13

15

Image enhancement

Computer Vision, Lecture 14 Michael Felsberg Computer Vision Laboratory Department of Electrical Engineering

12

Why image enhancement?

Why image enhancement?

• Example of artifacts caused by image encoding

13

14

Why image enhancement?

- Example of an image with sensor noise
 - ultrasound image of a beating heart

19

Why image enhancement?

- IR-image
 - fixed pattern noise = spatial variations in gain and offset

16

18

What about pixel

shot noise?

- Possibly even variations over time!
- Hot/dead pixels
- · A digital camera with short exposure time
 - Shot noise (photon noise)

16

Additive noise

- Some types of image distortion can be described as
 - Noise added on each pixel intensity
 - The noise has the identical distribution and is independent at each pixel (i.i.d.)
- Not all type of image distortion are of this type:
 - Multiplicative noise
 - Data dependent noise
 - Position dependent
- · The methods discussed here assume additive i.i.d.-noise

Methods for image enhancement

- <u>Inverse filtering</u>: the distortion process is modeled and estimated (e.g. motion blur) and the *inverse* process is applied to the image
- <u>Image restoration</u>: an *objective* quality (e.g. sharpness) is estimated in the image. The image is modified to increase the quality
- <u>Image enhancement</u>: modify the image to improve the visual quality, often with a subjective criteria

17

Removing additive noise

- Image noise typically contains higher frequencies than images generally do
- \Rightarrow a low-pass filter can reduce the noise
- BUT: we also remove high-frequency signal components, e.g. at edges and lines
- HOWEVER: A low-pass filter works in regions without edges and lines (ergodicity)

23

20

22

20

• Ordinary filtering can be described as a convolution of the signal *f* and the filter *g*:

$$h(\mathbf{x}) = (f * g)(\mathbf{x}) = \int f(\mathbf{x} - \mathbf{y})g(\mathbf{y}) \, d\mathbf{y}$$

For each **x**, we compute the integral between the filter *g* and a shifted signal *f*

Basic idea

The problem of low-pass filters is that we apply the same filter on the whole image

We need a filter that locally adapts to the image structures

A space-variant filter

21

Adaptive filtering

• If we apply an adaptive (or position dependent, or space-variant) filter g_x , the operation cannot be expressed as a convolution, but instead as

$$h(\mathbf{x}) = \int f(\mathbf{x} - \mathbf{y}) g_{\mathbf{x}}(\mathbf{y}) \, d\mathbf{y}$$

For each **x**, we compute the integral
between a shifted signal *f* and the filter *g*,
where the filter depends on **x**

27

Orientation-selective g_x

• If the signal is ≈ i1D the filter can maintain the signal by reducing the frequency components orthogonal to the local structure

24

26

- The human visual system is less sensitive to noise along linear structures than to noise in the orthogonal direction
- Results in good subjective improvement of image quality

24

Oriented noise

Oriented noise

25

Oriented noise

30

28

Local structure information

- We compute the local orientation tensor **T**(**x**) at all points **x** to control / steer *g*_{**x**}
- At a point **x** that lies in a locally i1D region, we obtain

Scale space recap (from lecture 2)

• The linear Gaussian scale space related to the image *f* is a family of images *L*(*x*,*y*;*s*)

$$L(x,y;s) = (g_s * f)(x,y) \qquad \qquad \begin{array}{c} \text{Convolution} \\ \text{over} (\textbf{x}, \textbf{y}) \text{only!} \end{array}$$

31

parameterized by the scale parameter s, where

$$g_s(x,y) = \frac{1}{2\pi s} e^{-\frac{x^2 + y^2}{2s}}$$
A Gaussian LP-filter with $\sigma^2 = s$
Note: $g_s(x,y) = \delta(x,y)$ for $s = 0$

35

Scale space recap (from lecture 2)

• L(x,y;s) can also be seen as the solution to the PDE

$$\begin{split} & \frac{\partial}{\partial s}L = \frac{1}{2}\nabla^2 L & \text{The diffusion equation} \\ & \frac{\partial}{\partial s}L = \frac{1}{2}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)L & \text{Example:} \\ & t = \text{temperature} \\ & s = \text{time} \end{split}$$

32

34

with boundary condition L(x,y;0) = f(x,y)

32

Enhancement based on linear diffusion

- This means that L(x,y;s) is an LP-filtered version of f(x,y) for s > 0.
- The larger *s* is, the more LP-filtered is *f* High-frequency noise will be removed for larger *s*
- Also high-frequency image components (e.g. edges) will be removed
- We need to control the diffusion process such that edges remain How?

Repetition: Vector Analysis

- Nabla operator $\nabla = \begin{bmatrix} \partial_x \\ \partial_y \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix}$
- On a scalar function $\nabla f = \operatorname{grad} f = \begin{bmatrix} \partial_x f \\ \partial_y f \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$
- On a vector field $\langle \nabla | \mathbf{f} \rangle = \nabla^T \mathbf{f} = \operatorname{div} \mathbf{f} = \partial_x f_1 + \partial_y f_2$
- Laplace $\Delta = \nabla^2 = \langle \nabla | \nabla \rangle = \text{div grad} = \partial_x^2 + \partial_y^2$ operator note: $\partial_x^2 f = f_{xx} \neq f_x^2$

33

Step 1

39

Step 2

- We want the image content to control μ
 - In flat regions: fast diffusion (large μ)
 - In non-flat region: slow diffusion (small μ)
- We need to do space-variant diffusion
 - μ is a function of position (*x*,*y*)

We will introduce another spacevariant filter g_x in adaptive filtering

36

38

36

Inhomogeneous diffusion

Inhomogeneous diffusion

• Perona & Malik suggested to use

$$\mu(x,y) = \frac{1}{1 + |\nabla f|^2 / \lambda^2}$$

where ∇f is the image gradient at (*x*,*y*) and λ is fixed a parameter

- Close to edges: $|\nabla f|$ is large $\Rightarrow \mu$ is small
- In flat regions: $|\nabla f|$ is small $\Rightarrow \mu$ is large

37

Inhomogeneous diffusion

- Noise is effectively removed in flat region 🤐
- Edges are preserved 🤩
- Noise is preserved close to edges 😕

We want to be able to LP-filter along but not across edges, same as for adaptive filtering

43

Step 3

- The previous PDEs are all isotropic ⇒ The resulting filter *g* is isotropic
- The last PDE can be written:

40

42

40

Ansiotropic diffusion

- The filter *g* is now anisotropic, i.e., not necessary circular symmetric
- The shape of g depends on **D**
- **D** is called a *diffusion tensor*
 - Can be given a physical interpretation, e.g. for anisotropic heat diffusion

Step 3

- Change μ from a scalar to a 2 \times 2 symmetric matrix ${\bf D}$

$$\frac{\partial}{\partial s}L = \frac{1}{2}\operatorname{div}(\mathbf{D}\operatorname{grad} L)$$

• The solution is now given by

$$\begin{split} L(\mathbf{x};s) &= (g_s * f)(\mathbf{x}) & \Leftarrow \text{Same as before} \\ g_s(\mathbf{x}) &= \frac{1}{2\pi \det(\mathbf{D})^{1/2} s} e^{-\frac{1}{2s} \mathbf{x}^T \mathbf{D}^{-1} \mathbf{x}} \end{split}$$

41

The diffusion tensor

• Since **D** is symmetric 2×2 :

 $\mathbf{D} = \alpha_1 \mathbf{e}_1 \mathbf{e}_1^T + \alpha_2 \mathbf{e}_2 \mathbf{e}_2^T$

where α_1, α_2 are the eigenvalues of **D**, and **e**₁ and **e**₂ are corresponding eigenvectors

 \mathbf{e}_1 and \mathbf{e}_2 form an ON-basis

47

The filter g

• The corresponding shape of g is given by

44

46

44

Anisotropic diffusion

- Information about edges and their orientation can be provided by an orientation tensor, e.g., the structure tensor **T** in terms of its eigenvalues λ₁, λ₂
- However:
 - We want α_k to be close to 0 when λ_k is large
 - We want α_k to be close to 1 when λ_k is close to 0

Step 4

- We want *g* to be narrow across edges and wide along edges
- This means: D should depend on (x,y)
 A space variant anisotropic diffusion
- This is referred to as *anisotropic diffusion* in the literature
- Introduced by Weickert

45

From **T** to **D**

• The diffusion tensor **D** is obtained from the orientation tensor **T** by modifying the eigenvalues and keeping the eigenvectors, e.g.

51

Anisotropic diffusion: summary

48

50

1. At all points:

- 1. compute a local orientation tensor T(x)
- 2. compute D(x) from T(x)
- 2. Apply anisotropic diffusion onto the image by locally iterating

Left hand side: the change in L at (x,y) between s and s+\partials $\frac{\partial}{\partial s}L = \frac{1}{2} \text{div}(\mathbf{D} \operatorname{grad} L)$ Right hand side: can be computed locally at each point (x,y)

This defines how scale space level $L(x,y;s+\partial s)$ is generated from L(x,y;s)

48

Simplification

- We assume **D** to have a slow variation with respect to **x** (cf. adaptive filtering)
- This means (see [EDUPACK ORIENTATION (22)])

$$\begin{split} \frac{\partial}{\partial s}L &= \frac{1}{2} \nabla^T \mathbf{D} \nabla L \approx \frac{1}{2} \langle \mathbf{D} | \nabla \nabla^T \rangle L = \frac{1}{2} \mathrm{tr}[\mathbf{D} (\mathbf{H}L)] \\ & \\ \mathbf{H}L = \begin{pmatrix} \frac{\partial^2}{\partial x^2} L & \frac{\partial^2}{\partial x \partial y} L \\ \frac{\partial^2}{\partial x \partial y} L & \frac{\partial^2}{\partial y^2} L \end{pmatrix} \end{split}$$

Implementation aspects

- The anisotropic diffusion iterations can be done with a constant diffusion tensor field **D**(**x**), computed once from the original image (faster)
- Alternatively: re-compute **D**(**x**) between every iteration (slower)

49

Numerical implementation

- Several numerical schemes for implementing anisotropic diffusion exist
- Simplest one:
 - Replace all partial derivatives with finite differences

The Hessian of *L* can be approximated by convolving *L* with: $L(x, y; s + \Delta s) = L(x, y; s) + \frac{\Delta s}{2} tr[\mathbf{D} (\mathbf{H}L)]$ $H_{11} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & -2 & 1 \\ 0 & 0 & 0 \end{pmatrix} H_{12} = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix} H_{22} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

55

Algorithm Outline

1. Set parameters

e.g.: k, Δs , number of iterations, ...

- 2. Iterate
 - 1. Compute orientation tensor **T**
 - 2. Modify eigenvalues \Rightarrow **D**
 - 3. Computer Hessian $\mathbf{H} L$
 - 4. Update *L* according to:

$L(x, y; s + \Delta s) = L(x, y; s) + \frac{\Delta s}{2} \operatorname{tr}[\mathbf{D}(\mathbf{H}L)]$

52

54

Comparison

53

A note

- The image *f* is never convolved by the space-variant anisotropic filter *g*
- Instead, the effect of *g* is generated incrementally based on the diffusion eq.
- In adaptive filtering: we never convolve f with g_x either, instead several fixed filters are applied onto f and their results are combined in a non-linear way

How to choose g_x ?

According to the discussion in the introduction, we choose g_x such that:

- It contains a low-pass component that maintains the local image mean intensity Independent of x
- It contains a high-pass component that depends on the local signal structure
 Dependent of x
- Also: the resulting operation for computing *h* should be simple to implement
 Computational efficient

59

Ansatz for g_{x}

We apply a filter that is given in the Fourier domain as

56

58

$G_{\rm HP}(\mathbf{u}) = G_o(u)(\hat{\mathbf{u}}^T \hat{\mathbf{e}})^2$ $\mathbf{u} = u\hat{\mathbf{u}}$

- $-G_{HP}$ is polar separable
- It attenuates frequency components that are \perp to $\boldsymbol{\hat{e}}$
- It maintains all frequency components that are || to $\hat{\mathbf{e}}$

56

How to implement g_{x} ?

• We know that [EDUPACK - ORIENTATION (20)]

$(\hat{\mathbf{u}}^T \hat{\mathbf{e}}$	$(\hat{\mathbf{u}}^T \hat{\mathbf{e}})^2 = \langle \hat{\mathbf{u}} \hat{\mathbf{u}}^T \hat{\mathbf{e}} \hat{\mathbf{e}}^T angle = \langle \hat{\mathbf{u}} \hat{\mathbf{u}}^T \mathbf{T}(\mathbf{x}) angle$	
where $\mathbf{T}(\mathbf{x}) = \hat{\mathbf{e}}\hat{\mathbf{e}}^{\mathrm{T}}$		(assume A = 1!)

• Using a *N*-D tensor basis $\mathbf{\hat{N}}_{k} = \mathbf{\hat{n}}_{k} \mathbf{\hat{n}}_{k}^{\mathrm{T}}$ and its dual $\mathbf{\tilde{N}}_{k}$, we obtain:

 $\mathbf{T}(\mathbf{x}) = \sum_{k=1}^{N} \langle \mathbf{T}(\mathbf{x}) | \tilde{\mathbf{N}}_k \rangle \hat{\mathbf{N}}_k$

57

How to implement q_{x} ?

• Plug this into the expression for G_{HP} :

63

How to implement g_x ?

Consequently, the filter G_{HP} is a linear combination of N filters, where each filter has a Fourier transform:

60

62

$G_{\mathrm{HP},k}(\mathbf{u}) = G_{\rho}(u)(\hat{\mathbf{u}}^{T}\hat{\mathbf{n}}_{k})^{2}$ Independent of **x**and N scalars: $\langle \mathbf{T}(\mathbf{x}) | \tilde{\mathbf{N}}_{k} \rangle$ Dependent of **x** $\mathsf{I}_{\mathsf{N}} \mathsf{U}_{\mathsf{N}} \mathsf{I}_{\mathsf{N}} \mathsf{I}_{\mathsf$

60

How to implement g_x ?

If the filter is applied to a signal, we obtain

How to implement g_x ?

Summarizing, the adaptive filter can be written as

61

Outline Adaptive Filtering v.1

- 1. Estimate the orientation tensor T(x) at each point x
- 2. Apply a number of fixed filters to the image: one LP-filter g_{LP} and the *N* HP-filters $g_{\text{HP},k}$
- 3. At each point **x**:
 - 1. Compute the *N* scalars $\langle \mathbf{T}(\mathbf{x}) | \tilde{\mathbf{N}}_k \rangle$
 - 2. Form the linear combination of the $N\,{\rm HP}\xspace$ filter responses and the $N\,{\rm scalars}$ and add the LP-filter response
- 4. At each point **x**, the result is the filter response $h(\mathbf{x})$ of the locally adapted filter $g_{\mathbf{x}}$

The filter g_x is also called a *steerable filter*

67

Observation

- **T** can be estimated for any image dimension
- The filters g_{LP} and $g_{\text{HP},k}$ can be formulated for any image dimension

64

66

 \Rightarrow The method can be implemented for any dimension of the signal (2D, 3D, 4D, ...)

64

Non-i1D signals

- The tensor's eigenvectors with non-zero eigenvalues span the subspace of the Fourier domain that contains the signal's energy
- Equivalent: For a given local region with orientation tensor T, let û define an arbitrary orientation. The product û^TT û is a measure of how much energy in this orientation the region contains.

Remaining questions

- 1. What happens in regions that are not i1D, i.e., if **T** has not rank 1?
- 2. What happens if $A \neq 1$?
- 3. How to choose the radial function G_{ρ} ?

65

Non-i1D signals

• But

 $\hat{\mathbf{u}}^T \mathbf{T} \hat{\mathbf{u}} = \langle \hat{\mathbf{u}} \hat{\mathbf{u}}^T | \mathbf{T}
angle$

which means that the adaptive filtering should work in general, even if the signal is non-i1D

71

How about A = 1?

- Previously we assumed A = 1, but normally A depends on the local amplitude of the signal (depends on x)
- In order to achieve *A* = 1, **T** must be pre-processed
- The resulting tensor is called the control tensor **C**
- Replace T with C in all previous expressions!

68

Pre-processing of T

70

Pre-processing of T

- The filter g_x is supposed to vary slowly with **x**, but **T** contains high-frequency noise that comes from the image noise
- This noise can be reduced by an initial LP-filtering of **T** (i.e., of its elements)
- The result is denoted \mathbf{T}_{LP}

69

68

75

Modification of the eigenvalues

72

74

72

The radial function G_{o}

- Should "mainly" be equal to 1
- Should tend to 0 for $u = \pi$
- + Together with the LP-filter $g_{\rm LP}$: an all-pass filter

73

Outline Adaptive Filtering v.2

- 1. Estimate the local tensor in each image point: T(x)
- 2. LP-filter the tensor: $T_{LP}(x)$
- 3. In each image point:
 - 1. Compute the eigenvalues and eigenvectors of $\mathbf{T}_{LP}(\mathbf{x})$.
 - 2. Map the eigenvalues λ_k to γ_k .
 - 3. Re-combine γ_k and the eigenvectors to form the control tensor **C**
 - 4. Compute the scalars $\langle \mathbf{C} | \mathbf{\tilde{N}}_k \rangle$ for all k = 1,..., N
- 4. Filter the image with g_{LP} and the *N* HP-filters $g_{HP,k}$
- 5. In each image point: form the linear combination of the filter responses and the scalars

Example

76

78

76

An iterative method

- Adaptive filtering can be iterated for reducing the noise
- If the filter size is reduced at the same time, a close-to continuous transition is achieved (evolution)
- This is closely related to the previous method for image enhancement: *anisotropic diffusion*

Example

