# Image enhancement

Computer Vision, Lecture 15 Michael Felsberg Computer Vision Laboratory Department of Electrical Engineering



• Example of artifacts caused by image encoding









- Example of an image with sensor noise
  - ultrasound image of a beating heart





- IR-image
  - fixed pattern noise = spatial variations in gain and offset
  - Possibly even variations over time!
  - Hot/dead pixels
- A digital camera with short exposure time
  - Shot noise (photon noise)



# Methods for image enhancement

- <u>Inverse filtering</u>: the distortion process is modeled and estimated (e.g. motion blur) and the *inverse* process is applied to the image
- <u>Image restoration</u>: an *objective* quality (e.g. sharpness) is estimated in the image. The image is modified to increase the quality
- <u>Image enhancement</u>: modify the image to improve the visual quality, often with a subjective criteria



# Additive noise

- Some types of image distortion can be described as
  - Noise added on each pixel intensity
  - The noise has the identical distribution and is independent at each pixel (i.i.d.)
- Not all type of image distortion are of this type:
  - Multiplicative noise
  - Data dependent noise
  - Position dependent

What about pixel shot noise?

 The methods discussed here assume additive i.i.d.noise



# Removing additive noise

- Image noise typically contains higher frequencies than images generally do
   ⇒ a low-pass filter can reduce the noise
- BUT: we also remove high-frequency signal components, e.g. at edges and lines
- HOWEVER: A low-pass filter works in regions without edges and lines (ergodicity)



#### Example: LP filter



Image with some noise













#### **Basic idea**

The problem of low-pass filters is that we apply the same filter on the whole image

We need a filter that locally adapts to the image structures

A space-variant filter



#### Ordinary filtering / convolution

• Ordinary filtering can be described as a convolution of the signal *f* and the filter *g*:

$$h(\mathbf{x}) = (f * g)(\mathbf{x}) = \int f(\mathbf{x} - \mathbf{y})g(\mathbf{y}) \, d\mathbf{y}$$

For each **x**, we compute the integral between the filter *g* and a shifted signal *f* 



#### Adaptive filtering

• If we apply an adaptive (or position dependent, or space-variant) filter  $g_x$ , the operation cannot be expressed as a convolution, but instead as

$$h(\mathbf{x}) = \int f(\mathbf{x} - \mathbf{y}) g_{\mathbf{x}}(\mathbf{y}) \, d\mathbf{y}$$

For each **x**, we compute the integral between a shifted signal f and the filter  $g_x$ where the filter depends on **x** 



# Orientation-selective $g_x$

- If the signal is  $\approx \ i1D$  the filter can maintain the signal by reducing the frequency components orthogonal to the local structure
- The human visual system is less sensitive to noise along linear structures than to noise in the orthogonal direction
- Results in good subjective improvement of image quality



Edges and lines A. Without noise B. With oriented noise along C. With isotropic noise D. With oriented noise across



#### Local structure information

- We compute the local orientation tensor  $\mathbf{T}(\mathbf{x})$ at all points  $\mathbf{x}$  to control / steer  $g_{\mathbf{x}}$
- At a point **x** that lies in a locally i1D region, we obtain

1 1 1

$$\mathbf{T}(\mathbf{x}) = A\hat{\mathbf{e}}\hat{\mathbf{e}}^T$$

**ê** is normal to the linear structure



# Scale space recap (from lecture 2)

• The linear Gaussian scale space related to the image *f* is a family of images *L*(*x*,*y*;*s*)

$$L(x, y; s) = (g_s * f)(x, y)$$

Convolution over (*x*,*y*) only!

parameterized by the scale parameter s, where 1 2 2

$$g_s(x,y) = \frac{1}{2\pi s} e^{-\frac{x^2 + y^2}{2s}}$$

A Gaussian LP-filter with  $\sigma^2 = s$ 

Note:  $g_s(x,y) = \delta(x,y)$  for s = 0



# Scale space recap (from lecture 2)

• L(x,y;s) can also be seen as the solution to the PDE

Left hand side: the change in L at (x,y) between s and  $s+\partial s$ 

$$\begin{aligned} \frac{\partial}{\partial s}L &= \frac{1}{2}\nabla^2 L \\ \frac{\partial}{\partial s}L &= \frac{1}{2}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) L \end{aligned}$$
The diffusion equation Example:  
L = temperature s = time

with boundary condition L(x,y;0) = f(x,y)



# **Repetition: Vector Analysis**

- Nabla operator  $\nabla = \begin{bmatrix} \partial_x \\ \partial_y \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix}$
- On a scalar function  $\nabla f = \operatorname{grad} f = \begin{bmatrix} \partial_x f \\ \partial_y f \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$
- On a vector field  $\langle \nabla | \mathbf{f} \rangle = \nabla^T \mathbf{f} = \operatorname{div} \mathbf{f} = \partial_x f_1 + \partial_y f_2$
- Laplace  $\Delta = \nabla^2 = \langle \nabla | \nabla \rangle = \text{div grad} = \partial_x^2 + \partial_y^2$ operator note:  $\partial_x^2 f = f_{xx} \neq f_x^2$



# Enhancement based on linear (homogeneous) diffusion

- This means that L(x,y;s) is an LP-filtered version of f(x,y) for s > 0.
- The larger s is, the more LP-filtered is f
  - High-frequency noise will be removed for larger s
- Also high-frequency image components (e.g. edges) will be removed
- We need to control the diffusion process such that edges remain How?



#### Step 1

• Modify the PDE by introducing a parameter  $\mu$ :

$$\frac{\partial}{\partial s}L = \frac{\mu}{2}\nabla^2 L$$

• This PDE is solved by

 $L(x, y; s) = (g_s * f)(x, y)$ 

 $\mu$  can be seen as a "diffusion speed":

Small  $\mu$ : the diffusion process is slow when *s* increases

Large  $\mu$ : the diffusion process is fast when *s* increases

Same as before

$$g_s(x,y) = \frac{1}{2\pi\mu s} e^{-\frac{x^2 + y^2}{2\mu s}} - \text{Slightly different}$$



#### Step 2

- We want the image content to control μ
  In flat regions: fast diffusion (large μ)
  In non-flat region: slow diffusion (small μ)
- We need to do *space-variant* diffusion
  - $\mu$  is a function of position (*x*,*y*)

We will introduce another spacevariant filter  $g_x$  in adaptive filtering



## Inhomogeneous diffusion

- Perona & Malik suggested to use  $\mu(x,y) = \frac{1}{1+|\nabla f|^2/\lambda^2}$ 

where  $\nabla f$  is the image gradient at (x,y)and  $\lambda$  is fixed a parameter

- Close to edges:  $|\nabla f|$  is large  $\Rightarrow \mu$  is small
- In flat regions:  $|\nabla f|$  is small  $\Rightarrow \mu$  is large



#### Non-Linear Regularization (compare L13)

• Minimizing 
$$\varepsilon(f) = \int_{\Omega} \Psi(|\nabla f|) \, dx \, dy$$

• Gives the Euler-Lagrange equation

$$\partial_x \frac{\Psi'(|\nabla f|)}{|\nabla f|} f_x + \partial_y \frac{\Psi'(|\nabla f|)}{|\nabla f|} f_y = \operatorname{div} \left( \frac{\Psi'(|\nabla f|)}{|\nabla f|} \nabla f \right) = 0$$

• Such that gradient descent gives

$$f^{(s+1)} = f^{(s)} + \alpha \operatorname{div}\left(\frac{\Psi'(|\nabla f^{(s)}|)}{|\nabla f^{(s)}|}\nabla f^{(s)}\right)$$



#### **Exemple: Perona-Malik Flow**

- Special cases:  $\Psi(|\nabla f|) = -K^2/2 \cdot \exp(-|\nabla f|^2/K^2)$   $\Rightarrow \Psi'(|\nabla f|) = |\nabla f| \exp(-|\nabla f|^2/K^2)$   $\Psi(|\nabla f|) = K^2/2 \cdot \log(K^2 + |\nabla f|^2)$  $\Rightarrow \Psi'(|\nabla f|) = |\nabla f|(1 + |\nabla f|^2/K^2)^{-1}$
- Such that gradient descent gives Perona-Malik Flow  $f^{(s+1)} = f^{(s)} + \alpha \operatorname{div} \left( \frac{\Psi'(|\nabla f^{(s)}|)}{|\nabla f^{(s)}|} \nabla f^{(s)} \right)$



#### Inhomogeneous diffusion





#### Inhomogeneous diffusion

- Noise is effectively removed in flat region
- Edges are preserved 🗳
- Noise is preserved close to edges

We want to be able to LP-filter along but not across edges



#### Step 3

- The previous PDEs are all isotropic
   ⇒ The resulting filter *g* is isotropic
- The last PDE can be written:





#### Step 3

- Change  $\mu$  from a scalar to a 2 × 2 symmetric matrix  $\mathbf{D}$  $\frac{\partial}{\partial s}L = \frac{1}{2}\operatorname{div}(\mathbf{D}\operatorname{grad} L)$
- The solution is now given by

$$L(\mathbf{x};s) = (g_s * f)(\mathbf{x}) \quad \Leftarrow \text{Same as before}$$
$$g_s(\mathbf{x}) = \frac{1}{2\pi \det(\mathbf{D})^{1/2}s} e^{-\frac{1}{2s}\mathbf{x}^T \mathbf{D}^{-1}\mathbf{x}}$$



# Ansiotropic diffusion

- The filter *g* is now anisotropic, i.e., not necessary circular symmetric
- The shape of g depends on **D**
- **D** is called a *diffusion tensor* 
  - Can be given a physical interpretation, e.g. for anisotropic heat diffusion



# The diffusion tensor

• Since **D** is symmetric  $2 \times 2$ :

$$\mathbf{D} = \alpha_1 \mathbf{e}_1 \mathbf{e}_1^T + \alpha_2 \mathbf{e}_2 \mathbf{e}_2^T$$

where  $\alpha_1$ ,  $\alpha_2$  are the eigenvalues of **D**, and **e**<sub>1</sub> and **e**<sub>2</sub> are corresponding eigenvectors

 $\mathbf{e}_1$  and  $\mathbf{e}_2$  form an ON-basis



# The filter g

• The corresponding shape of *g* is given by





#### Step 4

- We want *g* to be narrow across edges and wide along edges
- This means: **D** should depend on (*x*,*y*)
  - A space variant anisotropic diffusion
- This is referred to as *anisotropic diffusion* in the literature
- Introduced by Weickert



# Anisotropic diffusion

- Information about edges and their orientation can be provided by an orientation tensor, e.g., the structure tensor **T** in terms of its eigenvalues  $\lambda_1, \lambda_2$
- However:
  - We want  $\alpha_k$  to be close to 0 when  $\lambda_k$  is large
  - We want  $\alpha_k$  to be close to 1 when  $\lambda_k$  is close to 0



# From **T** to **D**

The diffusion tensor **D** is obtained from the orientation tensor **T** by modifying the eigenvalues and keeping the eigenvectors, e.g.





# Anisotropic diffusion: summary

- 1. At all points:
  - 1. compute a local orientation tensor T(x)
  - 2. compute D(x) from T(x)
- 2. Apply anisotropic diffusion onto the image by locally iterating

$$\frac{\partial}{\partial s}L = \frac{1}{2}\operatorname{div}(\mathbf{D}\operatorname{grad} L)$$

Right hand side: can be computed locally at each point (x,y)

This defines how scale space level

 $L(x,y;s+\partial s)$  is generated from L(x,y;s)



# Implementation aspects

- The anisotropic diffusion iterations can be done with a constant diffusion tensor field **D**(**x**), computed once from the original image (faster)
- Alternatively: re-compute  $\mathbf{D}(\mathbf{x})$  between every iteration (slower)



# Simplification

- We assume  $\mathbf{D}$  to have a slow variation with respect to  $\mathbf{x}$  (cf. adaptive filtering)
- This means (see [EDUPACK ORIENTATION (22)])

$$\frac{\partial}{\partial s}L = \frac{1}{2}\nabla^T \mathbf{D}\nabla L \approx \frac{1}{2} \langle \mathbf{D} | \nabla \nabla^T \rangle L = \frac{1}{2} \mathrm{tr}[\mathbf{D}(\mathbf{H}L)]$$

The Hessian of *L* = second order derivatives of *L* 

$$\mathbf{H}L = \begin{pmatrix} \frac{\partial^2}{\partial x^2}L & \frac{\partial^2}{\partial x \partial y}L \\ \frac{\partial^2}{\partial x \partial y}L & \frac{\partial^2}{\partial y^2}L \end{pmatrix}$$



#### Numerical implementation

- Several numerical schemes for implementing anisotropic diffusion exist
- Simplest one:
  - Replace all partial derivatives with finite differences (see also lecture 13)

$$L(x, y; s + \Delta s) = L(x, y; s) + \frac{\Delta s}{2} \operatorname{tr}[\mathbf{D}(\mathbf{HL})]$$
The Hessian of  
*L* can be  
approximated  
by convolving  
*L* with:  

$$H_{11} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & -2 & 1 \\ 0 & 0 & 0 \end{pmatrix} H_{12} = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix} H_{22} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$



### **Algorithm Outline**

1. Set parameters

e.g.: k,  $\Delta s$ , number of iterations, ...

- 2. Iterate
  - 1. Compute orientation tensor  ${\bf T}$
  - 2. Modify eigenvalues  $\Rightarrow$  **D**
  - 3. Computer Hessian  $\mathbf{H} L$
  - 4. Update *L* according to:

 $L(x, y; s + \Delta s) = L(x, y; s) + \frac{\Delta s}{2} \operatorname{tr}[\mathbf{D}(\mathbf{H}L)]$ 



#### Comparison







#### A note

- The image f is never convolved by the spacevariant anisotropic filter g
- Instead, the effect of *g* is generated incrementally based on the diffusion eq.
- In adaptive filtering: we never convolve f with  $g_x$  either, instead several fixed filters are applied onto f and their results are combined in a non-linear way



#### How to choose $g_x$ ?

According to the discussion in the introduction, we choose  $g_x$  such that:

 It contains a low-pass component that maintains the local image mean intensity

Independent of **x** 

 It contains a high-pass component that depends on the local signal structure

Dependent of **x** 

 Also: the resulting operation for computing h should be simple to implement

**Computational efficient** 



# Ansatz for $g_x$

# We apply a filter that is given in the <u>Fourier domain</u> as

$$G_{\rm HP}(\mathbf{u}) = G_{\rho}(u)(\hat{\mathbf{u}}^T \hat{\mathbf{e}})^2 \qquad \mathbf{u} = u\hat{\mathbf{u}}$$

- $G_{HP}$  is polar separable
- It attenuates frequency components that are  $\perp$  to  $\boldsymbol{\hat{e}}$
- It maintains all frequency components that are || to  ${\bf \hat{e}}$



• We know that [EDUPACK – ORIENTATION (20)]

$$(\hat{\mathbf{u}}^T \hat{\mathbf{e}})^2 = \langle \hat{\mathbf{u}} \hat{\mathbf{u}}^T | \hat{\mathbf{e}} \hat{\mathbf{e}}^T \rangle = \langle \hat{\mathbf{u}} \hat{\mathbf{u}}^T | \mathbf{T}(\mathbf{x}) \rangle$$

where  $\mathbf{T}(\mathbf{x}) = \hat{\mathbf{e}}\hat{\mathbf{e}}^{\mathrm{T}}$  (assume A = 1!)

• Using a *N*-D tensor basis  $\hat{\mathbf{N}}_{k} = \hat{\mathbf{n}}_{k}\hat{\mathbf{n}}_{k}^{T}$  and its dual  $\tilde{\mathbf{N}}_{k}$ , we obtain:

$$\mathbf{T}(\mathbf{x}) = \sum_{k=1}^{N} \langle \mathbf{T}(\mathbf{x}) | ilde{\mathbf{N}}_k 
angle \hat{\mathbf{N}}_k$$







• Plug this into the expression for  $G_{HP}$ :





Consequently, the filter  $G_{HP}$  is a linear combination of N filters, where each filter has a Fourier transform:

$$G_{\mathrm{HP},k}(\mathbf{u}) = G_{\rho}(u)(\hat{\mathbf{u}}^T \hat{\mathbf{n}}_k)^2$$

Independent of **x** 

and N scalars:

 $\langle \mathbf{T}(\mathbf{x}) | \mathbf{N}_k \rangle$ 

Dependent of x



# Summarizing, the adaptive filter can be written as





If the filter is applied to a signal, we obtain





# Outline Adaptive Filtering v.1

- 1. Estimate the orientation tensor T(x) at each point x
- 2. Apply a number of fixed filters to the image: one LP-filter  $g_{\text{LP}}$  and the *N* HP-filters  $g_{\text{HP},k}$
- 3. At each point **x**:
  - 1. Compute the N scalars  $\langle \mathbf{T}(\mathbf{x}) | \mathbf{N}_k \rangle$
  - 2. Form the linear combination of the N HP-filter responses and the N scalars and add the LP-filter response
- 4. At each point **x**, the result is the filter response  $h(\mathbf{x})$  of the locally adapted filter  $g_{\mathbf{x}}$

#### The filter $g_x$ is also called a steerable filter



#### Observation

- **T** can be estimated for any image dimension
- The filters  $g_{\rm LP}$  and  $g_{{\rm HP},k}$  can be formulated for any image dimension
  - $\Rightarrow$  The method can be implemented for any dimension of the signal (2D, 3D, 4D, ...)



#### **Remaining questions**

- What happens in regions that are not i1D, i.e., if T has not rank 1?
- 2. What happens if  $A \neq 1$ ?
- 3. How to choose the radial function  $G_{\rho}$ ?



# Non-i1D signals

- The tensor eigenvectors with non-zero eigenvalues span the subspace of the Fourier domain that contains the signal energy
- Equivalent: For a given local region with orientation tensor T, let û define an arbitrary orientation. The product û<sup>T</sup>T û is a measure of how much energy in this orientation the region contains.



# Non-i1D signals

• But

$$\hat{\mathbf{u}}^T \mathbf{T} \hat{\mathbf{u}} = \langle \hat{\mathbf{u}} \hat{\mathbf{u}}^T | \mathbf{T} \rangle$$

which means that the adaptive filtering should work in general, even if the signal is non-i1D



#### How about A = 1?

- Previously we assumed A = 1, but normally A depends on the local amplitude of the signal (depends on x)
- In order to achieve A = 1, **T** must be pre-processed
- The resulting tensor is called the control tensor C
- Replace  ${\bf T}$  with  ${\bf C}$  in all previous expressions!



#### Pre-processing of **T**

- The filter  $g_x$  is supposed to vary slowly with  $\mathbf{x}$ , but  $\mathbf{T}$  contains high-frequency noise that comes from the image noise
- This noise can be reduced by an initial LP-filtering of **T** (i.e., of its elements)
- The result is denoted  $\mathbf{T}_{\text{\tiny LP}}$



#### Pre-processing of T





# Modification of the eigenvalues





#### Modification of the eigenvalues





# The radial function $G_{\rho}$

- Should "mainly" be equal to 1
- Should tend to 0 for  $u = \pi$
- Together with the LP-filter  $g_{\text{LP}}$ : an all-pass filter





#### The adaptive filter in 2D





# Outline Adaptive Filtering v.2

- 1. Estimate the local tensor in each image point: T(x)
- 2. LP-filter the tensor:  $T_{LP}(x)$
- 3. In each image point:
  - 1. Compute the eigenvalues and eigenvectors of  $T_{LP}(x)$ .
  - 2. Map the eigenvalues  $\lambda_k$  to  $\gamma_k$ .
  - 3. Re-combine  $\gamma_k$  and the eigenvectors to form the control tensor **C**
  - 4. Compute the scalars  $\langle \mathbf{C} | \mathbf{\tilde{N}}_{\mathbf{k}} \rangle$  for all k = 1, ..., N
- 4. Filter the image with  $g_{\text{LP}}$  and the *N* HP-filters  $g_{\text{HP},k}$
- 5. In each image point: form the linear combination of the filter responses and the scalars



#### Example





# Example





### An iterative method

- Adaptive filtering can be iterated for reducing the noise
- If the filter size is reduced at the same time, a close-to continuous transition is achieved (evolution)
- This is closely related to the previous method for image enhancement: *anisotropic diffusion*



## Michael Felsberg michael.felsberg@liu.se

www.liu.se

