

TSBB15 Computer Vision

Lecture 11
More RANSAC and Calibrated
Geometry

RANSAC: Random Sample Consensus

Iterate *r* times

- 1. Pick *n* random points from *D*
- 2. Determine a model *M* from these points
- 3. Form the consensus set C, together with

Number of points in *C* (i.e. I*C*I)

Average likelihood of the elements in set *C* given the model *M*

4. If C is larger than ever before, then keep this model.

After the iterations: the best kept model is the RANSAC model estimate

RANSAC: Random Sample Consensus

Iterate *r* times

- 1. Pick n random points from D $\stackrel{\bullet}{=}$ $\frac{n}{n}$ should be small!
- 2. Determine a model M from these points \leftarrow Must be fast!
- 3. Form the consensus set C, together with

Number of points in C (i.e. ICI)

Average likelihood of the elements in set *C* given the model *M*

4. If *C* is larger than ever before, then keep this model.

After the iterations: the best kept model is the RANSAC model estimate

RANSAC: Random Sample Consensus

- A minimal solver is an algorithm that finds a solution to a geometric problem using the smallest possible number of points.
- E.g. for line fitting, draw 2 points, and use crossproduct to find a line.
- There is a large body of work that studies efficient minimal solvers for specific problems. These are intended for use with RANSAC.
- The 8pt algorithm is not minimal (7 pts is enough).

Variations/Extensions

After RANSAC is done, we can:

1. optionally re-estimate the found model from *C*, using a more accurate estimation method.

Beware: Re-estimation of **F** using the 8-point algorithm may degrade the solution (the size of C could shrink).

2. use the found model to look for more correspondences.

The 8-point algorithm revisited

The epipolar constraint

$$\mathbf{y}_1^\mathsf{T} \mathbf{F} \mathbf{y}_2 = 0$$

- defines one linear constraint on F for each pair of corresponding points y₁ and y₂
- The 8-point algorithm uses n ≥ 8 such constraints to determine
- If n = 8, the data matrix A has a well-defined 1-dimensional null space that contains F
 - May not satisfy det F = 0
 - This condition can be enforced!

The 7-point algorithm

- If there are only 7 point constraints
 ⇒ The null space Null(A) of A is 2-dimensional
- $Null(\mathbf{A})$ is spanned by \mathbf{f}_1 and \mathbf{f}_2 Two 9-dim vectors
- vec(**F**) lies somewhere in this null space, i.e.: $\mathbf{F} = \alpha \mathbf{F}_1 + (1 \alpha) \mathbf{F}_2$
- Use internal constraint det $\mathbf{F} = \mathbf{0}$ to determine \mathbf{F} : $\det(\alpha \mathbf{F}_1 + (1 \alpha) \mathbf{F}_2) = 0$
- This is a third order polynomial in α (why?)
 ⇒ 1 or 3 real solutions

The 7-point algorithm

In summary:

Use exactly 7 correspondences to build A

Determine basis \mathbf{f}_1 , \mathbf{f}_2 of $Null(\mathbf{A})$ (SVD)

Reshape, and solve $det(\alpha \mathbf{F}_1 + (1 - \alpha)\mathbf{F}_2) = 0$ Gives 1 or 3 real solutions

For each solution α assemble **F** as:

$$\mathbf{F} = \alpha \mathbf{F}_1 + (1 - \alpha) \mathbf{F}_2$$

The 7-point algorithm

Pros and cons:

- + Only 7 correspondences needed
 - \Rightarrow Smaller r for same w
- + No constraint enforcement needed (why?)
- + No Hartley normalization needed (why?)
- + Slightly more accurate solution
- Slightly more complicated calculations
- Multiple solutions (1 3)

RANSAC speedup

Example: w = 0.5 and p = 0.99

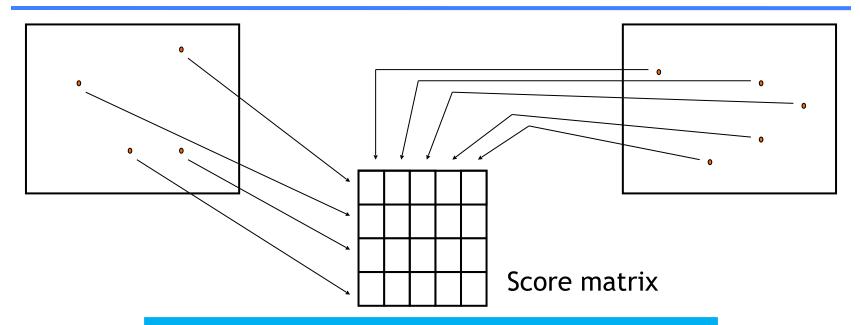
8-point: $r = \log(1-p) / \log(1-w^8) \approx 1180$

7-point: $r = \log(1-p) / \log(1-w^7) \approx 590$

Caveats:

- In the 7-point case we must test up to 3 possible F
 which makes each iteration slightly more
 computationally expensive ⇒ less than 50% speedup
- 2. The 7pt method is more accurate, and thus the *r* value is underestimated more for the 8pt method

Tentative Matches



Each entry in the matching matrix describes how well a certain point in image 1 matches another point in image 2.

For example: high score = good match

Brute force matching

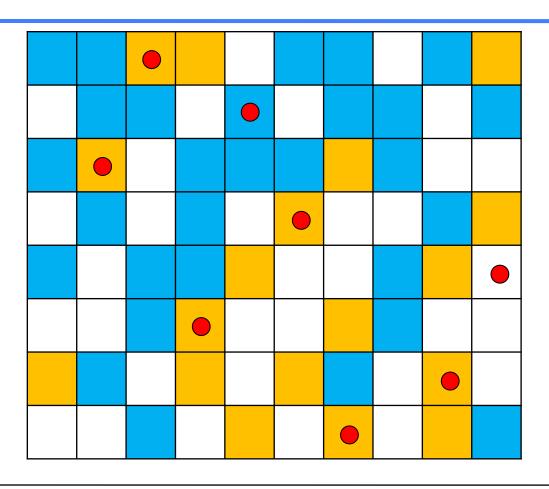
- Given P₁ points in image 1 and P₂ points in image 2
 - Form a $P_1 \times P_2$ matching matrix
 - Each entry (*i,j*) is a hypothetical correspondence between point *i* in image 1 and point *j* in image 2
- Set entry (*i,j*) =

 a matching score between point *i* and point *j*
- For each column and/or row: keep only the largest entry
 - w increases ⇒ r decreases for fixed p
- Such tentative correspondences are the input to RANSAC [See CE3]

Tentative matches

- The matching score is usually based on similarity of visual appearance, not geometric properties (why?)
- For example
 - SIFT descriptor, BRIEF/BRISK/ORB etc [See LE8]
 - Color descriptors
 - Tracking quality score
- For most matching matrices, brute force matching is needlessly expensive (and the Hungarian method is even worse!).
- Instead a search tree can be formed for one of feature sets
- If min() along one dimension is used, one could also compute the ratio score instead [LE 8]

Two-threshold RANSAC



Correct correspondence

High-scoring correspondence

Medium-scoring correspondence

Low-scoring correspondence

Two-threshold RANSAC

- Use a high threshold on correspondences to get a set D₀, which is used in the sampling stage of RANSAC
 - ⇒ fewer iterations are needed
- Use a low threshold (or none) to obtain a bigger set D, which is used to check for inliers in the consensus set C.
 - ⇒ more correspondences are found

PROSAC

A variant of this idea is to:

- First sort the matching scores
- Remove low-probability correspondences (as before)
- Set D_0 = the n_0 best ranked correspondences
 - In principle, $n_0 = n$ works here
 - D_1 = remaining part of the correspondences
- Do RANSAC as before (selecting from D_0 and matching against D_1)
- If a good solution cannot be found with this S_0 , extend it with more of the best correspondences and do RANSAC again
- Iterate this extension of D_0 until a sufficiently good solution is found
- A more systematic approach along these lines is referred to as PROSAC
 - Chum & Matas: Matching with PROSAC Progressive Sample Consensus, CVPR 2005

RANSAC speedups

In summary:

- Using matching of visual appearance is a very effective way of pruning the set D of tentative correspondences
- This leads to
 - Increased w (= prob. of picking an inlier)
 - Reduced r (= number of RANSAC iterations for a specific p)
 - Faster RANSAC algorithm / higher p possible

Epipolar geometry

Given two camera matrices C₁ and C₂ we can compute F:

$$\mathbf{F} = [\mathbf{e}_{12}]_{\times} \mathbf{C}_1 \mathbf{C}_2^+$$
 $\mathbf{F} = (\mathbf{C}_1^+)^T \mathbf{C}_2^T [\mathbf{e}_{21}]_{\times}$

 Assuming we know the camera projection matrices, we can instead apply RQ-factorisation to them...

Epipolar geometry

In this case we can write:

$$C_1 = K_1 [R_1 t_1]$$

$$C_2 = K_2 [R_2 t_2]$$

Internal camera parameters

Now, use the first camera to define the 3D coordinate system:

$$C_1 = K_1 [I \ 0]$$

$$C_2 = K_2 [R t]$$

Epipolar geometry

Finally, we assume that the two cameras are identical: $\mathbf{K}_1 = \mathbf{K}_2 = \mathbf{K}$

$$C_1 = K[I \ 0]$$

$$C_2 = K[R t]$$

K is known from the calibration, and constant **R**, **t** change as the camera moves

Relative camera transformation

From

$$C_1 = K[I \ 0]$$

$$C_2 = K[R t]$$

follows that $C_2 = C_1 T$, where T is a (4×4) rigid transformation:

$$\mathbf{T} = \begin{pmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{pmatrix}$$

Relative camera transformation

Apply **T** to the homogeneous coordinates of a 3D point **x**:

$$\mathbf{T} \begin{pmatrix} \bar{\mathbf{x}} \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{pmatrix} \begin{pmatrix} \bar{\mathbf{x}} \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{R}\bar{\mathbf{x}} + \mathbf{t} \\ 1 \end{pmatrix}$$

The result are the homogeneous coordinates of **x** after **first** being rotated by **R** and **then** translated by **t**

Relative camera transformation

- T transforms from the camera centred coordinate system (CCS) of camera 1 to the CCS of camera 2
- **T**⁻¹ transforms in the other way:

$$\mathbf{T}\mathbf{T}^{-1} = \begin{pmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{pmatrix} \begin{pmatrix} \mathbf{R}^T & -\mathbf{R}^T \mathbf{t} \\ \mathbf{0} & 1 \end{pmatrix} = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & 1 \end{pmatrix}$$

- Example: the camera centre of camera 2 has 3D coordinates 0 in CCS2
 - Its coordinates in CCS1 are given by −R^Tt

Normalised image coordinates

Pixel coordinates are given by

$$\mathbf{y}_1 \sim \mathbf{C}_1 \mathbf{x} = \mathbf{K}[\mathbf{I} \ \mathbf{0}] \mathbf{x}$$

$$\mathbf{y}_2 \sim \mathbf{C}_2 \mathbf{x} = \mathbf{K} [\mathbf{R} \ \mathbf{t}] \mathbf{x}$$

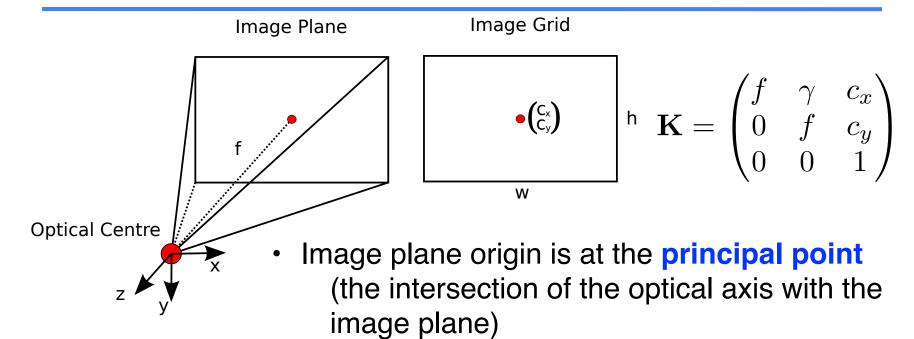
Normalised image coordinates remove the influence of the internal camera parameters:

$$\mathbf{y}_1' \sim \mathbf{K}^{-1}\mathbf{y}_1 = [\mathbf{I} \ \mathbf{0}]\mathbf{x} = \mathbf{C}_1'\mathbf{x}$$

$$\mathbf{y}_2' \sim \mathbf{K}^{-1}\mathbf{y}_2 = [\mathbf{R} \ \mathbf{t}]\mathbf{x} = \mathbf{C}_2'\mathbf{x}$$

Normalised cameras

Normalised image coordinates



 Usually this puts the origin in the image centre, so negative normalized image coordinates are perfectly normal.

Two types of normalised coordinates

Normalised image coordinates are sometimes also discussed in relation to Hartley normalisation

These two normalisations are unrelated!
H-normalisation vs C-normalisation

Here: camera normalisation is used to refer to image coordinates that are normalised relative to the camera coordinate system

Normalised image coordinates

When **K** (and lens distortion) are known it is often more efficient to work with camera normalized image coordinates

Calibrated epipolar geometry

The epipolar constraint becomes

$$0 = \mathbf{y}_1^T \mathbf{F} \mathbf{y}_2 = (\mathbf{K} \mathbf{y}_1')^T \mathbf{F} \mathbf{K} \mathbf{y}_2' = \mathbf{y}_1'^T \mathbf{K}^T \mathbf{F} \mathbf{K} \mathbf{y}_2'$$

We can define a matrix $\mathbf{E} = \mathbf{K}^{\mathsf{T}}\mathbf{F}\mathbf{K}$

E is called the essential matrix

Inherits the properties of **F**, but refers specifically to C-normalised image coordinates

For example, the epipolar constraint becomes:

$$0 = \mathbf{y}_1^{\prime T} \mathbf{E} \mathbf{y}_2^{\prime}$$

F and E represent the same constraint but in different coordinate systems

In the same way as for F, E is given by

$$\mathbf{E} = [\mathbf{e}_{12}]_{\times} \mathbf{C}_1' \mathbf{C}_2'^+ = \mathbf{C}_1'^{+T} \mathbf{C}_2'^T [\mathbf{e}_{21}']_{\times}$$

e'₁₂ and e'₂₁ are the epipoles
C'₁ and C'₂ are the camera matrices

In camera normalised image coordinates

In this case we get

$$\mathbf{C}_1' = [\mathbf{I} \ \mathbf{0}] \Rightarrow \mathbf{C}_1'^{+T} = [\mathbf{I} \ \mathbf{0}]$$

$$\mathbf{C}_2' = [\mathbf{R} \ \mathbf{t}] \Rightarrow \mathbf{C}_1'^{+T} \mathbf{C}_2'^T = \mathbf{R}^T, \mathbf{e}_{21} = \mathbf{t}$$

leading to

$$E = R^{T}[t]_{\times}$$

E encodes the relative rotation and translation between the two cameras

BREAK

- E is defined only from the rotation R and the translation t
- In practice E is a projective element (why?)

 t and λt refer to the same essential matrix

$$\mathbf{E}_1 = \mathbf{R}^T [\mathbf{t}]_{\times} \sim \mathbf{R}^T [\lambda \mathbf{t}]_{\times} = \mathbf{E}_2$$

- E has 5 degrees of freedom (why?)
 - Compare to F with 7 DOF

Internal constraints on E

- det E = 0 applies (similar to F)
- Since E has fewer DOF than F there must be additional constraints
- They can be summarized as:
 - Singular values of $\mathbf{E} = (\sigma, \sigma, 0)$ (why?)
 - Or: $E E^TE \frac{1}{2} tr(E^TE) E = 0 (why?)$

E in the literature

- E was introduced in
 - Longuet-Higgins: A computer algorithm for reconstructing a scene from two projections, Nature (1981)
- Remained more or less unnoticed by the computer vision community until F was introduced some 12 years later

Estimation of E

- E can be estimated from image data in the same way as F, e.g. the 8-point algorithm
- The difference is that normalized image coordinates must be used
 - Hartley-normalization can still be used to increase the accuracy.
- Alternatively, estimate F from pixel coordinates and transform: E = K^TFK
 - 8/7-point algorithm for F
 - Gold Standard estimation of F
 - K must be known!
- Best is of course to use Gold Standard directly on normalized image coordinates, with R,t (in C'2), and 3D points as unknowns.

The 5-point algorithm

- The internal constraints on E imply that it can be estimated from only 5 corresponding points
 - Gives up to 10 solutions
- Nistér: An efficient solution to the five-point pose problem, CVPR 2003
 - Relatively complex algorithm, e.g., finding roots of 10th order polynomials, root polishing etc.
- RANSAC speedup
 - **E** has n = 5 instead of 7 (for **F**) $\Rightarrow r$ decreases considerably
- Reduced sensitivity to dominant planes, compared to F

Relative pose

 Given an E that satisfies the internal constraints we know:

$$\mathbf{E} = \mathbf{R}^{\mathsf{T}} [\mathbf{t}]_{\mathsf{x}}$$

- what can be said about R and t?
- (R, t) is referred to as the pose of camera 2 relative to camera 1
 - i.e. the relative pose of C₁ and C₂

Relative pose from E

The translation t:

t is a right null vector of E

t can be determined from svd(E)

but only up to an undetermined scaling

including an unknown sign of t

Relative pose

SVD of E gives

Always possible!

$$E = U S V^{T}$$

• with **U** and $\mathbf{V} \in SO(3)$, and $\mathbf{S} = diag(\sigma, \sigma, 0)$

•
$$\mathbf{t} \sim \mathbf{v}_3 = 3^{\text{rd}}$$
 column of \mathbf{V} (why?)

Cross product operator

[v₃]_x expressed in the basis system of the columns in V:

$$[\mathbf{v}_3]_{\times} = \pm \mathbf{V} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mathbf{V}^T = \pm \mathbf{V}[\mathbf{e}_3]_{\times} \mathbf{V}^T$$

$$e_3 = (0,0,1)^T$$

Relative pose

Set
$$\mathbf{W} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Try setting $\mathbf{R} = \mathbf{V} \mathbf{W}^{\mathsf{T}} \mathbf{U}^{\mathsf{T}}$, leading to

$$R^{T}[t]_{\times} = U W V^{T}[v_{3}]_{\times} = U W V^{T}V [e_{3}]_{\times}V^{T} =$$

$$= U W [e_{3}]_{\times}V^{T} \sim U S V^{T} = E$$
(who?)

Ambiguity in R

However, also $\mathbf{R} = \mathbf{V} \mathbf{W} \mathbf{U}^{\mathsf{T}}$ gives

$$R^{T}[t]_{x} = E$$
 (check this!)

Consequently, there are two possible rotations that give the same **E**:

$$\mathbf{R}_1 = \mathbf{V} \mathbf{W}^\mathsf{T} \mathbf{U}^\mathsf{T}$$

$$R_2 = V W U^T$$

These two rotations are always distinct!
They form a *twisted pair*

Relative pose: summary

- Given an essential matrix E = R^T[t]_x
- There are two possible rotations \mathbf{R} : \mathbf{R}_1 and \mathbf{R}_2
- t is determined up to scale: two possible directions are opposite: ±t
- In total we have 4 possible camera configurations:

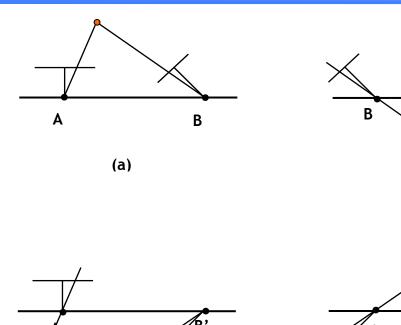
$$C_2 = [R_1 \ t]$$
 $C_2 = [R_1 \ -t]$ with $C_1 = [I \ 0]$
 $C_2 = [R_2 \ t]$
 $C_2 = [R_2 \ -t]$

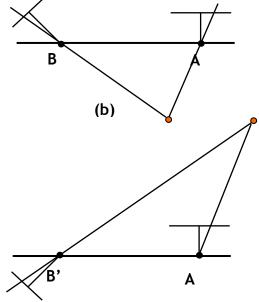
Reality check

- Take a pair of corresponding points in the two images and determine the corresponding 3D point
 - Triangulation
- The 3D point is in front of both cameras for only one of the 4 configurations
 - See figure
- Thus: only one of the 4 possible configurations corresponds to a real stereo rig
- t is then determined in terms of direction, but still not in terms of scale

X

The camera matrices C₁ and C₂





From Hartley & Zisserman, Multiple View Geometry in Computer Vision

(d)

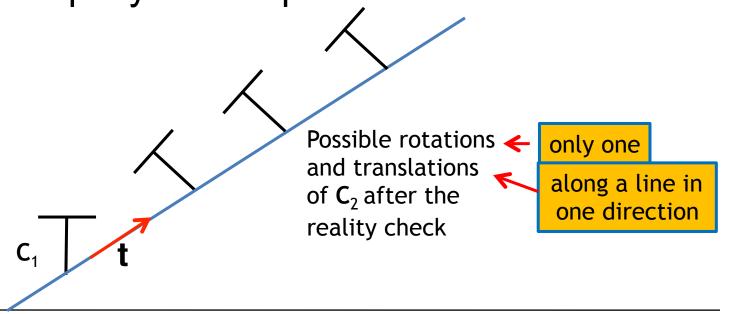
(c)

Relative pose: summary (II)

- Given a set of corresponding points, E can be estimated
 - 8-point algorithm, 7-point alg., ..., 5-point alg.
 - Possibly multiple solutions
 - Test the epipolar constraint with more points to get only one solution for E
- For this E, we can determine the 4 possible camera configurations
- Reality check:
 - Triangulate a 3D point to determine which one of the four configurations that has the point in front of both cameras
- This determines R and sign of t but not its absolute scale

Relative pose: two cameras

 Given corresponding points in camera normalized coordinates, we can determine
 R uniquely and t up to scale



E or F?

- If **K** is known there are several advantages of using **E** instead of **F**:
- Relative camera pose (rotation and translation) can be determined from E
 - Not possible from F
- Fewer points are needed in RANSAC to determine E
 - r is reduced ⇒ faster RANSAC
- Reduced sensitivity to dominant planes
- Also lens distortion can be undone

PnP

We can add another camera to an already estimated EG using the perspective n-point problem (PnP):

given: a set of 2D ↔ 3D correspondences

$$\{\mathbf{y}_n \leftrightarrow \mathbf{x}_n\}_{n=1}^N$$

sought: the absolute camera pose, such that

$$\mathbf{y}_n \sim [\mathbf{R}|\mathbf{t}] \mathbf{x}_n$$
, for $n = 1, \dots, N$

PnP

Geometric loss:

$$J(\mathbf{R}, \mathbf{t}) = \sum_{n=1}^{N} d_{PP}^{2}(\mathbf{y}_{n}, [\mathbf{R}|\mathbf{t}] \mathbf{x}_{n})$$

- Feed loss to a non-linear solver e.g.
 scipy.optimize.least_squares
- Use SO(3) parametrization of R to restrict the problem to 6dof

Robust PnP

- The minimal case for PnP is N=3, i.e. P3P
 has 1-4 real solutions. See e.g.
 Mikael Persson, Klas Nordberg, Lambda Twist: An Accurate
 Fast Robust Perspective Three Point (P3P) Solver, ECCV18
- With a minimal solver the problem can be solved robustly using RANSAC
- In general, robust PnP is better at removing outliers than a robust estimation of E. (why?)
- Many efficient solvers exist (see pointers on project page), and you are encouraged to use one in project #2.

Summary

- Fast minimal solvers are important for RANSAC
- RANSAC for correspondences can be improved by sampling according to similarity (PROSAC)
- Use calibrated epipolar geometry when you can, it is faster and more accurate
- The essential matrix encodes calibrated EG, a relative rotation and a translation up to scale.
- perspective n-point (PnP) estimation can be used to add more views to an existing EG