Image enhancement

Computer Vision, Lecture 15 Michael Felsberg Computer Vision Laboratory Department of Electrical Engineering

• Example of artifacts caused by image encoding

- Example of an image with sensor noise
 - ultrasound image of a beating heart

- IR-image
 - fixed pattern noise = spatial variations in gain and offset
 - Possibly even variations over time!
 - Hot/dead pixels
- A digital camera with short exposure time
 - Shot noise (photon noise)

Methods for image enhancement

- <u>Inverse filtering</u>: the distortion process is modeled and estimated (e.g. motion blur) and the *inverse* process is applied to the image
- <u>Image restoration</u>: an *objective* quality (e.g. sharpness) is estimated in the image. The image is modified to increase the quality
- <u>Image enhancement</u>: modify the image to improve the visual quality, often with a subjective criteria

Additive noise

- Some types of image distortion can be described as
 - Noise added on each pixel intensity
 - The noise has the identical distribution and is independent at each pixel (i.i.d.)
- Not all type of image distortion are of this type:
 - Multiplicative noise
 - Data dependent noise
 - Position dependent

What about pixel shot noise?

 The methods discussed here assume additive i.i.d.noise

Removing additive noise

- Image noise typically contains higher frequencies than images generally do
 ⇒ a low-pass filter can reduce the noise
- BUT: we also remove high-frequency signal components, e.g. at edges and lines
- HOWEVER: A low-pass filter works in regions without edges and lines (ergodicity)

Example: LP filter

Image with some noise

Basic idea

The problem of low-pass filters is that we apply the same filter on the whole image

We need a filter that locally adapts to the image structures

A space-variant filter

Ordinary filtering / convolution

• Ordinary filtering can be described as a convolution of the signal *f* and the filter *g*:

$$h(\mathbf{x}) = (f * g)(\mathbf{x}) = \int f(\mathbf{x} - \mathbf{y})g(\mathbf{y}) \, d\mathbf{y}$$

For each **x**, we compute the integral between the filter *g* and a shifted signal *f*

Adaptive filtering

• If we apply an adaptive (or position dependent, or space-variant) filter g_x , the operation cannot be expressed as a convolution, but instead as

$$h(\mathbf{x}) = \int f(\mathbf{x} - \mathbf{y}) g_{\mathbf{x}}(\mathbf{y}) \, d\mathbf{y}$$

For each **x**, we compute the integral between a shifted signal f and the filter g_x where the filter depends on **x**

Orientation-selective g_x

- If the signal is $\approx \ i1D$ the filter can maintain the signal by reducing the frequency components orthogonal to the local structure
- The human visual system is less sensitive to noise along linear structures than to noise in the orthogonal direction
- Results in good subjective improvement of image quality

Edges and lines A. Without noise B. With oriented noise along C. With isotropic noise D. With oriented noise across

Local structure information

- We compute the local orientation tensor $\mathbf{T}(\mathbf{x})$ at all points \mathbf{x} to control / steer $g_{\mathbf{x}}$
- At a point **x** that lies in a locally i1D region, we obtain

1 1 1

$$\mathbf{T}(\mathbf{x}) = A\hat{\mathbf{e}}\hat{\mathbf{e}}^T$$

ê is normal to the linear structure

Scale space recap (from lecture 2)

• The linear Gaussian scale space related to the image *f* is a family of images *L*(*x*,*y*;*s*)

$$L(x, y; s) = (g_s * f)(x, y)$$

Convolution over (*x*,*y*) only!

parameterized by the scale parameter s, where 1 2 2

$$g_s(x,y) = \frac{1}{2\pi s} e^{-\frac{x^2 + y^2}{2s}}$$

A Gaussian LP-filter with $\sigma^2 = s$

Note: $g_s(x,y) = \delta(x,y)$ for s = 0

Scale space recap (from lecture 2)

• L(x,y;s) can also be seen as the solution to the PDE

Left hand side: the change in L at (x,y) between s and $s+\partial s$

$$\begin{aligned} \frac{\partial}{\partial s}L &= \frac{1}{2}\nabla^2 L \\ \frac{\partial}{\partial s}L &= \frac{1}{2}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) L \end{aligned}$$
The diffusion equation Example:
L = temperature s = time

with boundary condition L(x,y;0) = f(x,y)

Repetition: Vector Analysis

- Nabla operator $\nabla = \begin{bmatrix} \partial_x \\ \partial_y \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix}$
- On a scalar function $\nabla f = \operatorname{grad} f = \begin{bmatrix} \partial_x f \\ \partial_y f \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$
- On a vector field $\langle \nabla | \mathbf{f} \rangle = \nabla^T \mathbf{f} = \operatorname{div} \mathbf{f} = \partial_x f_1 + \partial_y f_2$
- Laplace $\Delta = \nabla^2 = \langle \nabla | \nabla \rangle = \text{div grad} = \partial_x^2 + \partial_y^2$ operator note: $\partial_x^2 f = f_{xx} \neq f_x^2$

Enhancement based on linear (homogeneous) diffusion

- This means that L(x,y;s) is an LP-filtered version of f(x,y) for s > 0.
- The larger s is, the more LP-filtered is f
 - High-frequency noise will be removed for larger s
- Also high-frequency image components (e.g. edges) will be removed
- We need to control the diffusion process such that edges remain How?

Step 1

• Modify the PDE by introducing a parameter μ :

$$\frac{\partial}{\partial s}L = \frac{\mu}{2}\nabla^2 L$$

• This PDE is solved by

 $L(x, y; s) = (g_s * f)(x, y)$

 μ can be seen as a "diffusion speed":

Small μ : the diffusion process is slow when *s* increases

Large μ : the diffusion process is fast when *s* increases

Same as before

$$g_s(x,y) = \frac{1}{2\pi\mu s} e^{-\frac{x^2 + y^2}{2\mu s}} - \text{Slightly different}$$

Step 2

- We want the image content to control μ
 In flat regions: fast diffusion (large μ)
 In non-flat region: slow diffusion (small μ)
- We need to do *space-variant* diffusion
 - μ is a function of position (*x*,*y*)

We will introduce another spacevariant filter g_x in adaptive filtering

Inhomogeneous diffusion

- Perona & Malik suggested to use $\mu(x,y) = \frac{1}{1+|\nabla f|^2/\lambda^2}$

where ∇f is the image gradient at (x,y)and λ is fixed a parameter

- Close to edges: $|\nabla f|$ is large $\Rightarrow \mu$ is small
- In flat regions: $|\nabla f|$ is small $\Rightarrow \mu$ is large

Non-Linear Regularization (compare L13)

• Minimizing
$$\varepsilon(f) = \int_{\Omega} \Psi(|\nabla f|) \, dx \, dy$$

• Gives the Euler-Lagrange equation

$$\partial_x \frac{\Psi'(|\nabla f|)}{|\nabla f|} f_x + \partial_y \frac{\Psi'(|\nabla f|)}{|\nabla f|} f_y = \operatorname{div} \left(\frac{\Psi'(|\nabla f|)}{|\nabla f|} \nabla f \right) = 0$$

• Such that gradient descent gives

$$f^{(s+1)} = f^{(s)} + \alpha \operatorname{div}\left(\frac{\Psi'(|\nabla f^{(s)}|)}{|\nabla f^{(s)}|}\nabla f^{(s)}\right)$$

Exemple: Perona-Malik Flow

- Special cases: $\Psi(|\nabla f|) = -K^2/2 \cdot \exp(-|\nabla f|^2/K^2)$ $\Rightarrow \Psi'(|\nabla f|) = |\nabla f| \exp(-|\nabla f|^2/K^2)$ $\Psi(|\nabla f|) = K^2/2 \cdot \log(K^2 + |\nabla f|^2)$ $\Rightarrow \Psi'(|\nabla f|) = |\nabla f|(1 + |\nabla f|^2/K^2)^{-1}$
- Such that gradient descent gives Perona-Malik Flow $f^{(s+1)} = f^{(s)} + \alpha \operatorname{div} \left(\frac{\Psi'(|\nabla f^{(s)}|)}{|\nabla f^{(s)}|} \nabla f^{(s)} \right)$

Inhomogeneous diffusion

Inhomogeneous diffusion

- Noise is effectively removed in flat region
- Edges are preserved 🗳
- Noise is preserved close to edges

We want to be able to LP-filter along but not across edges

Step 3

- The previous PDEs are all isotropic
 ⇒ The resulting filter *g* is isotropic
- The last PDE can be written:

Step 3

- Change μ from a scalar to a 2 × 2 symmetric matrix \mathbf{D} $\frac{\partial}{\partial s}L = \frac{1}{2}\operatorname{div}(\mathbf{D}\operatorname{grad} L)$
- The solution is now given by

$$L(\mathbf{x};s) = (g_s * f)(\mathbf{x}) \quad \Leftarrow \text{Same as before}$$
$$g_s(\mathbf{x}) = \frac{1}{2\pi \det(\mathbf{D})^{1/2}s} e^{-\frac{1}{2s}\mathbf{x}^T \mathbf{D}^{-1}\mathbf{x}}$$

Ansiotropic diffusion

- The filter *g* is now anisotropic, i.e., not necessary circular symmetric
- The shape of g depends on **D**
- **D** is called a *diffusion tensor*
 - Can be given a physical interpretation, e.g. for anisotropic heat diffusion

The diffusion tensor

• Since **D** is symmetric 2×2 :

$$\mathbf{D} = \alpha_1 \mathbf{e}_1 \mathbf{e}_1^T + \alpha_2 \mathbf{e}_2 \mathbf{e}_2^T$$

where α_1 , α_2 are the eigenvalues of **D**, and **e**₁ and **e**₂ are corresponding eigenvectors

 \mathbf{e}_1 and \mathbf{e}_2 form an ON-basis

The filter g

• The corresponding shape of *g* is given by

Step 4

- We want *g* to be narrow across edges and wide along edges
- This means: **D** should depend on (*x*,*y*)
 - A space variant anisotropic diffusion
- This is referred to as *anisotropic diffusion* in the literature
- Introduced by Weickert

Anisotropic diffusion

- Information about edges and their orientation can be provided by an orientation tensor, e.g., the structure tensor **T** in terms of its eigenvalues λ_1, λ_2
- However:
 - We want α_k to be close to 0 when λ_k is large
 - We want α_k to be close to 1 when λ_k is close to 0

From **T** to **D**

The diffusion tensor **D** is obtained from the orientation tensor **T** by modifying the eigenvalues and keeping the eigenvectors, e.g.

Anisotropic diffusion: summary

- 1. At all points:
 - 1. compute a local orientation tensor T(x)
 - 2. compute D(x) from T(x)
- 2. Apply anisotropic diffusion onto the image by locally iterating

$$\frac{\partial}{\partial s}L = \frac{1}{2}\operatorname{div}(\mathbf{D}\operatorname{grad} L)$$

Right hand side: can be computed locally at each point (x,y)

This defines how scale space level

 $L(x,y;s+\partial s)$ is generated from L(x,y;s)

Implementation aspects

- The anisotropic diffusion iterations can be done with a constant diffusion tensor field **D**(**x**), computed once from the original image (faster)
- Alternatively: re-compute $\mathbf{D}(\mathbf{x})$ between every iteration (slower)

Simplification

- We assume \mathbf{D} to have a slow variation with respect to \mathbf{x} (cf. adaptive filtering)
- This means (see [EDUPACK ORIENTATION (22)])

$$\frac{\partial}{\partial s}L = \frac{1}{2}\nabla^T \mathbf{D}\nabla L \approx \frac{1}{2} \langle \mathbf{D} | \nabla \nabla^T \rangle L = \frac{1}{2} \mathrm{tr}[\mathbf{D}(\mathbf{H}L)]$$

The Hessian of *L* = second order derivatives of *L*

$$\mathbf{H}L = \begin{pmatrix} \frac{\partial^2}{\partial x^2}L & \frac{\partial^2}{\partial x \partial y}L \\ \frac{\partial^2}{\partial x \partial y}L & \frac{\partial^2}{\partial y^2}L \end{pmatrix}$$

Numerical implementation

- Several numerical schemes for implementing anisotropic diffusion exist
- Simplest one:
 - Replace all partial derivatives with finite differences (see also lecture 13)

$$L(x, y; s + \Delta s) = L(x, y; s) + \frac{\Delta s}{2} \operatorname{tr}[\mathbf{D}(\mathbf{HL})]$$
The Hessian of
L can be
approximated
by convolving
L with:

$$H_{11} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & -2 & 1 \\ 0 & 0 & 0 \end{pmatrix} H_{12} = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix} H_{22} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Algorithm Outline

1. Set parameters

e.g.: k, Δs , number of iterations, ...

- 2. Iterate
 - 1. Compute orientation tensor ${\bf T}$
 - 2. Modify eigenvalues \Rightarrow **D**
 - 3. Computer Hessian $\mathbf{H} L$
 - 4. Update *L* according to:

 $L(x, y; s + \Delta s) = L(x, y; s) + \frac{\Delta s}{2} \operatorname{tr}[\mathbf{D}(\mathbf{H}L)]$

Comparison

A note

- The image f is never convolved by the spacevariant anisotropic filter g
- Instead, the effect of *g* is generated incrementally based on the diffusion eq.
- In adaptive filtering: we never convolve f with g_x either, instead several fixed filters are applied onto f and their results are combined in a non-linear way

How to choose g_x ?

According to the discussion in the introduction, we choose g_x such that:

 It contains a low-pass component that maintains the local image mean intensity

Independent of **x**

 It contains a high-pass component that depends on the local signal structure

Dependent of **x**

 Also: the resulting operation for computing h should be simple to implement

Computational efficient

Ansatz for g_x

We apply a filter that is given in the <u>Fourier domain</u> as

$$G_{\rm HP}(\mathbf{u}) = G_{\rho}(u)(\hat{\mathbf{u}}^T \hat{\mathbf{e}})^2 \qquad \mathbf{u} = u\hat{\mathbf{u}}$$

- G_{HP} is polar separable
- It attenuates frequency components that are \perp to $\boldsymbol{\hat{e}}$
- It maintains all frequency components that are || to ${\bf \hat{e}}$

• We know that [EDUPACK – ORIENTATION (20)]

$$(\hat{\mathbf{u}}^T \hat{\mathbf{e}})^2 = \langle \hat{\mathbf{u}} \hat{\mathbf{u}}^T | \hat{\mathbf{e}} \hat{\mathbf{e}}^T \rangle = \langle \hat{\mathbf{u}} \hat{\mathbf{u}}^T | \mathbf{T}(\mathbf{x}) \rangle$$

where $\mathbf{T}(\mathbf{x}) = \hat{\mathbf{e}}\hat{\mathbf{e}}^{\mathrm{T}}$ (assume A = 1!)

• Using a *N*-D tensor basis $\hat{\mathbf{N}}_{k} = \hat{\mathbf{n}}_{k}\hat{\mathbf{n}}_{k}^{T}$ and its dual $\tilde{\mathbf{N}}_{k}$, we obtain:

$$\mathbf{T}(\mathbf{x}) = \sum_{k=1}^{N} \langle \mathbf{T}(\mathbf{x}) | ilde{\mathbf{N}}_k
angle \hat{\mathbf{N}}_k$$

• Plug this into the expression for G_{HP} :

Consequently, the filter G_{HP} is a linear combination of N filters, where each filter has a Fourier transform:

$$G_{\mathrm{HP},k}(\mathbf{u}) = G_{\rho}(u)(\hat{\mathbf{u}}^T \hat{\mathbf{n}}_k)^2$$

Independent of **x**

and N scalars:

 $\langle \mathbf{T}(\mathbf{x}) | \mathbf{N}_k \rangle$

Dependent of x

Summarizing, the adaptive filter can be written as

If the filter is applied to a signal, we obtain

Outline Adaptive Filtering v.1

- 1. Estimate the orientation tensor T(x) at each point x
- 2. Apply a number of fixed filters to the image: one LP-filter g_{LP} and the *N* HP-filters $g_{\text{HP},k}$
- 3. At each point **x**:
 - 1. Compute the N scalars $\langle \mathbf{T}(\mathbf{x}) | \mathbf{N}_k \rangle$
 - 2. Form the linear combination of the N HP-filter responses and the N scalars and add the LP-filter response
- 4. At each point **x**, the result is the filter response $h(\mathbf{x})$ of the locally adapted filter $g_{\mathbf{x}}$

The filter g_x is also called a steerable filter

Observation

- **T** can be estimated for any image dimension
- The filters $g_{\rm LP}$ and $g_{{\rm HP},k}$ can be formulated for any image dimension
 - \Rightarrow The method can be implemented for any dimension of the signal (2D, 3D, 4D, ...)

Remaining questions

- What happens in regions that are not i1D, i.e., if T has not rank 1?
- 2. What happens if $A \neq 1$?
- 3. How to choose the radial function G_{ρ} ?

Non-i1D signals

- The tensor eigenvectors with non-zero eigenvalues span the subspace of the Fourier domain that contains the signal energy
- Equivalent: For a given local region with orientation tensor T, let û define an arbitrary orientation. The product û^TT û is a measure of how much energy in this orientation the region contains.

Non-i1D signals

• But

$$\hat{\mathbf{u}}^T \mathbf{T} \hat{\mathbf{u}} = \langle \hat{\mathbf{u}} \hat{\mathbf{u}}^T | \mathbf{T} \rangle$$

which means that the adaptive filtering should work in general, even if the signal is non-i1D

How about A = 1?

- Previously we assumed A = 1, but normally A depends on the local amplitude of the signal (depends on x)
- In order to achieve A = 1, **T** must be pre-processed
- The resulting tensor is called the control tensor C
- Replace ${\bf T}$ with ${\bf C}$ in all previous expressions!

Pre-processing of **T**

- The filter g_x is supposed to vary slowly with \mathbf{x} , but \mathbf{T} contains high-frequency noise that comes from the image noise
- This noise can be reduced by an initial LP-filtering of **T** (i.e., of its elements)
- The result is denoted $\mathbf{T}_{\text{\tiny LP}}$

Pre-processing of T

Modification of the eigenvalues

Modification of the eigenvalues

The radial function G_{ρ}

- Should "mainly" be equal to 1
- Should tend to 0 for $u = \pi$
- Together with the LP-filter g_{LP} : an all-pass filter

The adaptive filter in 2D

Outline Adaptive Filtering v.2

- 1. Estimate the local tensor in each image point: T(x)
- 2. LP-filter the tensor: $T_{LP}(x)$
- 3. In each image point:
 - 1. Compute the eigenvalues and eigenvectors of $T_{LP}(x)$.
 - 2. Map the eigenvalues λ_k to γ_k .
 - 3. Re-combine γ_k and the eigenvectors to form the control tensor **C**
 - 4. Compute the scalars $\langle \mathbf{C} | \mathbf{\tilde{N}}_{\mathbf{k}} \rangle$ for all k = 1, ..., N
- 4. Filter the image with g_{LP} and the *N* HP-filters $g_{\text{HP},k}$
- 5. In each image point: form the linear combination of the filter responses and the scalars

Example

Example

An iterative method

- Adaptive filtering can be iterated for reducing the noise
- If the filter size is reduced at the same time, a close-to continuous transition is achieved (evolution)
- This is closely related to the previous method for image enhancement: *anisotropic diffusion*

Michael Felsberg michael.felsberg@liu.se

www.liu.se

