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Optimization
Computer Vision, Lecture 13 
Michael Felsberg
Computer Vision Laboratory
Department of Electrical Engineering

Optimization: Overview

Function
Output (codomain / 

target set)

Set Continuous Discrete

Input (domain 
of definition)

Continuous Lecture 15 Lecture 15

Discrete Lecture 13 Lecture 13

e.g.: stereo e.g.: segmentation
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Why Optimization?

• Computer vision algorithms are usually very complex

– Many parameters (dependent)

– Data dependencies (non-linear)

– Outliers and occlusions (noise)

• Classical approach

– Trial and error (hackers’ approach)

– Encyclopedic knowledge (recipes)

– Black-boxes + glue (hide problems) 
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Why Optimization?

• Establishing CV as scientific discipline

– Derive algorithms from first principles (optimal 
solution)

– Automatic choice of parameters (parameter free)

– Systematic evaluation (benchmarks on standard 
datasets)
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Optimization: howto

1. Choose a scalar measure (objective function) of success

– From the benchmark

– Such that optimization becomes feasible

– Project functionality onto one dimension

2. Approximate the world with a model

– Definition: allows to make predictions

– Purpose: makes optimization feasible

– Enables: proper choice of dataset

Similar to 
economics 

(money rules)
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Optimization: howto

3. Apply suitable framework for model fitting

– This lecture

– Systematic part (1 & 2 are ad hoc)

– Current focus of research

4. Analyze resulting algorithm

– Find appropriate dataset

– Ignore runtime behavior (highly non-optimized 
Matlab code) ;-)
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Examples

• Relative pose (F-matrix) estimation:

– Algebraic error (quadratic form)

– Linear solution by SVD

– Robustness by random sampling (RANSAC)

– Result: F and inlier set

• Bundle adjustment

– Geometric (reprojection) error (quadratic error)

– Iterative solution using LM

– Result: camera pose and 3D points
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Taxonomy

• Objective function

– Domain/manifold (algebraic error, geometric error, 
data dependent)

– Robustness (explicitly in error norm, implicitly by 
Monte-Carlo approach)

• Model / simplification

– Linearity (limited order), Markov property, 
regularization

• Algorithm

– Approximate / analytic solutions (minimal problem)

– Minimal solutions (over-determined)
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Taxonomy example: KLT

• Objective function

– Domain/manifold: grey values / RGB / …

– Robustness: no (quadratic error, no regularization)

• Model: Brightness constancy, image shift

– local linearization (Taylor expansion)
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Taxonomy: KLT

• Algorithm

– iterative solution of normal equations (Gauss-Newton)

– T: structure tensor (orientation tensor from outer 
product of gradients)

• Block matching: same cost & model, but discretized shifts
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Regularization and MAP

• In maximum a-posteriori (MAP), the objective
(or loss) ε  consists of a data term (fidelity) and a prior

• A common prior is a smoothness term (regularizer)
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MAP Example: KLT

• Assume a prior probability for the displacement: P ( d )
(e.g. Gaussian distribution from a motion model)

• In logarithmic domain, we now have two terms in the cost 
function:

– The standard KLT term

– A term that drags the solution towards the predicted 
displacement (cf. Kalman filtering)
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Demo: KLT
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Image Reconstruction

• Assume that u is an unknown image that is observed 
through the linear operator G: u0 = Gu + noise

• Example: blurring, linear projection

• Goal is to minimize the error u0 – Gu

• Example: squared error

• Assume that we have a prior probability for the 
image: P ( u )

• Example: we assume that the image should be 
smooth (small gradients)
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Image Reconstruction

• Minimizing

• Gives the normal equations

• Such that
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Gradient Operators

• Taylor expansion of image gives

• Finite left/right differences give

• Often needed: products of derivative operators
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Gradient Operators

• Squaring left (right) difference gives linear 
error in h

• Squaring central difference 
gives quadratic error in h, 
but leaves out every second sample

• Multiplying left and right difference 

gives quadratic error in h (usual discrete Laplace 
operator)
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Demo: Image Reconstruction

• IRdemo.m
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Robust error norms

• Alternative to RANSAC (Monte-Carlo)

• Assume quadratic error: influence of change f to f+∂f
to the estimate is linear (why?)

• Result on set of measurements: mean

• Assume absolute error: influence of change is 
constant (why?)

• Result on set of measurements: median

• In general: sub-linear influence leads to robust 
estimates, but non-linear
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Smoothness

• Quadratic smoothness term: influence linear with 
height of edge

• Total variation smoothness (absolute value of 
gradient): influence constant

• With quadratic measurement error: Rudin-Osher-
Fatemi (ROF) model (Physica D, 1992)
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Total Variation (TV)

• Minimizing

• Stationary point

• Steepest descent

21

Efficient TV Algorithms

• In 1D: Chambolle’s algorithm (JMIV, 2004)

• In 2D:

– Alternating direction method of multipliers 
(ADMM, variant of augmented Lagrangian): Split 
Bregman by Goldstein & Osher (SIAM 2009)

– Based on threshold Landweber: Fast Iterative 
Shrinkage-Thresholding Algorithm (FISTA) by 
Beck & Teboulle (SIAM 2009)

– Based on Lagrange multipliers: Primal Dual 
Algorithm by Chambolle & Pock (JMIV 2011)
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Demo: TV Image Denoising
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TV Image Inpainting / Convex Optimization

• Note that many problems (including quadratic and TV) 
are convex optimization problems

• A good first approach is to map these problems to a 
standard solver, e.g. CVXPY by S. Diamond and S. Boyd

• Example: minimize the total variation of an image 

under the constraint of a subset of 
known image values u

prob=Problem(Minimize(tv(X)),[X[known] == MG[known]])

opt_val = prob.solve()
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Demo: TV Inpainting
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Algorithmic Taxonomy

• Minimal problems (e.g. 5 point algorithm)

– Fully determined solution(s)

– Analytic solvers (polynomials, Gröbner bases)

– Numerical methods (Dogleg, Newton-Raphson)

• Overdetermined problems (e.g. OF,BA)

– Minimization problem

– Numerical solvers only

– Levenberg-Marquardt (interpolation Gauss-
Newton and gradient descent / trust region)
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Non-linear LS, Dog Leg

• For comparison: LM

• More efficient: replace damping factor λ with trust 
region radius Δ
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Dog Leg (basic idea)

1. initialize radius Δ =1

2. compute gain factor

3. if gain factor >0

4. grow/shrink Δ and update gain factor

5. if update and residual nonzero goto 3
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Optical Flow

• Minimizing (lecture 4)

• Under the constraint

• Using Lagrangian multiplier leads to the minimization 

problem

• This is the total least squares formulation to 

determine the flow
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Optical Flow

• Solution is given by the eigenvalue problem

• The matrix term T is the spatio-temporal structure 

tensor

• The eigenvector with the smallest eigenvalue is the 

solution (up to normalization of homogeneous 

element)
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Optical Flow

• Local flow estimation

– Design question: 
w and R

– Aperture problem: motion 

at linear structures can 

only be estimated in 

normal direction 

(underdetermined)

– Infilling limited

• Global flow instead
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Optical Flow

• Minimizing BCCE over the whole image

with additional smoothness term

• Gives the iterative Horn & Schunck method (details 

will follow in the lecture on variational methods)
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Graph Algorithms

• All examples so far: vectors as solutions, i.e. finite set 
of (pseudo) continuous values

• Now: discrete (and binary) values

• Directly related to (labeled) graph-based 
optimization

• In probabilistic modeling (on regular grid):  
Markov random fields
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Graphs

• Graph: algebraic structure G=(V, E)

• Nodes V={v1,v2,...,vn}

• Arcs E={e1,e2,...,em}, where ek is incident to

– an unordered pair of nodes {vi,vj}

– an ordered pair of nodes (vi,vj) (directed graph)

– degree of node: number of incident arcs

• Weighted graph: costs assigned to nodes or arcs
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1D: Dynamic Programming

• Problem: find optimal path from source node s to 
sink note t

• Principle of Optimality: If the optimal path s-t goes 
through r, then both s-r and r-t, are also optimal
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1D: Dynamic Programming

• is the new cost assigned to node 

• is the partial path cost between nodes     and
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1D: Dynamic Programming

• is the new cost assigned to node 

• is the partial path cost between nodes     and
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Examples

• Shortest path computation (contours / intelligent scissors)

• 1D signal restoration (denoising)

• Tree labeling (pictorial structures)

• Matching of sequences (curves)
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Markov property

• Markov chain: memoryless process with r.v. X

• Markov random field (undirected graphical model): 
random variables (e.g. labels) over nodes with 
Markov property (conditional independence)

– Pairwise 

– Local

– Global

39

Conditional Independence

V

vi

vj
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Conditional Independence

V

v

N(v)

Conditional Independence

V

vi

vj

B
SA

Terminology

• If joint density strictly positive: Gibbs RF

• Ising model (interacting magnetic spins), energy 
given as Hamiltonian function

• General form

• Configuration probability
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Gibbs Model / Markov Random Field

• Attempts to generalize dynamic programming to 
higher dimensions unsuccessful

• Minimize
using arc-weighted graphs

• Two special terminal nodes, source s (e.g. object) and 
sink t (e.g. background) hard-linked with seed points
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Graph Cut: Two types of arcs

– n-links: connecting neighboring pixels, cost given by 
the smoothness term V

– t-links: connecting pixels and terminals,
cost given by the data term D

45

Graph Cut

• s-t cut is a set of arcs, such that the nodes and the remain-
ing arcs form two disjoint graphs with points sets S and T

• cost of cut: sum of arc cost

• minimum s-t cut problem (dual: maximum flow problem)
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Graph Cut

• n-link costs: large if two nodes belong to same segment, 
e.g. inverse gradient magnitude, Gauss, Potts model

• t-link costs: 

– K for hard-linked seed points (K > maximum sum of 
data terms)

– 0 for the opposite seed point

• Submodularity
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Demonstration
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Examples / Discussion

• Binary problems solvable in polynomial time (albeit slow)

– Binary image restoration

– Bipartite matching (perfect assignment of graphs)

• N-ary problems (more than two terminals) are NP-hard 
and can only be approximated (e.g. α-expansion move)
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