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Computer Vision

Lecture 2
Image Representations
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Scale spaces: motivation 1

*  Objects at

different distances
have different
sizes in the image
plane

* Inobject
detection:
* We want to

detect them all

*  How?
Example: face detection
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Today’s topics

+ Scale spaces

* Pyramids

» Hierarchical representations

» Representation of uncertainty/ambiguity

— case study: local orientation representation
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Scale spaces: motivation 2

— Cameras have limited depth-of-field

— We want our algorithms to robustly deal with out-
of-focus blur
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Scale spaces: motivation 2 Image(s)

¢ Image blur function: image(s)

.

« T, :transformation that produces I, from I,,

object - .
~ = blurred
image
[ KT RER howiizs
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Representation: Scale Space Scale Space
* Basicidea S .S ‘\\ * Notation:
— Stack images in a 3D space v Q\ Y — original image /,(u,v)
— The third axis, s, is called scale u : — blurred image I(u,v)
— s = 0 corresponds to the original image
— As s grows, the image becomes more blurred
* Intuitively: s is a “defocus” or “blur” parameter s I=T,{1,}
[ KT RER howiizs
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Scale Space Axioms

[Tijima, 1959] specifies properties of T:
1. Linear

2. Shift-invariant

3. Semi-group property

4. Scale- and rotation-invariant

5. Maintain positivity

6. Separability (by later authors) ScsleSpace |

howiezs
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Gaussian Scale Space
* The remaining axioms lead to a unique formulation of
G, as a Gaussian function:
_ Wi+“g 1 _ ?12+'i.‘2
Golwy,wy) =e 2 go(u,v) = 7€
+ Separability:
(1, ) 1 «2 1 v?
gs(u,v) = e 2= e 2s
) V2Ts V2Ts
howiezs
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Scale Space

* A1+A2: T, is a convolution : \

N AS
— original image I (u,v) AN N
— blur kernel g (u,v)

— The scale space of I, is given !

as the convolution:

Is(u,v) = (gs * Ip)(u,v)

In the Fourier domain: KI1}=G,- F{I,}
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PDE formulation

» The Gaussian scale space can also be derived as the
solution to the PDE:

%IS (u,v) = %VQIS(H,: v)

boundary condition: Io(u,v) = I(u,v)

+ Ak.a. the diffusion equation
— Compare to the heat equation, where I(u,v) is the
temperature at time s in point (u,v), given initial
temperature I,(u,v)
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PDE formulation

%) 1 (9%, 9,
—I(u,v) = = (W t 52 ) (u,v)

Js 2

The change in I(u,v) when we move only along the
scale parameter s equals a local second order
derivative of I at (u,v)

We will return to the PDF formulation
of scale spaces in a later lecture

vz,

Representation: Scale Pyramid

* Blurring (LP-filtering) reduces high
frequencies

* At some scale s,,: frequencies over 7/2
are sufficiently attenuated to allow

down-sampling with a factor 2 without
much aliasing

* Atscale 2s, we can down-sample the
image with a factor 4, etc.

vz,
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Implementation of the Gaussian Scale-Space
Different alternatives:

1. Inthe Fourier domain:
1. 2D Fourier transform

2. Multiplication with Gaussian function
3. Inverse FT

2. Comvolution: [g(u,v) = (gs * In)(u,v)
3. Integrating I, as a solution of the PDE:

T N RN
S

[ KT e
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Gaussian Pyramid

L scale 2
original im. scale 1

[ KT e
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Example

Coarser
scale

Original

Finer image

scale
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Scale Pyramid: Applications

¢ Also very common in motion analysis

We will return to scale pyramids in later
Lectures on motion analysis

* Multi-resolution processing
— Face detection!
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Scale Pyramid: Applications

* Used widely in Computer Graphics for texture
resampling (called MIP maps)

Texture with MIP map
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Laplacian Pyramid

» From a Gaussian pyramid, we can compute a
Laplacian pyramid.

+ Each level (scale) in a Laplacian pyramid is given as
the difference between two levels of a Gaussian
pyramid at the same grid size.

— The coarser level needs to be up-sampled!
— Or use the LP-filtered version of the finer scale!

» The Laplacian pyramid contains no information
about the DC-component of the image
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Estimation: Laplacian Pyramid

Original
image %

r 1

' Gaussian
So ! pyramid

] o oi s
[ KT RER
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Completeness: Laplacian Pyramid
+ The original image can be reconstructed from its
Laplacian pyramid together with the coarsest level of
its Gaussian pyramid
* How?
[ KT RER
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Example “
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2D DWT, Example

+ Another similar approach to scale spaces can be

based on DWT /\ZD OWT
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Analysis using scale hierarchies
* Scale-spaces, G/L-pyramids and DWT are examples
of scale hierarchies

 Enables analysis of image features at different
resolutions

— Example: translations over different distances.

Same or different analysis can be applied on each
scale level

* Scaling of pixel coordinates between different levels!

Il.u LINKOPING
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Coarse-to-fine search/detection

Start search at coarsest scale. /099, Here we find three
Fast, but might fail: better to get Coarsest otential obiects which
some false detections than miss scale P . L .

EIE CIEE GRS can be investigated
at the next finer scale
At the next finer scale, only 12 ) =
regions found before are Q Only two potential
analysed. Now at a better Intermediate | ©Piects remain here and
e scale are further investigated
at the finest scale

The processing is
limited to those
parts which remain
after the processing

t scale 1 at all scales
C .
at scale Finest scale

Only those objects
remain which have
have been confirmed

Il.u LINKOPING
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Multi-resolution processing *

Apply the same operation, e.g., for object detection, on all
levels of a scale pyramid

— Can be done in parallel
— Collect all detections from all levels as distinct objects

— The level where a detection was made indicates the
“size” of the object

» Ifeach level is down-sampled a factor 2:

— Time for searching over scale is bounded by a factor (1 +
Ya+ (Ya)2 +..)=4/3

JUDYBATS
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Example: face detection
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Coarse-to-fine refinement ”

A similar, processing scheme is the following:
— Estimate a local feature at the coarsest scale first
« Little data — fast processing
* Coarse scale — inaccurate

— The coarse estimate of the feature is then up-sampled
to the size of the second coarsest scale, where the
estimate is refined

— The refinement is based on estimating the refinement

of the coarsest estimate by analyzing the image at the
second coarsest scale.

— The refinement estimate is then up-sampled and
refined again.

— By repeating this procedure, we obtain a very accurate
estimate of the feature at the finest scale.

+ Example: estimation of local velocity or disparity
howiis
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Gaussian pyramid

29
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Coarse-to-fine refinement

Coarsest
scale

[T —

[

i Original im. ;—.

First estimate
fast but inaccurate

//

Refinement of the
estimate

Refinement of the
estimate

[T

st

0 estimate

-/ 7
e

P

e
R i Final result ;

h.v

Example: C2F Stereo disparity
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Images from Wallenberg & Forssén:

e e AL Compute a scale hierarchy.
Start estimating disparity at
the coarsest level, and refine

vz
30
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Example: C2F Stereo disparity
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Example: C2F Stereo disparity

Example: C2F Stereo disparity

oz vz
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Example: C2F Stereo disparity Example: C2F Stereo disparity

oz vz
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Images

+ Animage typically represents, at each position
p=(u,v) a measurement of

— Light intensity
— Color
— Absorption (X-ray)

— Reflection (Ultrasonic)
— Hydrogen content (MRI)
+ All these represent physical phenomena
« All these can be input to a scale hierarchy

Il.u LINKOPING
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Edge representation

vz,
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Feature image

The value at position p=(u,v) can also be used to
represent a local image feature

May not have a direct physical interpretation
— Local mean or variance (scalars)
— Local edge presence (binary)
— Local gradient (a vector)
— Local orientation (to be discussed)
— Local curvature (to be discussed)
— Interest points (to be discussed)

II." LINEOPING
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Notes on Representations .

If a local feature can be assumed to be constant in a
nellghborhood, it is desirable that its representation can
be locally averaged

— The averaged representation = the feature mean

— Noise in the signal results in noise in the estimate of
the feature representation

— By low-pass filtering the rzpresentation (local mean
value), the noise is reduce

— In general: intensity changes faster than orientation

Orient LP-filter

II." LINEOPING
LNIVERSITY
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Confidence measure

+ Feature representations should contain a confidence
measure (or variance estimate), separated from the
feature estimate itself

— Measures how confidence of the feature estimate
— For example: in the range [0, 1]
* Value 0: no confidence, value 1: max confidence

 The confidence can be used to weight the feature
representation when estimating the mean value

— Normalized convolution!

Il.u LINKOPING
UNIERSITY
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Orientation images
Applications

Curvature
Interest points

LP-filtering n t
Orientation image
Tracking t
Image enhancement

Methods for Tracking and
Image enhancement are
described in later lectures

Original image

Il.u LINKOPING
UNIERSITY
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Model-Based Processing

+ Orientation images can be used to control the
processing of an image

» Example: adaptive image enhancement

Estimation of

local orientation
. Apply a _.i ;
filter that locally
depends on the
Original im. — | local orientation

1

Described in a lecture in VT2 !

II." LINEOPING
LNIVERSITY
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Representation of Local Orientation: Angle

+ Signal model: simple signal (i1D, lecture 1)
* Inalocal region of each image point:

— measure an angle o, e.g. between the vertical axis
and the lines of constant signal intensity, e.g. in the

interval 0 to 180 °
» Average-able?
— No! (why?)
* Confidence measure?
* How to extend to 3D?

II." LINEOPING
LNIVERSITY
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Estimation of Local Orientation: Gradient

+ In each point we measure the local gradient of the
signal (e.g. using a Sobel-operator)

* Issues:

— For an i1D signal, the sign of the gradient depends
on where we do the measurement

— The gradient might be = 0
at certain lines of the 0
i1D signal

— Confidence measure?

Il.u LINKOPING
UNIERSITY
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Representation of Local Orientation

» The double-angle representations of two
similar orientations are always similar
(continuity results in compatibility)

» Two orientations which differ

point in opposite directions
(complementarity) >

v

\l
most (90°) are always / I>\|
represented by vectors that - Q }

Il.u LINKOPING
UNIERSITY

47

46

Representation of Local Orientation:
Double angle vector

+ Alternative: double the angle to 2«, which lies in the
interval o to 360 °

» Form a 2D vector v which points with the angle 2«

» Let the norm of v represent the confidence measure

 Called: double-angle representation of local 2D
orientation

II." LINEOPING
LNIVERSITY
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Colour coding of the double angle
representation
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Representation of Local Orientation

» Double-angle representations of local 2D orientations
can be averaged

— The averaged representation = the feature mean

+ Averaging of vectors is automatically weighted with
the confidences

In later lectures:

» How to estimate the double-angle representation
from image data?

* What to do in 3D?

vz,
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Representation of Local Orientation: Tensor

The double-angle vector v becomes
v = A (cos 2a, sin2a)?
A is a scalar which gives the confidence

Alternative: form a 2 x 2 symmetric

matrix
T =0T = A (%) (cosa sina)
S1n &
 Tensor representation of local
orientation

vz,
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Representation of Local Orientation

+ Signal model for simple (i1D) signal at point p

I(p+x) = g(x-n), i=(cosa,sina)’

| is the local signal (2 or more dimensions)

g is the 1D function that defines the variations
of the i1D signal

* x is a deviation from position p

* nis a vector that defines the orientation

» BUT: the direction (sign) of n is not unique
i

50
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Representation of Local Orientation
» Tensor components

T—(Tll T12>_< cos? o COSaSiﬂa)

Tio Too cosasina  sinZa

* Vector components
v [cos2a) _ cos?a—sin?a \ _ [ Ti1—Too
T\ sin2« /T \ 2cosasina | 2Tio

« The tensor contains one more element than v

[ KT e
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Representation of Local Orientation

* nis an eigenvector of T with eigenvalue A

T (but not v) can be defined for any dimension of
signals (3D, 4D, ...)

* How to estimate v and T from signals?

II LINKOPING
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Super-pixels

Examples from
Achanta et al, (SLIC)

Showing different
sizes of the clusters

Also known as:
Over-segmentation

vz,
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Tensor or Matrix?

« In this course, the term tensor is used as
synonym for symmetric matrix.
* Why tensor and not matrix?

— A matrix is just a representation, consisting
of a container with numbers in a table.

— A tensor can be represented as a matrix but it
must furthermore obey certain laws under
transformations of the coordinate system.

— Note the different use in Deep Learning

II." LINEOPING
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Super-pixels

+ The a}rra}y{matrix representation of an image implies that,
in principle, each pixel must be examined in order to
extract information about the image

* An alternative to the array/matrix rell)resentation is to
cluster neighboring pixels with similar values to super-
pixels

— Often with restrictions on the cluster: size, shape

» Each super-pixel is represented as the common value and
a cluster of pixels

» The image is represented as the set of its super-pixels
* Normal image: approx. 1 M pixels
+ Super-pixels image: approx. 1k super-pixels

II." LINEOPING
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Super-pixels

Typical approach:
+ Initialize a regular grid of “square” super-pixels

+ TIteratively modify each super-pixel to increase
homogeneity regarding its corresponding pixel values

— Split super-pixels into smaller ones if necessary
— Merge similar super-pixels if possible

— Move pixels from one super-pixel to a neighboring
one to improve super-pixel shape

Il.u LINKOPING
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