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Image Matching

• KLT tracking and block matching are 
useful when matching between 
consecutive frames in a video sequence. 
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• KLT tracking and block matching are 
useful when matching between 
consecutive frames in a video sequence.  
• Images are from the same camera 
• small changes in scale, rotation and 

illumination
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Image Matching

• KLT tracking and block matching are 
useful when matching between 
consecutive frames in a video sequence.  
• Images are from the same camera 
• small changes in scale, rotation and 

illumination 
• Local invariant features work when these 

conditions are violated.
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Wide-baseline stereo

• Problem 1: wide-baseline stereo 
– Matching images of the same scene, 

captured at different positions.
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• Problem 1: wide-baseline stereo 
– Matching images of the same scene, 

captured at different positions.
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Object instance recognition 
and pose estimation

• Problem 2: object instance recognition 
– Recognition of 3D objects under partial 

occlusion. 
– training set 
– test set 
– 6dof pose
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Object recognition

• Example: Eddie the embodied 
 

• See webpage for details 
http://users.isy.liu.se/cvl/perfo/
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Local invariant features

• In lecture 2 we discussed how to match 
across scale and translation. How?
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Local invariant features

• In lecture 2 we discussed how to match 
across scale and translation. How? 

• Another option is to use interest points 
e.g. Harris points [Z. Zhang et al. 95]. 
– A. Detect interest points 
– B. Cut out image patches around each point 
– C. Matches can now be found by comparing 

patches+epipolar geometry constraints.
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Local invariant features

• Correspondences from block matching 
at Harris points.

11



February 10, 2017 Computer Vision lecture 8

Computer Vision Laboratory

Local invariant features

• After applying the Epipolar constraint 
(You will test this in lab 3).
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Epipolar constraint (recap)

• The epipolar constraint:
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Epipolar constraint (recap)

• The epipolar constraint:
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Epipolar constraint (recap)

• The epipolar constraint: 
• x1 and x2 are projections of the same 

3D point in two views.  
• Scene is static, i.e. no motion has taken 

place (except the change of camera 
position). 
• F can be estimated from 7 or more 

correspondences. E.g. 8-pt algorithm.
15
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Epipolar constraint (recap)

• The epipolar constraint: 
• See the compendium, Introduction to 

Estimation, Representation and 
Geometry, Klas Nordberg
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Local invariant features

• Zhang’s interest point method. (repeat) 
– A. Detect interest points 
– B. Cut out image patches around each point 
– C. Matches can now be found by comparing 

patches+epipolar geometry constraints.
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Local invariant features

• Zhang’s method is invariant to 
translation (and partially to scale). 
 

– 2 degrees-of-freedom (DOF) of invariance 
(transl. only) (3 if scale is also counted)
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Local invariant features

• Zhang’s method is invariant to 
translation (and partially to scale). 
 

– 2 degrees-of-freedom (DOF) of invariance 
(transl. only) (3 if scale is also counted) 

• What about image rotations? 
• What about view changes?
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Local invariant features

• In general, the local invariant feature 
approach can be described as three steps: 
– Detection: Use a detector to find a local, 

canonical frame (coordinate system)
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Local invariant features

• In general, the local invariant feature 
approach can be described as three steps: 
– Detection: Use a detector to find a local, 

canonical frame (coordinate system) 
– Description: Compute a descriptor, by 

sampling the image in the canonical frame
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Local invariant features

• In general, the local invariant feature 
approach can be described as three steps: 
– Detection: Use a detector to find a local, 

canonical frame (coordinate system) 
– Description: Compute a descriptor, by 

sampling the image in the canonical frame 
– Matching: Find correspondences, by 

comparing descriptors from two images
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Canonical frame example

• Resampling to canonical frame

23



February 10, 2017 Computer Vision lecture 8

Computer Vision Laboratory

Local invariant features

• Geometric invariances  
Robustness to view changes 
 

• Photometric invariances  
Robustness to illumination changes
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Local invariant features

• Geometric invariances can be 
obtained by choosing a frame that is 
equivariant to rotations, scalings, and 
image skews 

• Photometric invariances can be 
obtained by computing the descriptor 
in a more advanced way than direct 
sampling.
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Geometric Invariance

• The geometric invariances we use make 
a locally planar assumption. 

• They can thus be described using 
homographies. 
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Geometric Invariance
– Recap: A Homography is a transformation 

between points x on one plane, and points y 
on another. 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Geometric Invariance
– Recap: A Homography is a transformation 

between points x on one plane, and points y 
on another. 
 

• Degrees of freedom: number of unique 
elements in H. 
– at most 8dof (for plane projective case), 

 as H and  
 gives the same output
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Geometric Invariance

• A hierarchy of transformations: 
– scale+translation (3dof) 

– similarity (4dof) 
(scale+translation+rotation) 

– affine (6dof) 
(similarity+skew) 

– plane projective (8dof) 
(affine+forshortening)

29
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Geometric Invariance

• We can find the canonical frame by 
using more than one point 
[Brown&Lowe 02] aka. interest-point 
groups 

• We will now give some examples...
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Geometric Invariance
– Scale+translation: Useful if we know that 

there is no rotation. E.g. for a camera 
mounted in a car, looking at upright 
pedestrians.
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Geometric Invariance
– Similarity: Full invariance in image plane, 

none outside image plane. 
Useful e.g. for pose estimation.
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Geometric Invariance
– Affine: Deals with most common 

projective distortions. Good if patch size 
is small relative to distance to patch.
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Geometric Invariance
– Plane projective: Full modelling of a plane 

in 3D. Requires more image 
measurements, but is better for extreme 
view angles.
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Geometric Invariance

• Resampling to canonical frame
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Geometric Invariance
• Problems with interest-point groups: 

– Sensitive to missing points: 
If e=P(point-detected|present) then  
P(frame-is-detected|present)=eN  

where N is number of points in frame. 
– Combinatorics: if K points in image, we have 

          possible canonical frames. 

– We will introduce other ways to find the 
frame soon.
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Photometric Invariance
– Image intensity is approx. linear in radiance 

(at least before gamma correction) 
– E.g. adding a second, identical light source 

will double the sensor activation, a(x). 
 

– s-sensor absorption spectrum, r-reflectance 
spectrum of object, e-emission spectrum 
of light source (attenuated by the 
atmosphere)
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• If illumination changes, image matching fails: 
 
 

• We want a function that is invariant to scalings: 
 

• How should we choose f()?

February 10, 2017 Computer Vision lecture 8

Computer Vision Laboratory

Photometric Invariance

38
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Photometric Invariance
• For cameras with non non-linear radiometric 

response (and e.g. gamma correction), or if 
two different cameras are used we may use 
the affine model: 
 

• How should we choose f ? we want:

39
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Photometric Invariance
– Mean subtraction, derivatives, and other 

DC free linear filters remove a constant 
offset in intensity 

– Normalising a patch by e.g. the L2-norm or 
the standard deviation, removes 
scalings of the intensity. 

– Affine invariance by combining both:
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Î(x) = (I(x)� µI)/�I



February 10, 2017 Computer Vision lecture 8

Computer Vision Laboratory

Photometric Invariance

• Illustration:
Input Gradient

  St.dev-
Normalised 

gradient

St.dev-
Normalised 

input

41
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Local Invariant Features

• There are many examples of features that 
fit the descriptor+detector paradigm. 

• The two most widely used are:  
– SIFT Scale Invariant Feature Transform 

(Lowe 99) 
– MSER Maximally Stable Extremal Regions 

(Matas et al. 02) 
• We will look at these two in more detail.

42



February 10, 2017 Computer Vision lecture 8

Computer Vision Laboratory

SIFT

• Scale Invariant Feature Transform 
[Lowe’99]. In brief: 
– The SIFT detector finds points using 

Difference-of-Gaussians in a pyramid 
Gives: position x,y and scale s 

– Rotation is found from a gradient histogram 
– This gives a frame for the SIFT descriptor, 

which is computed from gradient 
orientation histograms.
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SIFT detector

• Scale Space (recap.) 
– The image is extended with an extra 

dimension for scale/blur: 

– The blurring kernel          is typically a 
Gaussian:

44

g(x, s) =
1

2⇡s
e�x

T
x/2s2



February 10, 2017 Computer Vision lecture 8

Computer Vision Laboratory

SIFT detector

• Scale Selection [Lindeberg’93] 
– Find a characteristic point (e.g. max) on a 

function of position and scale: 
 

– Example: Maximum of normalised Laplacian: 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SIFT detector

Illustration by (Mikolajczyk et al. 2005)
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SIFT detector

• In SIFT, scale selection is done using 
difference-of-Gaussians: 

• Efficient implementation using pyramids 
[Lowe’99] 

• Sampling in scale space with 
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SIFT detector
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SIFT detector
– Finally we find one or more reference 

directions using a gradient orientation 
histogram h at the found location in scale 
space.
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SIFT descriptor

• The SIFT detector gives us a similarity 
frame. What is this? 
– We now want to convert the image patch at 

the frame to a 128-byte descriptor vector. 
– The purpose of this is to add photometric 

invariance, and some extra translation and 
scale robustness.
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SIFT descriptor
– Compute x- and y-gradients through convolution: 

 

– Rotate gradient map to direction from orient-hist: 

– Compute gradient orientation histograms in 4x4 
spatial regions:
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SIFT descriptor
– Compute gradient orientation histograms in 4x4 

spatial regions : 
 
  

– Bk(x) linear interpolation kernel 
Quadratic is better (Jonsson&Felsberg) 

– Subwindows                       directions  
– Spatial weight                     (Gaussian decay)
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SIFT descriptor
– Implementation with source code in 

both VLfeat and OpenCV.

Note that 4x4 regions are actually used, with 8 orientations -> 128 elements
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SIFT descriptor
– Affine illumination invariance by using gradients 

and normalising descriptor 
– Some robustness by truncating and 

normalising again 
– The spatial histogramming gives robustness to 

scale/rotation/translation errors.
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SIFT descriptor
– Affine illumination invariance by using gradients 

and normalising descriptor 
– Some robustness by truncating and 

normalising again 
– The spatial histogramming gives robustness to 

scale/rotation/translation errors. 
– SIFT is used commercially in many places. 

(The Sony AIBO was an early example.)
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MSER

• Maximally Stable Extremal Regions 
[Matas et al.’02] 

• Consider the set of all possible 
thresholdings of an image... 
 
                      [Movie clip]
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MSER
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MSER
• Connected regions form segments. 

– Cf. Watershed algorithm (similar idea but 
different output) 

– Look at stability of a function of segment across 
image evolution. e.g. 

– MSERs are components that are maximally 
stable, i.e., have a local minimum of the rate of 
change: 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MSER
– compare: Maximal Stability, Scale 

Selection 
• Stability measure: Range of stable 

thresholds t2-t1 around min is called 
the margin of the region.
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MSER
– Two possible thresholdings:               , 

 
 
 
 

– Very fast (using union/find+path compression). 
– MSER type (+/-) is useful for matching How?

64 MSER+ (total 294)Input image 64 MSER- (total 272)
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MSER
– MSER is invariant to monotonic changes of intensity. 

i.e.  I(x) and f(I(x)) have the same output if 

– Wide range of sizes obtained without a scale pyramid. 
Better still with a pyramid (Forssén&Lowe ICCV’07) 

– Colour objects can be tracked by computing MSERs 
on the Mahalanobis distance to a colour distribution. 
(Donoser&Bischof CVPR’06) 

– Colour regions by looking at gradients. 
Called MSCR (Forssén CVPR’07)
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MSCR
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MSCR
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MSER

Matas et al. ICPR’02

• Reference directions from extremal points 
along ellipse-normalized contour.

64



February 10, 2017 Computer Vision lecture 8

Computer Vision Laboratory

MSER

• Approximating ellipse 
– from moments of binary mask 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MSER
– Normalisation to a circle (axis aligned) 

Compute the eigenfactorisation: 
 
 
The circle normalisation can now be 
performed as: 
 
 
   - canonical coordinates 
   - image coordinates
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MSER

• Ellipse+extrema of distance to centre is 
just one frame construction option. 

• Other (affine covariant) choices: 
– Points of maximum curvature. 
– Bi-tangens. 
– See Obdrzalek&Matas BMVC’02 

• Implementation w. source: 
in both VLfeat and OpenCV
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MSER descriptor
• The MSER detector originally used normalized 

colour patches as descriptor vectors: 
 
 
 
 

• Nowadays other descriptors, e.g. the SIFT 
descriptor are used. 
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Other local invariant features
• SFOP  

http://www.ipb.uni-bonn.de/sfop/ 
• BRISK  

Source Code+description 
http://www.asl.ethz.ch/people/lestefan/personal/BRISK 
• FREAK and ORB  

In OpenCV 
• SURF and SIFT 

in OpenCV nonfree
69
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Binary descriptors
• To save memory and time, many descriptors 

use local binary patterns: 
 
 
 

• sign of intensity difference has monotonic 
illumination invariance

70

Image from Alexandre et al. CVPR 2012
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Binary descriptors
• To save memory and time, many descriptors 

use local binary patterns: 
 
 
 

• E.g. BRIEF (ECCV’10), BRISK (ICCV’11), 
ORB (ICCV’11), FREAK (CVPR’12)

71
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Deep learning descriptors
Examples: 

• DeCAF (ArXiv’13) descriptors 
• LIFT (ECCV’16) detector and descriptor 

Better matching performance at the price of more 
expensive computations.
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A note on invariance
• Always strive to limit amount of invariance 
• Use knowledge on imaging situation, 

• e.g. A car mounted camera may not need 
rotation invariance for pedestrians. 

• e.g. in a video with smooth illumination 
changes, affine illumination invariance is 
not necessary
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Descriptor Matching

• The Local Invariant Feature method: 
• Detection 
• Description 
• Matching
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Descriptor Matching
– For a descriptor q in a query image. Which 

prototype in memory (p1,p2,...,pN) is most 
likely to correspond to the same world object?
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Descriptor Matching
– For a descriptor q in a query image. Which 

prototype in memory (p1,p2,...,pN) is most 
likely to correspond to the same world object? 

– Assuming additive i.i.d. Gaussian noise on all 
elements:
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Descriptor Matching
– So, the match with smallest distance is 

most likely correct, assuming i.i.d. 
Gaussian noise. 

– What about the scalar product for 
normalised vectors/NCC? 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Descriptor Matching
– So, the match with smallest distance is 

most likely correct, assuming i.i.d. 
Gaussian noise. 

– What about the scalar product for 
normalised vectors/NCC? 
 

– But are all values identically distributed? 
– ...are they all independent?
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Descriptor Matching

• For binary descriptors (e.g. BRIEF) the 
Hamming distance is used: 
 
      s = bitcnt(XOR(P,Q))  

• Also makes i.i.d. assumption.
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Dense invariant features
• (semi-)dense flow for wide baseline 

problems can be obtained by matching 
invariant features 
• located at every pixel and 
• also at several scales 
• e.g. SIFTflow, DSIFT, PHOW, DAISY 
• Much more expensive to compute. 

GPGPU etc. is helpful here.
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Summary

• Use local invariant features: 
when KLT fails 

• But use no more invariance than needed 
• Photometric and Geometric invariance 
• Recognition in three steps: Detection, 

Description and Matching
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Upcoming course events

• Lab 2: Those who have not finished 
have the option to demonstrate the lab 
on Feb 16, 13.15-15 in Olympen. 

• Next Lecture (15/2 10-12) 
Biological vision. Voluntary.

82


