s)} \right)$$

Total Variation (TV) / ROF

• Minimizing $\min_{f} \frac{\|f - f_0\|^2}{2\lambda} + \sum_{i,j} |(\nabla f)_{i,j}|$

means $\Psi() = \mathrm{Id}() \Rightarrow \Psi'() = 1$

• Stationary point

$$f - f_0 - \lambda \operatorname{div}\left(\frac{1}{|\nabla f|}\nabla f\right) = 0$$

and after some calculations

$$f - f_0 - \lambda \frac{f_{xx} f_y^2 - 2f_{xy} f_x f_y + f_{yy} f_x^2}{|\nabla f|^3} = 0$$

Efficient TV Algorithms

- In 1D: Chambolle's algorithm (JMIV, 2004)
- In 2D:
 - Alternating direction method of multipliers (ADMM, variant of augmented Lagrangian): Split Bregman by Goldstein & Osher (SIAM 2009)
 - Based on threshold Landweber: Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) by Beck & Teboulle (SIAM 2009)
 - Based on Lagrange multipliers: Primal Dual Algorithm by Chambolle & Pock (JMIV 2011)

Demo: TV Image Denoising

• Paramters: α =0.0005, λ =0.5, noise(0,0.001), TVdemo_script.m

Inhomogeneous diffusion

- Noise is effectively removed in flat regions
 - Edges are preserved 🥲

ullet

Noise is preserved close to edges

<u>.</u>

We want to be able to LP-filter along but not across edges

Orientation-selective g_x

- If the signal is ≈ i1D the filter can maintain the signal by reducing the frequency components orthogonal to the local structure
- The human visual system is less sensitive to noise along linear structures than to noise in the orthogonal direction
- Results in good subjective improvement of image quality

- A. Without noise
- B. With oriented noise along
- C. With isotropic noise
- D. With oriented noise across

Local structure information

- We compute the local orientation tensor ${\bf T}({\bf x})$ at all points ${\bf x}$ to control / steer $g_{{\bf x}}$
- At a point **x** that lies in a locally i1D region, we obtain

$$\mathbf{T}(\mathbf{x}) = A\hat{\mathbf{e}}\hat{\mathbf{e}}^T$$

ê is normal to the linear structure

Step 3 (making the PDE anisotropic)

- The previous PDEs are all isotropic
 - => The resulting filter g is isotropic
- The Perona-Malik flow can be rewritten:

$$\frac{\partial}{\partial s}L = \frac{\mu}{2}\nabla^2 L = \frac{1}{2}\operatorname{div}(\mu \operatorname{grad} L)$$

Gradient of L,
a 2D vector field

Divergence of (...)
maps 2D vector field to scalar field

Step 3

• Change μ from a scalar to a 2x2 symmetric matrix **D**

$$\frac{\partial}{\partial s}L = \frac{1}{2}\operatorname{div}(\mathbf{D}\operatorname{grad} L)$$

• The solution is now given by

$$L(\mathbf{x};s) = (g_s * f)(\mathbf{x}) \overset{<=\text{Same as before}}{=}$$
$$g_s(\mathbf{x}) = \frac{1}{2\pi \det(\mathbf{D})^{1/2}s} e^{-\frac{1}{2s}\mathbf{x}^T \mathbf{D}^{-1}\mathbf{x}}$$

Ansiotropic diffusion

- The filter *g* is now anisotropic, i.e., not necessary circular symmetric
- The shape of *g* depends on **D**
- **D** is called a *diffusion tensor*
 - Can be given a physical interpretation, e.g. for anisotropic heat diffusion

The diffusion tensor

• Since **D** is symmetric 2x2:

$$\mathbf{D} = \alpha_1 \mathbf{e}_1 \mathbf{e}_1^T + \alpha_2 \mathbf{e}_2 \mathbf{e}_2^T$$

where α_1 , α_2 are the eigenvalues of **D**, and **e**₁ and **e**₂ are corresponding eigenvectors

 \mathbf{e}_1 and \mathbf{e}_2 form an ON-basis

The filter g

• The corresponding shape of *g* is given by

Step 4

- We want *g* to be narrow across edges and wide along edges
- This means: **D** should depend on (*x*,*y*)
 - A space-variant anisotropic diffusion

- This is referred to as *anisotropic diffusion* in the literature
- Introduced by Weickert

Anisotropic diffusion

- Information about edges and their orientation can be provided by an orientation tensor, e.g., the structure tensor **T** in terms of its eigenvalues λ_1, λ_2
- However:
 - We want α_k to be close to 0 when λ_k is large
 - We want α_k to be close to 1 when λ_k is close to 0

From **T** to **D**

• The diffusion tensor **D** is obtained from the orientation tensor **T** by modifying the eigenvalues and keeping the eigenvectors, e.g.

Anisotropic diffusion: summary

- 1. At all points:
 - 1. compute a local orientation tensor T(x)
 - 2. compute D(x) from T(x)
- 2. Apply anisotropic diffusion onto the image by locally iterating

$$\frac{\partial}{\partial s}L = \frac{1}{2}\operatorname{div}(\mathbf{D}\operatorname{grad} L)$$

Right hand side: can be computed locally at each point (x,y)

This defines how scale space level $L(x,y;s+\partial s)$ is generated from L(x,y;s)

Implementation aspects

- The anisotropic diffusion iterations can be done with a constant diffusion tensor field **D**(**x**), computed once from the original image (faster)
- Alternatively: re-compute D(x) between every iteration (slower)

Simplification

- We assume **D** to have a slow variation with respect to **x**
- This means (see [EDUPACK ORIENTATION (22)])

$$\frac{\partial}{\partial s}L = \frac{1}{2}\nabla^T \mathbf{D}\nabla L \approx \frac{1}{2} \langle \mathbf{D} | \nabla \nabla^T \rangle L = \frac{1}{2} \operatorname{tr}[\mathbf{D}(\mathbf{H}L)]$$

The Hessian of L = second order derivatives of L

$$\mathbf{H}L = \begin{pmatrix} \frac{\partial^2}{\partial x^2}L & \frac{\partial^2}{\partial x \partial y}L \\ \frac{\partial^2}{\partial x \partial y}L & \frac{\partial^2}{\partial y^2}L \end{pmatrix}$$

Numerical implementation

- Several numerical schemes for implementing anisotropic diffusion exist
- Simplest one:
 - Replace all partial derivatives with finite differences (see also lecture 14)

$$L(x, y; s + \Delta s) = L(x, y; s) + \frac{\Delta s}{2} \operatorname{tr}[\mathbf{D}(\mathbf{H}L)]$$
$$H_{11} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & -2 & 1 \\ 0 & 0 & 0 \end{pmatrix} H_{12} = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix} H_{22} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Algorithm Outline

1. Set parameters

e.g.: k, Δs , number of iterations, ...

- 2. Iterate
 - 1. Compute orientation tensor **T**
 - 2. Modify eigenvalues = > D
 - 3. Computer Hessian $\mathbf{H} L$
 - 4. Update *L* according to:

 $L(x, y; s + \Delta s) = L(x, y; s) + \frac{\Delta s}{2} \operatorname{tr}[\mathbf{D}(\mathbf{H}L)]$

Comparison

Deblurring

- Minimizing $\varepsilon(f) = \frac{1}{2} \int_{\Omega} (g * f f_0)^2 + \lambda (f_x^2 + f_y^2) \, dx \, dy$
- Gives the Euler-Lagrange equation

$$g(-\cdot) * (g * f - f_0) - \lambda \Delta f = 0$$

- g: point spread function (PSF)
- g(-x): correlation operator / adjoint operator
- definition of adjoint operator $\langle x|Ay\rangle = \langle A^*x|y\rangle$
- cmp le14: $\mathbf{G}^T \mathbf{G} \mathbf{f} \mathbf{G}^T \mathbf{f}_0 \oplus \lambda (\mathbf{D}_x^T \mathbf{D}_x \mathbf{f} + \mathbf{D}_y^T \mathbf{D}_y \mathbf{f}) = 0$

Demo: Deblurring

• DBdemo.m

- Minimizing (lecture 4) $\varepsilon(\mathbf{v}_h) = \sum_{\mathcal{R}} w |[\nabla^T f f_t] \mathbf{v}_h|^2$
- Under the constraint $|\mathbf{v}_h|^2 = 1$
- Using Lagrangian multiplier leads to the minimization problem

$$\varepsilon_T(\mathbf{v}_h,\lambda) = \varepsilon(\mathbf{v}_h) + \lambda(1 - |\mathbf{v}_h|^2)$$

• This is the *total least squares* formulation to determine the flow

• Solution is given by the eigenvalue problem

$$\left(\sum_{\mathcal{R}} w \begin{bmatrix} \nabla f \\ f_t \end{bmatrix} [\nabla^T f f_t] \right) \mathbf{v}_h = \lambda \mathbf{v}_h$$
$$\mathbf{T} \mathbf{v}_h = \lambda \mathbf{v}_h$$

- The matrix term T is the spatio-temporal structure tensor
- The eigenvector with the smallest eigenvalue is the solution (up to normalization of homogeneous element)

- Local flow estimation
 - Design question:
 w and R
 - Aperture problem: motion at linear structures can only be estimated in normal direction (underdetermined)
 - Infilling limited
- Global flow instead

• Minimizing BCCE over the whole image with additional smoothness term $\frac{BCCE}{\varepsilon(\mathbf{v}) = \frac{1}{2} \int (\langle \mathbf{v} | \nabla f \rangle + f_t)^2 + \lambda (|\nabla v_1|^2 + |\nabla f|^2)}$

$$\varepsilon(\mathbf{v}) = \frac{1}{2} \int_{\Omega} \left(\langle \mathbf{v} | \nabla f \rangle + f_t \right)^2 + \lambda (|\nabla v_1|^2 + |\nabla v_2|^2) \, dx \, dy$$
Cives the Euler Learning equation
$$\mathbf{v} = \begin{bmatrix} v \\ v \end{bmatrix}$$

- Gives the Euler-Lagrange equation $(\langle \mathbf{v} | \nabla f \rangle + f_t) \nabla f \lambda \Delta \mathbf{v} = 0$
- Laplacian is approximately

$$\Delta \mathbf{v} pprox ar{\mathbf{v}} - \mathbf{v}$$

Plugging into the EL-equation gives

$$(\lambda + \nabla f \nabla f^T) \mathbf{v} = \lambda \bar{\mathbf{v}} - f_t \nabla f$$

• Explicitly solving for v results in

$$\begin{aligned} (\lambda + \nabla f \nabla f^{T}) \mathbf{v} &= (\lambda + \nabla f \nabla f^{T}) \bar{\mathbf{v}} - (\nabla f \nabla f^{T} \bar{\mathbf{v}} + \nabla f f_{t}) \\ &= (\lambda + \nabla f \nabla f^{T}) \bar{\mathbf{v}} - \nabla f (\nabla f^{T} \bar{\mathbf{v}} + f_{t}) \\ &= (\lambda + \nabla f \nabla f^{T}) \bar{\mathbf{v}} - \frac{\lambda + \nabla f^{T} \nabla f}{\lambda + \nabla f^{T} \nabla f} \nabla f (\nabla f^{T} \bar{\mathbf{v}} + f_{t}) \\ &= (\lambda + \nabla f \nabla f^{T}) \bar{\mathbf{v}} - \frac{\lambda + \nabla f \nabla f^{T}}{\lambda + \nabla f^{T} \nabla f} \nabla f (\nabla f^{T} \bar{\mathbf{v}} + f_{t}) \\ \mathbf{v} &= \bar{\mathbf{v}} - \frac{1}{\lambda + \nabla f^{T} \nabla f} \nabla f (\nabla f^{T} \bar{\mathbf{v}} + f_{t}) \end{aligned}$$

Iterating the solution

$$\mathbf{v} = \bar{\mathbf{v}} - \frac{1}{\lambda + \nabla f^T \nabla f} \nabla f (\nabla f^T \bar{\mathbf{v}} + f_t)$$

results in the Horn & Schunck iteration

$$\mathbf{v}^{(s+1)} = \bar{\mathbf{v}}^{(s)} - \frac{1}{\lambda + |\nabla f|^2} (\langle \bar{\mathbf{v}}^{(s)} | \nabla f \rangle + f_t) \nabla f$$

- Significant improvement: use median instead of $\bar{\mathbf{v}}\,!$

Demo: Horn & Schunck

• HSdemo.m

Michael Felsberg michael.felsberg@liu.se

www.liu.se

