TSBB15 Computer Vision

Lecture 7
Object tracking project

Object tracking

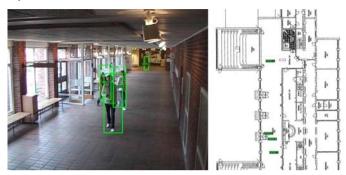
Technical goals of this project:

- Given an image sequence, detect and track all moving objects
- Indicate objects with **boxes** + **identity numbers** Assumptions:
- Static camera
- Static background
- Humans or cars are moving on a flat ground plane

Project web page

- More information about the project can be found here:
- www.cvl.isy.liu.se/education/undergraduate/tsbb15/object-tracking-project
 - Datasets
 - References
 - Code
 - **—** ...

2017-02-05 Lecture 7


Object tracking

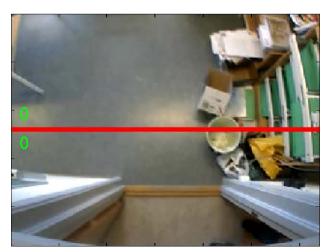
- Large application area:
 - surveillance, traffic, ...
- Many spin-offs
 - http://www.cognimatics.com
- Several research projects, e.g.,
 - FOI
 - CAVIAR
 - PETS
- Student projects (e.g. Puck-O-Vision)

2017-02-05 Lecture 7 3 2017-02-05 Lecture 7 4

Object tracking

Example

From PhD Thesis of Håkan Ardö, LTH


Object tracking

TrueView from Cognimatics

2017-02-05 Lecture 7 5 2017-02-05 Lecture 7 6

Counting people

Object tracking

2017-02-05 Lecture 7 7 2017-02-05 Lecture 7 8

Sports

Example: Tracab system for automatic tracking of football players. From CyronHego

TRACAB is the only system prover to deliver true three-dimensional tracking in a sports arena in REAL real-time.

2017-02-05 Lecture 7

Challenges

- Shadows / reflections from moving objects
 - Create "ghost" objects
- Uneven illumination of the scene
 - Visual appearance of an object changes
 - Variation both in space and in time
- 3D rotations
 - Object appearance changes
- Occlusion
 - Ambiguities in object identity

2017-02-05 Lecture 7 10

Toolbox of methods

- Since we have a static camera & background:
 - Use background modeling to detect motion
- To robustly determine object identity:
 - KL-tracking
 - Prediction
 - Ground plane mapping + 3D tracking
- Shadows/reflections can be managed by:
 - Color modeling

Background modeling

A popular application of mixture models

- Described in lecture 6
- Estimate a mixture model for the image background in each pixel
 - o 1 model sometimes sufficient
 - 2 or more models are sometimes used to manage minor fluctuations
- Pixel values far from the mixture model are seen as foreground pixels
- Popular way to track e.g. people and cars in stationary surveillance cameras
- Fast compared to dense motion estimation

Background modeling

- Master thesis project at CVL, LiU, by John Wood
- Background modeling + shadow detection

2017-02-05 Lecture 7 13

Foreground segmentation

- Background modeling gives a likelihood image with p(I(x,y)| background)
 - Lecture 6
- From this probability, find consistent regions by
 - thresholding
 - morphological shrink + expand for cleanup
 - labeling
- From these regions, extract **bounding boxes**
 - The smallest rectangle that includes the detected object

Background modeling

Two proposed approaches:

- Gaussian Mixture models,
 - described in lecture 6
 - Also pseudo-code in J. Wood's master thesis, section 4.3
- Median filtering
 - Masters thesis of J. Wood, section 2.2
 - PhD thesis of H. Ardö, section 3.2.2

2017-02-05 Lecture 7 14

Object identity

- Start with detecting moving objects in each frame
- Next: determine which object in frame t corresponds to which one in frame t + 1
- Simple approach:
 - Check how much all pairs of objects overlap
 - Connect pairs of maximal overlap
- More robust alternative:
 - Use temporal filtering for **predicting** position of boxes
 - Check overlap of predicted boxes

2017-02-05 Lecture 7 15 2017-02-05 Lecture 7 16

Temporal filtering

- Temporal filtering of object locations e.g. IIR or Kalman
 - From temporal filtering we can predict where the object will end up in the next frame
- Can help to maintain object identity in case of
 - occlusion
 - close objects, moving fast
 - or noise in general

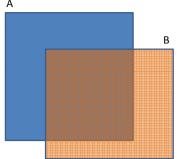
2017-02-05 Lecture 7 17

Datasets

- The scientific community has produced a number of standard dataset for motion analysis:
 - CAVIAR
 - PETS
 - IVSS
 - <u>changedetection.net</u>
- They typically contain:
 - Video sequences (MPEG + JPEG)
 - Annotation (labeling of objects) in some datasets

Ground plane modeling

- We assume that the objects are moving around on a planar surface, the ground plane:
 - There is a homography transformation between image position and position in the plane (TSBB06)
 - This homography can be estimated (TSBB06)
 - "foot points" of object can be mapped to a position in the ground plane
 - The ground plane position can be temporally filtered


2017-02-05 Lecture 7 18

Performance evaluation

- The datasets have ground truth (GT)
- Compare your boxes with GT
- Possible performance measures
 - Average overlap error
 - Number of changes of identity for an object

— ...

Overlap

overlap =
$$\frac{\operatorname{Area}(A \cap B)}{\operatorname{Area}(A \cup B)}$$

21

$$0 \leq \mathsf{overlap} \leq 1$$

overlap error =
$$1 - \frac{\operatorname{Area}(A \cap B)}{\operatorname{Area}(A \cup B)}$$

2017-02-05 Lecture 7

Examples from CAVIAR

Camera 1: Wide field of view in a large room

Camera 2: Surveillance in a shopping mall

2017-02-05 Lecture 7 22

Puck-o-vision

Guidance

- Each project group is assigned a PhD student that gives guidance
- Each group can expect to use 2h of guidance time per week
- Mainly at times agreed upon by both parties
- Guidance implies
 - Give advice
 - Give references to literature, code, and data

2017-02-05 Lecture 7 23 2017-02-05 Lecture 7 24

Subversion

- Each project group will have access to a Subversion (SVN) based repository
 - Individual check-in
- Use the repository to store:
 - all external code used in the project
 - all code produced in the project
 - all documents produced in the project
- See "Subversion pitfalls" on course web page

Lecture 7

Alternative: Gitl ab

- NOT GitHub!
- GitLab is administered by IDA, using LIU-ID
- More details: https://www.ida.liu.se/gitlab
- Talk to project guide

2017-02-05 Lecture 7 26

Data storage

- Each project group can get a separate 5 GB file area
 - No backup

2017-02-05

- Deleted after project is finished
- If needed: ask your project guide

Cooperation and plagiarism

- Discussions between students and between project groups is allowed
- Each group must declare which code/text has been produced by the group and which is external
- External material (e.g. code) must be approved
 - Allowed code packages are listed on web page
 - Ask the examiner before using other packages

28

- Put "own" and "external" code in different directories
- Material declared as "own" must not be plagiarized from external sources

2017-02-05 Lecture 7 27 2017-02-05 Lecture 7

25

Design plan

- Each project must produce a design plan
 - Describes the important functionalities (blocks)
 - Describes data flow between the blocks
 - Describes interfaces
 - Describes methods of implementations
- The design plan should also describe who is the principal implementer of the block
 - Each student must be responsible for the design of at least one major block
 - Should be able to answer questions on that block during the final seminar

2017-02-05 Lecture 7 29

Project context

- Produce test cases
 - Should be simple, easy to find expected result
 - Test early implementations on these
- Deliverables
 - A good presentation
 - Including examination of each project member
 - A report

Project management

- Use reasonable level of **project management**
 - make a design plan
 - discuss it with your guide
 - get it approved
 - divide work among project members
 - Each member must have an assigned part of the technical work
 - Presents that part at the seminar
 - Answers questions by the examiner (and audience) on that part

2017-02-05 Lecture 7 30

Testing

- Testing is one of the most important parts of the project
- Divide your system into subparts that can be easily tested
- You should test using test data
 - Produces obvious or specified behavior
 - Usually not the same data as the final system should operate on
 - Can be synthetic data generated to produce well-known output from your system
- Do not integrate subparts into a larger system until the subparts are properly tested

Deliverables

- A good presentation
 - Including examination of each project member
- A written project report
 - Which problem is solved?
 - How is it solved?
 - What is the result? Performance evaluation!
 - Why did you get this result?
 - References
 - Targeted to your fellow students, not doing this project (explain what you are doing!)

2017-02-05 Lecture 7 33

Implementation

The project can be implemented in

- Matlab
 - real-time processing difficult
 - no real-time requirements
- C/C++/Python
 - close to real-time should be possible
 - but is NOT a requirement
- Several code packages exist
 - OpenCV for C/C++/Python
 - See list on web page
 - External software for background modeling not allowed

Time table 2016

- Feb 3: formation of project groups
 - Problem analysis
 - Specification of required functionalities
 - Selection of methods
 - Who does what
 - First contact with project guide
- Feb 13: approval of design plan
- March 16: report handed in to guide
- March 28: presentation of project results
- Each student contributes ≈80h (3hp) of work/project

2017-02-05 Lecture 7 34

OpenCV

- Version 3.1.0
 - Installed in ISY computer rooms
- Contains lots of useful functions:
 - Image / video / camera input
 - Image display
 - KLT-tracker
 - Harris-operator
 - Morphology, statistics
- Requires C/C++/Python skills
- See "OpenCV pitfalls" on course web page
- Use Matlab otherwise (has similar stuff)

Required functionalities

- For all groups:
 - Tracking of objects in a simple sequence
 - Management of object identity
 - Evaluation of results
 - E.g., accuracy relative to ground truth
- Optional functionality:
 - Management of shadows
 - Management of spurious background motions
 - Occlusion management, e.g., prediction or ground plane modeling, foreground modelling, and KLT
- (Groups of 3 students: 1 optional function)
- Groups of 4 students: 2 optional functions
- Groups of 5 students: 3 optional functions

2017-02-05 Lecture 7 37