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Image enhancement
Computer Vision, Lecture 14 
Michael Felsberg
Computer Vision Laboratory
Department of Electrical Engineering

Why image enhancement?

13

• Example of artifacts caused 
by image encoding

Why image enhancement?

14

Example of motion blur

Why image enhancement?

15

• Example of an image 
with sensor noise

– ultrasound image 
of a beating heart
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Why image enhancement?

16

• IR-image

– fixed pattern noise =  spatial variations in gain 
and offset

– Possibly even variations over time!

– Hot/dead pixels

• A digital camera with short exposure time

– Shot noise (photon noise)

Methods for image enhancement

17

• Inverse filtering: the distortion process is 
modeled and estimated (e.g. motion blur) and 
the inverse process is applied to the image

• Image restoration: an objective quality
(e.g. sharpness) is estimated in the image.
The image is modified to increase the quality

• Image enhancement: modify the image to 
improve the visual quality, often with a 
subjective criteria

Additive noise

18

• Some types of image distortion can be described as

– Noise added on each pixel intensity

– The noise has the identical distribution and is 

independent at each pixel (i.i.d.)

• Not all type of image distortion are of this type:

– Multiplicative noise

– Data dependent noise

– Position dependent

• The methods discussed here assume additive i.i.d.-noise

What about pixel 
shot noise?

Removing additive noise

19

• Image noise typically contains higher frequencies 
than images generally do

) a low-pass filter can reduce the noise

• BUT: we also remove high-frequency signal 
components, e.g. at edges and lines

• HOWEVER: A low-pass filter works in regions 
without edges and lines (ergodicity)

16 17
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Example: LP filter

20

Image with some noise

Filter, ¾ = 1

Filter, ¾ = 2

Basic idea

21

The problem of low-pass filters is that we apply the 
same filter on the whole image

We need a filter that locally 
adapts to the image structures

A space-variant filter

Ordinary filtering / convolution

22

• Ordinary filtering can be described as a convolution 
of the signal f and the filter g:

For each x, we compute the integral 
between the filter g and a shifted signal f

Adaptive filtering

23

• If we apply an adaptive (or position dependent, or 
space-variant) filter gx, the operation cannot be 
expressed as a convolution, but instead as

For each x, we compute the integral 
between a shifted signal f and the filter gx

where the filter depends on x

20 21
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Orientation-selective gx

24

• If the signal is  i1D the filter can maintain the signal 
by reducing the frequency components orthogonal to 
the local structure 

• The human visual system is less sensitive to noise 
along linear structures than to noise in the 
orthogonal direction 

• Results in good subjective improvement of image 
quality

Oriented noise

25

White noise in the
image domain

Oriented noise

26

White noise in the
Fourier domain

Oriented noise

27

Oriented white noise in 
the Fourier domain

24 25
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Oriented noise

28

Oriented white noise in 
the image domain

Oriented noise

29

Edges and lines

A. Without noise

B. With oriented noise along

C. With isotropic noise

D. With oriented noise across

A

D

B

C

Local structure information

30

• We compute the local orientation tensor T(x) at all 
points x to control / steer gx

• At a point x that lies in a locally i1D region, we obtain

ê is normal to the 
linear structure

ê

Scale space recap (from lecture 2)

31

• The linear Gaussian scale space related to the image f
is a family of images L(x,y;s)

parameterized by the scale parameter s, where

Convolution 
over (x,y) only!

A Gaussian LP-filter 
with ¾

2
= s

Note: gs(x,y) = (x,y) for s = 0

28 29
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Scale space recap (from lecture 2)

32

• L(x,y;s) can also be seen as the solution to the PDE

with boundary condition L(x,y;0) = f(x,y)

The diffusion equation

Example:

L = temperature

s = time

Repetition: Vector Analysis

• Nabla operator

• On a scalar function

• On a vector field

• Laplace

operator

note: 

33

Enhancement based on linear diffusion

34

• This means that L(x,y;s) is an LP-filtered 
version of f(x,y) for s > 0.

• The larger s is, the more LP-filtered is f

– High-frequency noise will be removed for larger s

• Also high-frequency image components (e.g. 
edges) will be removed

• We need to control the diffusion process such 
that edges remain - How?

Step 1

35

• Modify the PDE by introducing a parameter ¹:

• This PDE is solved by

¹ can be seen as a “diffusion 
speed”:

Small ¹: the diffusion process is 
slow when s increases

Large ¹: the diffusion process is 
fast when s increases

Same as before

Slightly different

32 33
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Step 2

36

• We want the image content to control ¹

– In flat regions: fast diffusion (large ¹)

– In non-flat region: slow diffusion (small ¹)

• We need to do space-variant diffusion

– ¹ is a function of position (x,y)

We will introduce another space-
variant filter gx in adaptive filtering

Inhomogeneous diffusion

37

• Perona & Malik suggested to use

where rf is the image gradient at (x,y)
and ¸ is fixed a parameter

– Close to edges: |rf| is large ) ¹ is small

– In flat regions: |rf| is small ) ¹ is large

Inhomogeneous diffusion

38

Inhomogeneous diffusion

39

• Noise is effectively removed in flat region

• Edges are preserved

• Noise is preserved close to edges

We want to be able to LP-filter along 
but not across edges, same as for 
adaptive filtering

36 37
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Step 3

40

• The previous PDEs are all isotropic

) The resulting filter g is isotropic

• The last PDE can be written:

Gradient of L,
a 2D vector field

Divergence of (…)
maps 2D vector field to scalar field

Step 3

41

• Change ¹ from a scalar to a 2 £ 2 symmetric matrix D

• The solution is now given by

( Same as before

Ansiotropic diffusion

42

• The filter g is now anisotropic, i.e., not necessary 
circular symmetric

• The shape of g depends on D

• D is called a diffusion tensor

– Can be given a physical interpretation, e.g. for 
anisotropic heat diffusion

The diffusion tensor

43

• Since D is symmetric 2 £ 2:

where ®1, ®2 are the eigenvalues of D, and

e1 and e2 are corresponding eigenvectors

e1 and e2 form an ON-basis

40 41
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The filter g

44

• The corresponding shape of g is given by
e1

e2

®1

®2

The width of the filter in 
direction ek is given by ®k

Iso-curves for g)

Step 4

45

• We want g to be narrow across edges and wide along 
edges

• This means: D should depend on (x,y)

– A space variant anisotropic diffusion

• This is referred to as anisotropic diffusion in the 
literature

• Introduced by Weickert

Anisotropic diffusion

46

• Information about edges and their orientation can be 
provided by an orientation tensor, e.g., the structure 
tensor T in terms of its eigenvalues ¸1, ¸2

• However:

– We want ®k to be close to 0 when ¸k is large

– We want ®k to be close to 1 when ¸k is close to 0

From T to D

47

• The diffusion tensor D is obtained from the 
orientation tensor T by modifying the eigenvalues 
and keeping the eigenvectors, e.g.

m is a control parameter

For example

44 45

46 47
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Anisotropic diffusion: summary

48

1. At all points:
1. compute a local orientation tensor T(x)

2. compute D(x) from T(x)

2. Apply anisotropic diffusion onto the image by 
locally iterating

This defines how scale space level

L(x,y;s+s) is generated from L(x,y;s)

Right hand side:
can be computed
locally at each
point (x,y)

Left hand side:
the change in L
at (x,y) between
s and s+s

Implementation aspects

49

• The anisotropic diffusion iterations can be done with 
a constant diffusion tensor field D(x), computed once 
from the original image (faster)

• Alternatively: re-compute D(x) between every 
iteration (slower)

Simplification

50

• We assume D to have a slow variation with respect to 
x (cf. adaptive filtering)

• This means (see [EDUPACK – ORIENTATION (22)])

The Hessian of L = second order derivatives of L

Numerical implementation

51

• Several numerical schemes for implementing 
anisotropic diffusion exist

• Simplest one:

– Replace all partial derivatives with finite differences

The Hessian of 
L can be 
approximated 
by convolving 
L with:

48 49

50 51
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Algorithm Outline

52

1. Set parameters

e.g.: k, ¢s, number of iterations, …

2. Iterate

1. Compute orientation tensor T

2. Modify eigenvalues )D

3. Computer Hessian H L

4. Update L according to:

Comparison

53

Inhomogenous diffusion Anisotropic diffusion

A note

54

• The image f is never convolved by the space-variant 
anisotropic filter g

• Instead, the effect of g is generated incrementally 
based on the diffusion eq.

• In adaptive filtering: we never convolve f with gx

either, instead several fixed filters are applied onto f
and their results are combined in a non-linear way

How to choose gx ?

55

According to the discussion in the 
introduction, we choose gx such that:
– It contains a low-pass component that maintains 

the local image mean intensity

– It contains a high-pass component that depends 
on the local signal structure

– Also: the resulting operation for computing h
should be simple to implement

Independent of x

Dependent of x

Computational efficient

52 53
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Ansatz for gx

56

We apply a filter that is given in the Fourier domain as

– GHP is polar separable

– It attenuates frequency components that are ? to ê

– It maintains all frequency components that are || to ê

How to implement gx ?

57

• We know that [EDUPACK – ORIENTATION (20)]

where T(x) = êêT (assume A = 1!)

• Using a N-D tensor basis Nk = nknk
T and its dual Ñk, 

we obtain:

^ ^ ^

How to implement gx ?

58

depends on u
but not on ê

depends on ê
but not on u

How to implement gx ?

59

• Plug this into the expression for GHP :

depends on u
but not on ê

depends on ê
but not on u

56 57

58 59
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How to implement gx ?

60

Consequently, the filter GHP is a linear combination 
of N filters, where each filter has a Fourier transform:

and N scalars:

Independent of x

Dependent of x

How to implement gx ?

61

Summarizing, the adaptive filter can be written as

A fixed LP-filter N fixed HP-filters

N position dependent scalars

How to implement gx ?

62

If the filter is applied to a signal, we obtain

Standard convolution Standard convolutions

Position dependent scalars

Outline Adaptive Filtering v.1

63

1. Estimate the orientation tensor T(x) at each point x

2. Apply a number of fixed filters to the image:
one LP-filter gLP and the N HP-filters gHP,k

3. At each point x:

1. Compute the N scalars

2. Form the linear combination of the N HP-filter responses 
and the N scalars and add the LP-filter response

4. At each point x, the result is the filter response h(x) of the 
locally adapted filter gx

The filter gx is also called a steerable filter

60 61

62 63
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Observation

64

• T can be estimated for any image dimension

• The filters gLP and gHP,k can be formulated for any 
image dimension

) The method can be implemented for any

dimension of the signal (2D, 3D, 4D, …)

Remaining questions

65

1. What happens in regions that are not i1D, i.e., if T
has not rank 1?

2. What happens if A≠1?

3. How to choose the radial function G?

Non-i1D signals

66

• The tensor’s eigenvectors with non-zero 
eigenvalues span the subspace of the Fourier 
domain that contains the signal’s energy

• Equivalent: For a given local region with 
orientation tensor T, let û define an arbitrary 
orientation. The product ûTT û is a measure 
of how much energy in this orientation the 
region contains.

Non-i1D signals

67

• But

which means that the adaptive filtering should work 
in general, even if the signal is non-i1D

64 65

66 67
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How about A = 1?

68

• Previously we assumed A = 1, but normally A
depends on the local amplitude of the signal 
(depends on x)

• In order to achieve A = 1, T must be
pre-processed

• The resulting tensor is called the
control tensor C

• Replace T with C in all previous expressions!

Pre-processing of T

69

• The filter gx is supposed to vary slowly with x, but T
contains high-frequency noise that comes from the 
image noise

• This noise can be reduced by an initial
LP-filtering of T (i.e., of its elements)

• The result is denoted TLP

Pre-processing of T

70

TLP must be normalized (similar to the diffusion 
tensor D): Eigen-decomposition of TLP

Same eigenvectors as TLP,
but different eigenvalues

Modification of the eigenvalues

71

68 69

70 71
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Modification of the eigenvalues

72

The radial function G

73

• Should “mainly” be equal to 1

• Should tend to 0 for u = 

• Together with the LP-filter gLP: an all-pass filter

Radial part of GLP Radial part of GHP Radial part of GLP + GHP

The adaptive filter in 2D

74

Examples of G(u) for 
different C(x)

Outline Adaptive Filtering v.2

75

1. Estimate the local tensor in each image point: T(x)

2. LP-filter the tensor: TLP(x)

3. In each image point:
1. Compute the eigenvalues and eigenvectors of TLP(x).

2. Map the eigenvalues k to k.

3. Re-combine k and the eigenvectors to form the control 
tensor C

4. Compute the scalars hC|Ñki for all k = 1,…, N

4. Filter the image with gLP and the N HP-filters gHP,k

5. In each image point: form the linear combination of 
the filter responses and the scalars

72 73
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Example

76

Example

77

An iterative method

78

• Adaptive filtering can be iterated for reducing the 
noise

• If the filter size is reduced at the same time, a close-to 
continuous transition is achieved (evolution)

• This is closely related to the previous method for 
image enhancement: anisotropic diffusion

www.liu.se

Michael Felsberg

michael.felsberg@liu.se
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