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0.1 Summary

The material presented in this package is focused on repre-
sentation and estimation of local orientation in multi-dimen-
sional signals using other methods than the at CVL devel-
oped tensor approach. Hence, this package should be con-
sidered as an add-on to [6].

By now, the package just contains a theory part. An exer-
cise part and a computer exercise part will be added in the
near future.
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0.2 Scientific Background

The material in this package is a compilation and adaptation
of various publications, books, and reports for use in our com-
puter vision undergraduate courses. The foundation of this
material are the following publications

• Bernd Jähne’s lecture notes in his course book (English
edition) [5].

• The habilitation thesis of Wolfgang Förstner (in German)
[3].

• Gerald Sommer’s lecture notes (in German, unpublished).

• The text books of Athanasios Papoulis [7, 8, 9].

• The PhD thesis of Michael Felsberg [2] and the therein
cited references.
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0.4 Prerequisites

In order to comprehend this package you will have to be fa-
miliar with the following concepts:

• From linear algebra: vector spaces, scalar products,
bases and dual bases, vectors and matrices, decomposi-
tion of symmetric matrices using eigenvalues and eigen-
vectors.

• From signal processing: the Fourier transforms of multi-
dimensional functions. In particular the concepts of simple
signals and the properties of their Fourier transforms. See
chapter 4 of [4].

• Edupack: Orientation [6] should be read thoroughly.

• For some parts of this package it might be useful to have
some basic knowledge about stochastic signal process-
ing. Basic knowledge about probability theory (stochastic
variables, probability density functions, expactation value,
moments) is required.
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0.5 Feedback

This package is a dynamic document, and we invite you to
send feedback to the authors in order to make it dynamic. If
you find errors, or have a question, or think that some part of
the text is unclear, it is likely that your comments will modify
the package in some way or another.

Send comments to

mailto:mfe@isy.liu.se
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1 Introduction

This package Edupack: Orientation2 should be considered
as an add-on package to [6]. The main issue of this package
is to introduce alternative approaches to those described in
[6]. Some additions about basic issues (intrinsic dimension-
ality, stochastic processes) are made in the sections 1.1 and
1.2 of this introduction chapter.

Other, more involved additions are made in separate chap-
ters:

• The structure tensor based on outer products of gradients:
chapter 2.

• Isotropic quadrature filters: chapter 3.

• Multiple orientation representation by channels: chap-
ter 4.

The package contains no concluding chapter since it is sup-
posed to be extended in the future.
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1.1 The Intrinsic Dimensionality

In [6] signals are distinguished according to the rank of the
corresponding orientation tensor and according to be (non-)
simple. In a strict sense, this means to mix up two different
concepts: the rank is a property of a particular estimation
method, whereas being a simple signal is a matter of the sig-
nal modeling. Actually, the signal itself has something like
a ’rank’, independently of the particular estimation method.
This leads us to the concept of the intrinsic dimensionality of
a signal.

The latter is commonly defined as: ”a data set in d dimen-
sions is said to have an intrinsic dimensionality equal to d ′

if the data lies entirely within a d ′-dimensional subspace” [1],
p. 314.

In context of signal processing this leads us to the ques-
tion of the considered domain: spatial (spatio-temporal) do-
main or Fourier domain? Since the Fourier transform re-
places shifts with modulations, the Fourier domain is prefer-
able. However, we want to consider local signal neighbor-
hoods, and therefore we make use of the local Fourier trans-
form (windowed Fourier transform).
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Thus. we get the following categorization:
An nD signal has an intrinsic dimensionality of

• zero, if the local spectrum is concentrated in a point,

• one, if the local spectrum is concentrated in a line (this
case is called simple signal in [6]),

• two, if the local spectrum is concentrated in a plane,

• ...,

• n − 1, if the local spectrum is concentrated in an (n − 1)D
hyperplane,

• n, in all other cases.

For images, the different cases of intrinsic dimensionality
can be illustrated, see figure 1.
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Figure 1: Illustration intrinsic dimensionality. In the image on
the left, three neighborhoods with different intrinsic dimen-
sionalities are indicated. The other three images show the
local spectra of these neighborhoods.
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Obviously, there is a one-to-one correspondence between
rank k signals from [6] and signals with intrinsic dimension-
ality k. Anyhow, it is important to realize that the rank of the
orientation tensor is an estimate of the signal rank, or intrin-
sic dimensionality, and not necessarily equivalent. Therefore,
the term of intrinsic dimensionality is helpful to keep signal
modeling and representation apart.

Furthermore, real signals are hardly exactly of a certain
dimensionality. Instead, one should rather say that a signal
is to a certain degree of a certain dimensionality, e.g., 95%
of the signals energy is concentrated in a line. This degree
of dimensionality is a signal property and not an effect of the
estimation algorithm, caused by, e.g., noise, quantization, nu-
merical error, etc. Opposed to that, the orientation tensor
is commonly not a pure rank k tensor, which is in general
caused by both, the signal property and the measuring pro-
cess.
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1.2 Stochastic Processes

There are two areas where stochastic processes are applied
in signal processing. First, real signals are noisy caused by,
e.g., sensor noise, motion blur, etc. When we estimate fea-
tures of a signal we try to get rid of the noise and to extract
the ’true’ information (whatever that means). Second, certain
signal properties can be modeled as stochastic processes,
e.g., textures, orientation, etc.

Without going into too much mathematical details, a
stochastic process P (for higher dimensional signals also
called random field) can be considered as a stochastic gen-
erator of signals. At every spatial (spatio-temporal) position,
the process corresponds to a stochastic variable and the ob-
served signal value f (x) corresponds to a particular realiza-
tion of the stochastic variable (’a sample drawn from a set’).
The whole observed signal is a particular realization of the
stochastic process P(x,f ).

In a sloppy formulation, a stochastic process is represented
by the ’infinitesimal probability’ (density) of observed function
values f (x0) at positions x = x0. For 1D signals, this can
be illustrated by drawing the density function, see figure 2.
Considering the stochastic process at a particular position,
this density is the (1D) probability density function (pdf) of the
corresponding stochastic variable.
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Figure 2: 1D stochastic process (density image) and two re-
alizations (red and blue graph). The process is given by a
sine curve with increasing variance, i.e., a sine curve with
added Gaussian noise. The density is not normalized; white
means one, black means zero.
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If we knew all details about the stochastic process, we
could compute the probability for signal values falling into
a certain range by integrating the pdf over that range, we
could compute the probability for the whole signal by integrat-
ing along the trajectory, or we could compute the expectation
value at every position. The expectation value corresponds to
the most likely signal value and having the expectation values
at all positions means to know the realization which is most
likely to be the ’real’ signal.

However, without further assumptions, the only information
about the process we have is a single realization, i.e., we
know one sample for every pdf, which is insufficient for com-
puting, e.g., the expectation values. This changes as soon
as we introduce the assumption of stationarity. Stationarity
of a stochastic process implies that the probability density is
independent of x, i.e., the process is constant over x. These
processes do not appear to be of much interest, but we will
weaken the requirement to local regions further below.
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Assuming that we have a stationary process, we can es-
timate arbitrary moments through integration of a single re-
alization by applying the ergodic hypothesis. The latter as-
sumes that the parametric mean value (integration wrt. x) is
the same as the ensemble mean value (integration using the
pdf) with a probability of one. In particular, we can compute
the expectation value (which is independent of x since the
process is stationary) by computing the mean value of the
realization.1

As pointed out above, constant stochastic processes are
not very interesting and hence, the stationarity assumption in
its strict sense is not applicable to most signals. However,
we can often assume that a process is stationary in a certain
region, e.g., a neighborhood in an image is nearly constant
or the local orientation is similar along an edge. We call this
local stationarity in the following.

1If we are only interested in the expectation value, it is sufficient that the process is stationary in a weak sense [9].
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For locally stationary processes we can assume the er-
godic hypothesis to be valid in regions of stationarity. But
what does that mean in practice?

Assume that our signal contains zero mean additive Gaus-
sian noise. The expectation value of the stochastic process
thus equals the noise-free signal. We can approximate this
expectation value by averaging the signal values in the sta-
tionary regions. Unfortunately, these regions are unknown
in advance, such that the region averaging is in practice re-
placed with a local Gaussian smoothing. At region bound-
aries, however, even local averaging makes no sense at all,
since the process is instationary in the region of the filter sup-
port and we cannot assume ergodicity. From this perspective,
linear averaging of a signal itself should be avoided in many
cases, which is yet not true for averaging other signal repre-
sentations.
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2 Structure Tensor based on
Gradients

In this chapter we will introduce a different way to compute
the tensor representation of the local signal orientation. It is
noteworthy that the tensor itself can be computed by various
algorithms and that the quadrature filter based approach in
[6] is not the only way to obtain the orientation tensor. In par-
ticular, we address the tensor computed from outer products
of gradients, often referred to as structure tensor.
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2.1 Approximating the Autocovariance
Function

The structure tensor can be derived from locally approximat-
ing the autocovariance function of a real valued stochastic
signal f (x) (f is generated by a stochastic process) in the ori-
gin. This autocovariance function is defined by

C(x1,x2) = R(x1,x2) − m(x1)m(x2) , (1)

where
m(x) = E[f (x)] (2)

is the mean value of f (x) and

R(x1,x2) = E[f (x1)f (x2)] (3)

is the autocorrelation of f (x).
Assuming stationarity, we obtain shift invariance of the au-

tocovariance function, i.e., C(x1 +x0,x2 +x0) = C(x1,x2) for all
x0 and in particular x0 = −x2. Therefore, we consider C(x)
with x = x1 − x2 in the following. The autocovariance function
C(x) can be estimated by local averages due to the ergodicity
hypothesis.
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Assuming ergodicity in the local region Ω, m(x) = mΩ (con-
stant over x), C(x), and R(x) can be computed by averaging
over Ω. In particular, we obtain

mΩ =
1
|Ω| ∑

x∈Ω

f (x) (4)

C(x) =
1

|Ω| − 1 ∑
x′∈Ω

(f (x′) − mΩ)(f (x′ + x) − mΩ)

=
1

|Ω| − 1
f (x) ∗ f (−x) − |Ω|

|Ω| − 1
m2

Ω (5)

R(x) =
1

|Ω| − 1
f (x) ∗ f (−x) (6)

where ∗ denotes convolution. The normalization by |Ω| − 1
instead of |Ω| is necessary in order to obtain an unbiased
estimate [1].

Even though the convolution formulation for C(x) reduces
the computational complexity significantly, it is still much too
high for practical purposes, since the filter mask is potentially
infinitely large.
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Therefore, we approximate the autocovariance function by
a local series expansion:

C(x) = C(0) +
1
2

xT Hx + O(x4) (7)

where H is the Hessian of C(x) in the origin, i.e.,

H =
[

∂2

∂xi ∂xj
C(x)

]
ij

∣∣∣∣∣
x=0

. (8)

Apparently, the Hessian contains all orientation dependent
terms of the series approximation of C(x).

The fundamental equivalence for the calculation of the Hes-
sian is the following:

Hij = Cij (0) , (9)

where Cij (x) is the covariance function of the partial deriva-
tives of f (x). The latter is obtained as

Cij(x) =
1

|Ω| − 1
fi(x) ∗ fj (−x) (10)

where fi (x) are the partial derivatives ∂f (x)
∂xi

. In order to show
that Hij and Cij(0) are indeed equivalent, we switch to the
Fourier domain.
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The nD Fourier transform of the autocorrelation function
yields the power spectrum of f (x)

F [R(x)] = F [f (x) ∗ f (−x)] = F(u)F ∗(u) = P(u) , (11)

where F(u) = F [f (x)] is the nD Fourier transform of f (x).
Hence, the Fourier transform of the Hessian is obtained as

F [Hij ] = F
[

∂2C(x)
∂xi∂xj

∣∣∣∣
x=0

]
=

Z
−uiujF (u)F ∗(u) du (12)

and due to the power theorem it follows

−
Z

(iuiF (u))(−iujF ∗(u)) du = −
Z

fi (x)fj (x) dx . (13)

That means, the part of Equation (7) that contains all orienta-
tion related information is computed by integrating the outer
product of the signal gradient:

H = −
Z

(∇f (x))(∇f (x))T dx . (14)
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2.2 The Structure Tensor

If we replace the integration in Equation (14) with a local aver-
aging, we obtain a local, matrix-based orientation represen-
tation:

J(x) = g(x) ∗ (∇f (x)∇T f (x)) , (15)

the structure tensor. Before we focus on properties of the lat-
ter and introduce some features, we want to mention another
way for deriving the same representation.

Stating the optimization problemZ
g(x0 − x)〈 ∇f (x) | n̂(x0) 〉2 dx → max , (16)

i.e., at every point x0 we are looking for a unit vector n̂ which
best represents the local gradient orientation. Solving this
maximization directly leads to Equation (15).

This result is not surprising, since the approximation in
Equation (7) is of quadratic order. Hence, we consider the
variances in different orientations.
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On the other hand, Equation (16) minimizes the (weighted)
sum of the squared sine of the orientation error:Z

g(x0 − x)‖∇f (x)‖2 sin(∆α)2 dx → min . (17)

From a geometric point of view, this minimization tries to find
the 1D subspace with the minimum cumulated distance to the
samples, see figure 3.

Thus, it appears reasonable to switch the coordinate sys-
tem accordingly, i.e., to consider the solution in its eigensys-
tem: We calculate the eigenvectors and eigenvalues. This
procedure is equivalent to the one described in [6], so we
skip it here.

Another interesting aspect are the measures of the degree
of simplicity, the coherence, of the signal. We would like to
express something like the curvature of the autocovariance
function in terms of coefficients.
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Figure 3: Cluster of points (blue) and corresponding 1D sub-
space with minimum distance (red) and maximum distance
(green).
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In the 2D case, this is comparably simple: we consider the
Gaussian curvature Cg, which describes the type of curva-
ture (elliptic, paraboloid, planar), and the mean curvature Cm.
These measures are related to the eigenvalues λ1 and λ2 of
the Hessian by

λ1/2 = Cm ±
√

C2
m − Cg , (18)

i.e., the eigenvalues are increasingly different of increasing
ratios√

C2
m − Cg

Cm
=

√
(λ1 + λ2)2 − 4λ1λ2

λ1 + λ2
=

λ1 − λ2

λ1 + λ2
. (19)

This expression describes the coherence of the structure and
is an alternative to (51) in [6].
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3 Isotropic Quadrature Filters

work in progress
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4 Multiple Orientation Representa-
tion by Channels

to be added later
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