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Estimation of local orientation

¢ The gradient Vf(x) can be computed with two

convolutions: I
Vi = (419 )

gx and gy are derivative filters, e.g. gx=[-%4 0 %],
Sobel, or Gaussian derivatives.

Lecture 3 e Avery simple description of local orientation is
The structure tensor given by the direction of Vf: ) n v/
n =
V£
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Estimation of local orientation

e Problem 1: Vf may be zero, even though
there is a well defined orientation.

* Problem 2: The sign of Vf changes across a
line.

Estimation of local orientation

Partial solution:

e Form the outer product of the gradient with itself:
Vf V'f.

e This is a symmetric 2 x 2 matrix (tensor)

* Problem 2 solved!

e Also: The representation is unambiguous
e Distinct orientations are mapped to distinct matrices
¢ Close orientations are mapped to close matrices
eContinuity / compatibility

e Problem 1 remains




The structure tensor Motivation for T

. Compute a local average of the outer product of the The structure tensor has been derived based
gradients : on several independent approaches

T = / w(x) [V£](%)[VTF)(x)dx

Optimal orientation (Biglin & Granlund, 1987)
Sub-pixel refinement (Forstner & Gllch, 1987)
Interest point detection (Harris & Stephens,

* w(x) is some LP-filter (typically a Gaussian)
* Tisasymmetric 2 X 2 matrix: T;; = T
¢ This construction is called the structure tensor

* Solves also problem 1 (why?) 1988)
Local orientation in the

. . Optimal orientation estimation
Fourier domain

e Structures of different orientation end up in Basic idea:
different places in the frequency domain * The local signal f(x) has a Fourier transform F(u).

e We assume that fis a i1D-signal

* Fhas its energy concentrated mainly on a line
through the origin

¢ Find a line, with direction n, in the frequency
domain that best fits the local signal

Described by Biglin & Granlund [ICCV 1987]

Spatial domain
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The structure tensor

e The solution to this optimization problem is
formulated in terms of the structure tensor:

T - / w(x) [V£]()[VTF)(x)dx

z’_
Optimal orientation estimation

¢ The solution to this constrained
maximization problem must satisfy

Tn=\n (why?)

e Means: nis an eigenvector of T with
eigenvalue \

e Choose the eigenvector with the largest
eigenvalue to minimize J (why?)

e +n and —n represent the same orientation
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Optimal orientation estimation

e For asignal that is approximately i1D in the
neighborhood of a point x,, with orientation *n:
V.f is always parallel ton (why?)

e The gradients that are estimated
around x, are a scalar multiple of n

e The integral of their outer products
results in

T=)Ann"
for some value A\
* )\ depends on w,, w,, and the local signal f
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Sub-pixel refinement

e Consider a local region and let Vf(x) denote
the image gradient at point x in this region

* Let x, be some point in this region

e (Vfix) | x—x, ) is then a measure of
compatibility between the gradient Vf(x)
and the point x,

e Small value = high compatibility [l o

minimises

e High value = small compatibility  EROEEN
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Sub-pixel refinement
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® |n the case of more than one
line/edge in the local region:

optimally fits all these
lines/edges

e We minimize

e We want to find the point x, that

e(x0) = [(VF(x)Ix = x0)[3,

Sub-pixel refinement

e The normal equations of this least squares
problem are:

2
Jow(x) (6‘97) rydx+ [, w(x)a‘a—i% g dx
f

1
2
/‘ fﬂw(x)%%xl dx + [, w(x) (;—gi) g dx

= / w(x)VF(x)VT f(x) x dx
where w is a weighting function L e
that defines the local region =b L
* Solve the linear equation: TX,=b region of the image!
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The Harris-Stephen detector

e A Taylor expansion of the image intensity / at
point (u, v):

I(u+ng,v+ny) =~ I(u,v) + VI - (ng,ny)
u,

~ I(u,v)+VI-n
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The Harris-Stephen detector

e S(x,y) is a measure of how much /(u, v) deviates
from I(u+n,, v+n )inalocal region €,
as a function of (n,, n ):
S(nz,ny) = [[I(u+ ng,v+ny) — I(u, U)Hz =
= / w(u,v) - |I(u+ Ng, v +ny) — I(u, v)|2dudv ~
Q
~ / w(u,v) - (Vl~n)2dudv =
Q

=n' [/ w(u,v) - (VIV'I)dudv| n=n"Tn
Q

=T
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The Harris-Stephen detector

If Q contains a linear structure, then S is small (=0)
when n is parallel to the line/edge

e T must have one small (=~ 0) eigenvalue

If Q contains an interest point (corner) any
displacement (n,, n ) gives a relatively large S

 Both eigenvalues of T must be relatively large
By analyzing the eigenvalues A\, A, of T:

o If A\, large and X, small: line/edge

e If both \; and A, large: interest point

See Harris measure below
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Computation of the structure tensor

e Use 1D or separable 2D filters to estimate Vf
* 4 1D convolutions to produce Vf (Sobel)

 Map Vfto VFVTf

* A point-wise operation

* Convolve T, T;,, and T,, with w
* Choose w separable =- 6 more 1D convolutions
*NotethatT,, =T,
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Example: Structure tensor

Y,

4

Original image
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Example: Structure tensor

£ Gradient images £y
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Example: Structure tensor

T,, image
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Example: Structure tensor

T,, image
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Example: Structure tensor
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T,, image
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Structure tensor in 2D

e The structure tensor is computed as
follows:

T = / w(x) [V f1(0)[VTf)(x)dx

e wis assumed to be a positive and
symmetric function that localizes the
orientation estimate described by T,
e.g. a Gaussian function
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Example: Structure tensor in 2D

e In the general 2D case, we obtain

T = )\1 él é{ -|— )\2 éQ ég (why?)

e where \; 2 )\, are the eigenvalues of T and
é,, &, are the corresponding normalized
eigenvectors

e We have already shown that for locally i1D
signalswe get \;20and A\, =0

25

} er Vision Laborator

Example: Structure tensor in 2D

e |f the local signal is not i1D, Vfis not
parallel to some n for all points x in the
local region, i.e. the terms in the integral
that forms T are not scalar multiples of
each other

e Consequently: A\, >0

e The idea of optimal orientation becomes
less relevant the closer )\, gets to \;

26

!_
Isotropic tensor

e |f we assume that the orientation is
uniformly distributed in the local
integration support, we get \; = \,:

T=X& & +Xé&él
= A\ (e1e] +eel)
=X 1 B " ceniy |

e i.e. Tisisotropic:nN™Tn=n"In=1

Why is the parenthesis equal to I?
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Confidence measures

e From det T and tr T we can define two
confidence measures:

_ tr’T—4 detT _ 2 detT
C1 — - CH —m ——s——————
- < tr<l’'—2detl

trT—2 detT
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Confidence measures

e Using the identities
UrT =T +TH=A+A
detT=T,,T,,—T,2= )\,
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Confidence measures

* Easy to see that
*i1D signals givec;=1andc,=0
* Isotropic T givesc;,=0and ¢,=1
* In general: an image region is somewhere

we obtain between these two ideal cases
_ (M =X)? _2X1 X  An advantage of these measures is that
€1 = )\%4_)\% €2 = W they can be computed from T without
explicitly computing the eigenvalues
andc,+c¢,=1 (why?) A, and A,
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Decomposition of T

e We can always decompose T into an
i1D part and an isotropic part:
AL > A,
Aerel + 88l

'\ \ Na. 3T 1+ v _ra. aT
A1 — A2) €167 T A2 €1¢€1 T

(M —X2)ere]l + X1

T

TN
2)

|
)
)

2
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Double angle representation

With this result at hand:

B 2T12 B =

2

— (M=) (cos a—sinza) _
= (A1 — Ao =

2 cosa sin o

P (cos2oz)

sin 2

z is a double angle representation of the
local orientation




Example

“!_Color coding of the double angle
representation

determinant of T
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Example Example
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Example

Double angle descriptor
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Rank measures

e The rank of a matrix (linear map) is defined as
the dimension of its range

e We can think of ¢; and ¢, as (continuous) rank
measures, since
—ilD signal = T hasrank 1 =
¢;=1 and ¢,=0.

— Isotropic signal = T hasrank 2 =
¢,;=0 and ¢,=1.
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Harris measure

e The Harris-Stephen detector is based on c, defined as

cy = detT — fﬁ;(traceT)z, k ~ 0.05

— — 2 Different values for x
T )\1)\2 Kl(>\1 —|— )\2) have been proposed in
by the literature!
2
cy>0
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Harris measure

» By detecting points of local maximain c,,,
where C,, > 7, we assure that the eigenvalues of T at
such a point lie in the colored region below
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Example

41




