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Estimation of local orientation

e Avery simple description of local orientation at
image point p = (u,v) is given by:

VI
v

e Here, V/is the gradient at point p of the image
Intensity /. In practice:

n =

9
VI= (" (w *I)
ov
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Estimation of local orientation

e Problem 1: VI may be zero, even though there is a well
defined orientation.

e Problem 2: The sign of VI changes across a line.
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Estimation of local orientation

e Partial solution:

e Form the outer product of the gradient with itself:
VIV

e This is a symmetric 2 X 2 matrix (tensor)

e Problem 2 solved!

e Also: The representation is unambiguous

e Distinct orientations are mapped to distinct matrices
e Similar orientations are mapped to similar matrices
e Continuity / compatibility

e Problem 1 remains
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The structure tensor

 Compute alocal average of the outer product of the gradients around
the point p:

T(p) = / ws(x)[V1)(x) [V 1) (x) dx

* Here, x represent an offset from p

*  W,(x) is some LP-filter (typically a Gaussian)

* Tisasymmetric2 X 2 matrix: T;=T;

* This construction is called the structure tensor
* Solves also problem 1 (why?)

 Tis computed for each point p in the image
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Orientation representation

e For asignal that is approximately ilD in the
neighborhood of a point p, with orientation £n:

VI is always parallel to n (why?)

e The gradients that are estimated
around p are a scalar multiple of n

e The average of their outer products
results in

T=Ann'
* for some value A
* Adepends on w,, w,, and the local signal /
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Motivation for T

e The structure tensor has been derived based on
several independent approaches

For example

e Stereo tracking (Lucas & Kanade, 1981) (Lec. 5)

e Optimal orientation (Biglin & Granlund, 1987)

e Sub-pixel refinement (Forstner & Giilch, 1987)

* Interest point detection (Harris & Stephens, 1988)
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Local orientation in the Fourier domain

e Structures of different orientation end up in different
places in the frequency domain

Spatial domain l

Frequency domain
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Optimal orientation estimation

e Basic idea:

e The local signal /(x) has a Fourier transform F(u).

e We assume that fis a i1D-signal

 Fhasits energy concentrated mainly on a line
through the origin

e Find a line, with direction n, in the frequency
domain that best fits the energy of F

e Described by Biglin & Granlund [ICCV 1987]
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Optimal orientation estimation

e The solution to this constrained maximization
problem must satisfy

Tn = \n (why?)

e Means: nis an eigenvector of T with eigenvalue A

e |n fact: Choose the eigenvector with the largest
eigenvalue for best fit
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Sub-pixel refinement

e Consider alocal region and let VI(p) denote the image
gradient at point p in this region

e let p, be some pointin this region

e (VIp) | p—py) is then a measure of compatibility
between the gradient VI(p) and the point p,

e Small value = high compatibility
e High value = small compatibility

An p, that lies on the edge/line that

creates the gradient minimizes

| (VI(P) | p—po) |
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Sub-pixel refinement

e |nthe case of more than one
line/edge in the local region:

e We want to find the point p, that
optimally fits all these
lines/edges

e We minimize

e(po) = {VI(P)|p — pPo)ll;,

 where wis a weighting function
that defines the local region
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Sub-pixel refinement

e The normal equations of this least squares
problem are:

= [ w@)VI)Y 1) p dp

A >
~

:=b
e Solve the linear equation: Tp,=b il

region of the image!

This equation is
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The Harris-Stephens detector

e A Taylor expansion of the image intensity / at

point (u, v):

I{(u4 ny,v4+n,) =

¢

./

I(u,v) -

- VI - (N, ny)

I(u,v) -

- VI -n
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The Harris-Stephens detector

* S(n, n,) is a measure of how much /(u, v)
deviates from I(u + n, v+ n,)in a local region Q,
as a function of (n,, n,):

SNy ny) = ||I(u—|—nu,v+nv)—f(u,fv)]|2

= /w(u’v).’[(ujLnu,v—knv)I(u,’u)]2dudv
Q

Q

/ w(u,v) - (VI -n)? dudv
Q

— n' [/ w(u,v) - (VIVTI) dudv| n =n'Tn
Q

N, >4

—v

=T
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The Harris-Stephens detector

e |f () contains a linear structure, then Sis small
(=0) when n is parallel to the line/edge

e T must have one small (= 0) eigenvalue

e |f QQ contains an interest point (corner) any
displacement (n, n ) gives a relatively large S

e Both eigenvalues of T must be relatively large
e By analyzing the eigenvalues A, A\, of T:

e If A\ large and A, small: line/edge

e |fboth A\;and ), large: interest point

e See Harris measure below
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Example: Structure tensor

Original image
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Example: Structure tensor

Ix Gradient images Iy
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Example: Structure tensor

T, image
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Example: Structure tensor

T,, image
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Example: Structure tensor

T, iImage
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Example: Structure tensor in 2D

e |nthe general 2D case, we obtain

T=X &1 & +X e85 (why?)
e where \; 2 )\, are the eigenvalues of T and é,, &, are the

corresponding normalized eigenvectors

e \We have already shown that for locally i1D signals we get
A20and A, =0
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Structure tensor in 2D, 10D

e |If the local signal is constant (iOD),
then VI=0

e Consequently: T=0
e Consequently: A, =X, =0

e The idea of optimal orientation

becomes less relevant the closer A,
getsto O
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Structure tensor in 2D, 12D

e |f the local signal is i2D, V/is not parallel
to some n for all points x in the local
region, i.e. the terms in the integral that
forms T are not scalar multiples of each
other

e Consequently: A\, >0if fnotilD

e The idea of optimal orientation becomes
less relevant the closer A, getsto A,
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|sotropic tensor

e |f we assume that the orientation is uniformly
distributed in the local integration support, we
get A\, = A\,:

T=Xx@é& & +)ééd
= Xj(é1 81 +8&,8l)
= )\ | PR The identity matrix
e j.e. Tisisotropic:nTn=n'In=1
* Why is the parenthesis equal to I?
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Confidence measures

e Fromdet T and tr T we can define two
confidence measures:

__ tr°T—4 detT
treT—2 detT

Cr = 2 detT

1 T tr2T—2detT
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Confidence measures
e Usingthe identities
—trT =T, +T,, = + A,
—detT=T,,T,, = T,,2= A\,

e we obtain

_ (A1=X0)? __2X X0
Cl1 — 51\ 2 CQ — 2,2
ATTAS ATTAS

e andc¢,+¢,=1 (why?)
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Confidence measures

* Easy to see that
* 1D signals give c;,=1andc¢,=0
* Isotropic Tgivesc,=0andc,=1

* In general: an image region is somewhere between
these two ideal cases

 An advantage of these measures is that they can be
computed from T without explicitly computing the
eigenvalues \; and A,
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Decomposition of T

e \We can always decompose T into an
11D part and an isotropic part:

T=X & & +réreél =
= (A1 — X)) &1 & + A (e8] +ered)
= (A1 —X)eéref + A1
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Double angle representation

 With this result at hand:

Remember:

2

()\1 B )\2) (cos o — sin? oe)

2 COS (¥ S1n

= (A1 — \o) (Césgg) z cannot distinguish
S 2a between iOD and i2D

 zisadouble angle representation of the local orientation
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Color coding of the double angle representation
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A1 A2
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Example

Double angle descriptor
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Rank measures

e The rank of a matrix (linear map) is defined as
the dimension of its range

e We can think of ¢; and ¢, as (continuous) rank
measures, since

—i1D signal = T hasrank 1 =
¢c;,=1 and ¢,=0.

— Isotropic sighal = T has rank 2 =
¢,=0 and ¢,=1.
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Harris measure

e The Harris-Stephens detector is based on C,
defined as
cy = detT — k(traceT)?, Kk~ 0.05
= A2 — (A1 + A2)?

)Y have been proposed in
2 the literature!

Different values for &

cy>0
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Harris measure

e By detecting points of local maxima in C,,
where C, > 7, we assure that the eigenvalues of T

at such a point lie in the colored region below
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