

TSBB15 Computer Vision

Lecture 3
The structure tensor

Estimation of local orientation

• The gradient $\nabla f(\mathbf{x})$ can be computed with two convolutions:

 $\nabla f(\mathbf{x}) = \begin{pmatrix} f * g_x \\ f * g_y \end{pmatrix} (\mathbf{x})$

 g_x and g_y are derivative filters, e.g. $g_x = [-\frac{1}{2} \ 0 \ \frac{1}{2}]$, Sobel, or Gaussian derivatives.

• A very simple description of local orientation is given by the direction of ∇f :

 $\hat{\mathbf{n}} = \pm \frac{
abla f}{\|
abla f\|}$

2

Computer Vision Laboratory

Estimation of local orientation

- **Problem 1:** ∇f may be zero, even though there is a well defined orientation.
- Problem 2: The sign of ∇f changes across a line.

Computer Vision Laboratory

Estimation of local orientation

Partial solution:

- Form the outer product of the gradient with itself: $\nabla f \nabla^T f$.
- This is a symmetric 2 × 2 matrix (tensor)
- Problem 2 solved!
- Also: The representation is unambiguous
 - Distinct orientations are mapped to distinct matrices
 - Close orientations are mapped to close matrices
 - Continuity / compatibility
- Problem 1 remains

The structure tensor

• Compute a **local average** of the outer product of the gradients :

$$\mathbf{T} = \int w(\mathbf{x}) \left[\nabla f \right] (\mathbf{x}) \left[\nabla^T f \right] (\mathbf{x}) d\mathbf{x}$$

- w(x) is some LP-filter (typically a Gaussian)
- **T** is a symmetric 2 \times 2 matrix: $T_{ij} = T_{ji}$
- This construction is called the **structure tensor**
- Solves also problem 1 (why?)

5

Motivation for **T**

- The structure tensor has been derived based on several independent approaches
- Stereo tracking (Lucas & Kanade, 1981)
- Optimal orientation (Bigün & Granlund, 1987)
- Sub-pixel refinement (Förstner & Gülch, 1987)
- Interest point detection (Harris & Stephens, 1988)

6

Computer Vision Laborator

Local orientation in the Fourier domain

• Structures of different orientation end up in different places in the frequency domain

Computer Vision Laboratory

Optimal orientation estimation

Basic idea:

- The <u>local signal</u> $f(\mathbf{x})$ has a Fourier transform $F(\mathbf{u})$.
- We assume that f is a i1D-signal
 - *F* has its energy concentrated mainly on a line through the origin
- Find a line, with direction **n**, in the frequency domain that best fits the local signal

Described by Bigün & Granlund [ICCV 1987]

The structure tensor

 The solution to this optimization problem is formulated in terms of the structure tensor:

$$\mathbf{T} = \int w(\mathbf{x}) [\nabla f](\mathbf{x}) [\nabla^T f](\mathbf{x}) d\mathbf{x}$$

9

Computer Vision Laboratory

Optimal orientation estimation

 The solution to this constrained maximization problem must satisfy

$$\mathbf{T} \, \hat{\mathbf{n}} = \lambda \, \hat{\mathbf{n}}$$
 (why?)

- Means: ${\bf n}$ is an eigenvector of ${\bf T}$ with eigenvalue λ
- Choose the eigenvector with the largest eigenvalue to minimize *J* (why?)
- +n and -n represent the same orientation

10

Computer Vision Laboratory

Optimal orientation estimation

- For a signal that is approximately i1D in the neighborhood of a point x₀, with orientation ±n: ∇_wf is always parallel to n (why?)
- The gradients that are estimated around x₀ are a scalar multiple of n
- The integral of their outer products results in

for some value λ

• λ depends on w_1 , w_2 , and the local signal f

Computer Vision Laboratory

Sub-pixel refinement

- Consider a local region and let $\nabla f(\mathbf{x})$ denote the image gradient at point \mathbf{x} in this region
- Let x₀ be some point in this region
- $\langle \nabla f(\mathbf{x}) \mid \mathbf{x} \mathbf{x}_0 \rangle$ is then a measure of compatibility between the gradient $\nabla f(\mathbf{x})$ and the point \mathbf{x}_0
 - Small value = high compatibility

• High value = small compatibility

An \mathbf{x}_0 that lies on the edge/lir that creates the gradient minimises

Sub-pixel refinement

- In the case of more than one line/edge in the local region:
- We want to find the point x₀ that optimally fits all these lines/edges
- We minimize

$$\epsilon(\mathbf{x}_0) = \|\langle \nabla f(\mathbf{x}) | \mathbf{x} - \mathbf{x}_0 \rangle\|_w^2$$

where w is a weighting function that defines the local region

13

Computer Vision Laboratory

Sub-pixel refinement

• The normal equations of this least squares problem are:

$$\underbrace{\int_{\Omega} w(\mathbf{x}) \left(\frac{\partial f}{\partial x_1}\right)^2 x_1 \, d\mathbf{x} + \int_{\Omega} w(\mathbf{x}) \frac{\partial f}{\partial x_1} \frac{\partial f}{\partial x_2} \, x_2 \, d\mathbf{x}}_{:=\mathbf{T}} \left(\int_{\Omega} w(\mathbf{x}) \frac{\partial f}{\partial x_1} \frac{\partial f}{\partial x_2} \, x_1 \, d\mathbf{x} + \int_{\Omega} w(\mathbf{x}) \left(\frac{\partial f}{\partial x_2}\right)^2 x_2 \, d\mathbf{x} \right)}_{:=\mathbf{T}} \mathbf{x}_0 = \underbrace{\int_{\Omega} w(\mathbf{x}) \nabla f(\mathbf{x}) \nabla^T f(\mathbf{x}) \, \mathbf{x} \, d\mathbf{x}}_{:=\mathbf{T}}$$

• Solve the linear equation: $\mathbf{T} \mathbf{x}_0 = \mathbf{b}$

This equation is solved for each loca region of the image

14

Computer Vision Laboratory

The Harris-Stephen detector

• A Taylor expansion of the image intensity *I* at point (*u*, *v*):

$$I(u + n_x, v + n_y) \approx I(u, v) + \nabla I \cdot (n_x, n_y)$$

 $\approx I(u, v) + \nabla I \cdot \mathbf{n}$

Computer Vision Laboratory

The Harris-Stephen detector

• S(x,y) is a measure of how much I(u, v) deviates from $I(u + n_x, v + n_y)$ in a local region Ω , as a function of (n_x, n_y) :

$$\begin{split} S(n_x, n_y) &= \|I(u + n_x, v + n_y) - I(u, v)\|^2 = \\ &= \int_{\Omega} w(u, v) \cdot \left|I(u + n_x, v + n_y) - I(u, v)\right|^2 du dv \approx \\ &\approx \int_{\Omega} w(u, v) \cdot \left(\nabla I \cdot \mathbf{n}\right)^2 du dv = \\ &= \mathbf{n}^{\top} \underbrace{\left[\int_{\Omega} w(u, v) \cdot \left(\nabla I \nabla^{\top} I\right) du dv\right]}_{\mathbf{n} = \mathbf{n}^{\top} \mathbf{T} \mathbf{n} \end{split}$$

The Harris-Stephen detector

- If Ω contains a linear structure, then S is small (=0) when \mathbf{n} is parallel to the line/edge
 - **T** must have one small (\approx 0) eigenvalue
- If Ω contains an interest point (corner) any displacement (n_x, n_y) gives a relatively large S
 - Both eigenvalues of **T** must be relatively large
- By analyzing the eigenvalues λ_1 , λ_2 of **T**:
 - If λ_1 large and λ_2 small: line/edge
 - If both λ_1 and λ_2 large: interest point
- See Harris measure below

K

Computer Vision Laboratory

Computation of the structure tensor

- Use 1D or separable 2D filters to estimate ∇f
 - ullet 4 1D convolutions to produce abla f (Sobel)
- Map ∇f to $\nabla f \nabla^{\mathsf{T}} f$
 - A point-wise operation
- Convolve T_{11} , T_{12} , and T_{22} with w
 - Choose w separable \Rightarrow 6 more 1D convolutions
 - Note that $T_{21} = T_{12}$

18

Computer Vision Laboratory

Example: Structure tensor

Original image

Computer Vision Laboratory

Example: Structure tensor

Gradient images

 f_{ν}

Computer Vision Laboratory

Example: Structure tensor

Before averaging

 T_{11} image

21

K

Example: Structure tensor

Before averaging

 T_{22} image

fter averaging

22

Computer Vision Laboratory

Example: Structure tensor

Before averaging

 T_{12} image

After averaging

Computer Vision Laboratory

Structure tensor in 2D

• The structure tensor is computed as follows:

$$\mathbf{T} = \int w(\mathbf{x}) [\nabla f](\mathbf{x}) [\nabla^T f](\mathbf{x}) d\mathbf{x}$$

 w is assumed to be a positive and symmetric function that localizes the orientation estimate described by T, e.g. a Gaussian function

Computer Vision Laboratory

Example: Structure tensor in 2D

• In the general 2D case, we obtain

$$\mathbf{T} = \lambda_1 \, \hat{\mathbf{e}}_1 \, \hat{\mathbf{e}}_1^T + \lambda_2 \, \hat{\mathbf{e}}_2 \, \hat{\mathbf{e}}_2^T \quad \text{(why?)}$$

- where $\lambda_1 \ge \lambda_2$ are the eigenvalues of **T** and $\hat{\mathbf{e}}_1$, $\hat{\mathbf{e}}_2$ are the corresponding normalized eigenvectors
- We have already shown that for locally i1D signals we get $\lambda_1 \ge 0$ and $\lambda_2 = 0$

Computer Vision Easoratory

Example: Structure tensor in 2D

- If the local signal is not i1D, ∇f is not parallel to some n for all points x in the local region, i.e. the terms in the integral that forms T are not scalar multiples of each other
- Consequently: $\lambda_2 > 0$
- The idea of optimal orientation becomes less relevant the closer λ_2 gets to λ_1

26

Computer Vision Laboratory

Isotropic tensor

• If we assume that the orientation is uniformly distributed in the local integration support, we get $\lambda_1 \approx \lambda_2$:

• i.e. **T** is *isotropic*: $\mathbf{n}^T \mathbf{T} \mathbf{n} = \mathbf{n}^T \mathbf{I} \mathbf{n} = \mathbf{1}$ Why is the parenthesis equal to **I**?

Computer Vision Laboratory

Confidence measures

 From det T and tr T we can define two confidence measures:

$$c_1 = \frac{\operatorname{tr}^2 \mathbf{T} - 4 \operatorname{det} \mathbf{T}}{\operatorname{tr}^2 \mathbf{T} - 2 \operatorname{det} \mathbf{T}}$$
 $c_2 = \frac{2 \operatorname{det} \mathbf{T}}{\operatorname{tr}^2 \mathbf{T} - 2 \operatorname{det} \mathbf{T}}$

Confidence measures

Using the identities

tr
$$\mathbf{T} = T_{11} + T_{22} = \lambda_1 + \lambda_2$$

det $\mathbf{T} = T_{11}T_{22} - T_{12}^2 = \lambda_1\lambda_2$

we obtain

$$c_1 = \frac{(\lambda_1 - \lambda_2)^2}{\lambda_1^2 + \lambda_2^2}$$
 $c_2 = \frac{2\lambda_1\lambda_2}{\lambda_1^2 + \lambda_2^2}$ and $c_1 + c_2 = 1$ (why?)

29

Confidence measures

- Easy to see that
 - i1D signals give $c_1 = 1$ and $c_2 = 0$
 - Isotropic **T** gives $c_1 = 0$ and $c_2 = 1$
 - In general: an image region is somewhere between these two ideal cases
- An advantage of these measures is that they can be computed from T without explicitly computing the eigenvalues λ_1 and λ_2

30

Computer Vision Laboratory

Decomposition of **T**

 We can always decompose T into an i1D part and an isotropic part:

$$\mathbf{T} = \lambda_1 \,\hat{\mathbf{e}}_1 \,\hat{\mathbf{e}}_1^T + \lambda_2 \,\hat{\mathbf{e}}_2 \,\hat{\mathbf{e}}_2^T$$

$$= (\lambda_1 - \lambda_2) \,\hat{\mathbf{e}}_1 \,\hat{\mathbf{e}}_1^T + \lambda_2 \,(\hat{\mathbf{e}}_1 \,\hat{\mathbf{e}}_1^T + \hat{\mathbf{e}}_2 \,\hat{\mathbf{e}}_2^T)$$

$$= (\lambda_1 - \lambda_2) \,\hat{\mathbf{e}}_1 \,\hat{\mathbf{e}}_1^T + \lambda_2 \,\mathbf{I}$$

Computer Vision Laboratory

Double angle representation

With this result at hand:

$$\mathbf{z} = \begin{pmatrix} T_{11} - T_{22} \\ 2 T_{12} \end{pmatrix} =$$

$$= (\lambda_1 - \lambda_2) \begin{pmatrix} \cos^2 \alpha - \sin^2 \alpha \\ 2 \cos \alpha \sin \alpha \end{pmatrix} =$$

$$= (\lambda_1 - \lambda_2) \begin{pmatrix} \cos 2\alpha \\ \sin 2\alpha \end{pmatrix}$$

Remember $\lambda_{\scriptscriptstyle 1} \geq \lambda_{\scriptscriptstyle 2}$

z is a *double angle representation* of the local orientation

Example

trace of **T**

determinant of T

33

Example

 c_1

 c_2

Example

35

Example

Double angle descriptor

Rank measures

- The rank of a matrix (linear map) is defined as the dimension of its range
- We can think of c₁ and c₂ as (continuous) rank measures, since
 - i1D signal ⇒ **T** has rank 1 ⇒ $c_1 = 1$ and $c_2 = 0$.
 - Isotropic signal \Rightarrow **T** has rank 2 \Rightarrow c_1 = 0 and c_2 = 1.

38

Computer Vision Laboratory

Harris measure

• The Harris-Stephen detector is based on c, defined as

$$c_{\rm H} = \det \mathbf{T} - \kappa (\operatorname{trace} \mathbf{T})^2,$$

= $\lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2$

 $\kappa \approx 0.05$

Different values for κ have been proposed in

Computer Vision Laboratory

Harris measure

By detecting points of local maxima in C_H,
 where C_H > \tau\$, we assure that the eigenvalues of T at such a point lie in the colored region below

Computer Vision Laboratory

Example

Original

Harris