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Why image enhancement?
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• Example of artifacts 
caused by image 
encoding



Why image enhancement?
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Example of motion blur



Why image enhancement?
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• Example of an 
image with sensor 
noise

– ultrasound 
image of a 
beating heart



Why image enhancement?

5

• IR-image

– fixed pattern noise =  spatial variations in 
gain and offset

– Possibly even variations over time!

– Hot/dead pixels

• A digital camera with short exposure time

– Shot noise (photon noise)



Methods for image enhancement
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• Inverse filtering: the distortion process is 
modeled and estimated (e.g. motion blur) and 
the inverse process is applied to the image

• Image restoration: an objective quality
(e.g. sharpness) is estimated in the image.
The image is modified to increase the quality

• Image enhancement: modify the image to 
improve the visual quality, often with a 
subjective criteria



Additive noise

7

• Some types of image distortion can be described as

– Noise added on each pixel intensity

– The noise has the identical distribution and is 
independent at each pixel (i.i.d.)

• Not all type of image distortion are of this type:

– Multiplicative noise

– Data dependent noise

– Position dependent

• The methods discussed here assume additive i.i.d.-
noise

What about pixel 
shot noise?



Removing additive noise
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• Image noise typically contains higher 
frequencies than images generally do

) a low-pass filter can reduce the noise

• BUT: we also remove high-frequency signal 
components, e.g. at edges and lines

• HOWEVER: A low-pass filter works in regions 
without edges and lines (ergodicity)



Example: LP filter
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Image with some noise

Filter, ¾ = 1

Filter, ¾ = 2



Basic idea
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The problem of low-pass filters is that we 
apply the same filter on the whole image

We need a filter that locally 
adapts to the image structures

A space-variant filter



Ordinary filtering / convolution
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• Ordinary filtering can be described as a 
convolution of the signal f and the filter g:

For each x, we compute the integral 
between the filter g and a shifted signal f



Adaptive filtering
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• If we apply an adaptive (or position 
dependent, or space-variant) filter gx, the 
operation cannot be expressed as a 
convolution, but instead as

For each x, we compute the integral 
between a shifted signal f and the filter gx 

where the filter depends on x



Orientation-selective gx
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• If the signal is  i1D the filter can maintain 
the signal by reducing the frequency 
components orthogonal to the local structure 

• The human visual system is less sensitive to 
noise along linear structures than to noise in 
the orthogonal direction 

• Results in good subjective improvement of 
image quality



Oriented noise
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White noise in the
image domain



Oriented noise
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White noise in the
Fourier domain



Oriented noise
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Oriented white noise in 
the Fourier domain



Oriented noise

17

Oriented white noise in 
the image domain



Oriented noise

18

Edges and lines

A. Without noise

B. With oriented noise along

C. With isotropic noise

D. With oriented noise across

A

D

B

C



Local structure information
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• We compute the local orientation tensor T(x) 
at all points x to control / steer gx

• At a point x that lies in a locally i1D region, 
we obtain

ê is normal to the 
linear structure

ê



Scale space recap (from lecture 2)
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• The linear Gaussian scale space related to the 
image f  is a family of images L(x,y;s)

parameterized by the scale parameter s, 
where

Convolution 
over (x,y) only!

A Gaussian LP-filter 

with ¾
2
 = s

Note: gs(x,y) = (x,y) for s = 0



Scale space recap (from lecture 2)
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• L(x,y;s) can also be seen as the solution to the 
PDE

with boundary condition L(x,y;0) = f(x,y)

The diffusion equation

Example:

L = temperature

s = time

Left hand side:
the change in L
at (x,y) between
s and s+s



Repetition: Vector Analysis

• Nabla operator

• On a scalar function

• On a vector field

• Laplace
operator
note: 

22



Enhancement based on linear 
(homogeneous) diffusion
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• This means that L(x,y;s) is an LP-filtered 
version of f(x,y) for s > 0.

• The larger s is, the more LP-filtered is f
– High-frequency noise will be removed for 

larger s

• Also high-frequency image components 
(e.g. edges) will be removed

• We need to control the diffusion process 
such that edges remain - How?



Step 1
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• Modify the PDE by introducing a parameter ¹:

• This PDE is solved by

¹ can be seen as a “diffusion 
speed”:

Small ¹: the diffusion process is 
slow when s increases

Large ¹: the diffusion process is 
fast when s increases

Same as before

Slightly different



Step 2
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• We want the image content to control ¹

– In flat regions: fast diffusion (large ¹)

– In non-flat region: slow diffusion (small ¹)

• We need to do space-variant diffusion

–  ¹ is a function of position (x,y)

We will introduce another space- 
variant filter gx in adaptive filtering



Inhomogeneous diffusion
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• Perona & Malik suggested to use

where rf is the image gradient at (x,y)
and ¸ is fixed a parameter

– Close to edges: |rf| is large ) ¹ is small

– In flat regions: |rf| is small ) ¹ is large



Non-Linear Regularization (compare L13) 

• Minimizing

• Gives the Euler-Lagrange equation

• Such that gradient descent gives

27



Exemple: Perona-Malik Flow
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• Special cases:

• Such that gradient descent gives Perona-Malik Flow



Inhomogeneous diffusion

29



Inhomogeneous diffusion
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• Noise is effectively removed in flat region

• Edges are preserved

• Noise is preserved close to edges

We want to be able to LP-filter along 
but not across edges



Step 3
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• The previous PDEs are all isotropic

) The resulting filter g is isotropic

• The last PDE can be written:

Gradient of L,
a 2D vector field

Divergence of (…)
maps 2D vector field to scalar field



Step 3
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• Change ¹ from a scalar to a 2 £ 2 symmetric 
matrix D

• The solution is now given by

( Same as before



Ansiotropic diffusion
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• The filter g is now anisotropic, i.e., not 
necessary circular symmetric

• The shape of g depends on D

• D is called a diffusion tensor

– Can be given a physical interpretation, e.g. 
for anisotropic heat diffusion



The diffusion tensor
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• Since D is symmetric 2 £ 2:

where ®1, ®2 are the eigenvalues of D, and
e1 and e2 are corresponding eigenvectors

e1 and e2 form an ON-basis



The filter g
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• The corresponding shape of g is given by
e1

e2

®1

®2

The width of the filter in 
direction ek is given by ®k

Iso-curves for g )



Step 4
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• We want g to be narrow across edges and 
wide along edges

• This means: D should depend on (x,y)

– A space variant anisotropic diffusion

• This is referred to as anisotropic diffusion in 
the literature

• Introduced by Weickert



Anisotropic diffusion
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• Information about edges and their orientation 
can be provided by an orientation tensor, e.g., 
the structure tensor T in terms of its 
eigenvalues ¸1, ¸2

• However:

– We want ®k to be close to 0 when ¸k is large

– We want ®k to be close to 1 when ¸k is close 
to 0



From T to D
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• The diffusion tensor D is obtained from the 
orientation tensor T by modifying the 
eigenvalues and keeping the eigenvectors, 
e.g.

m is a control parameter

For example



Anisotropic diffusion: summary
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1. At all points:
1. compute a local orientation tensor T(x)

2. compute D(x) from T(x)

2. Apply anisotropic diffusion onto the image by 
locally iterating

This defines how scale space level

L(x,y;s+s) is generated from L(x,y;s)

Right hand side:
can be computed
locally at each
point (x,y)



Implementation aspects
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• The anisotropic diffusion iterations can be 
done with a constant diffusion tensor field 
D(x), computed once from the original image 
(faster)

• Alternatively: re-compute D(x) between every 
iteration (slower)



Simplification
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• We assume D to have a slow variation with respect 
to x (cf. adaptive filtering)

• This means (see [EDUPACK – ORIENTATION (22)])

The Hessian of L = second order derivatives of L



Numerical implementation
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• Several numerical schemes for implementing 
anisotropic diffusion exist

• Simplest one:

– Replace all partial derivatives with finite 
differences (see also lecture 13)

The Hessian of 
L can be 
approximated 
by convolving 
L with:



Algorithm Outline
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1. Set parameters

e.g.: k, ¢s, number of iterations, …

2. Iterate

1. Compute orientation tensor T

2. Modify eigenvalues ) D

3. Computer Hessian H L

4. Update L according to:



Comparison
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Inhomogenous diffusion Anisotropic diffusion



A note
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• The image f is never convolved by the space-
variant anisotropic filter g

• Instead, the effect of g is generated 
incrementally based on the diffusion eq.

• In adaptive filtering: we never convolve f with 
gx either, instead several fixed filters are 
applied onto f and their results are combined 
in a non-linear way



How to choose gx ?
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According to the discussion in the 
introduction, we choose gx such that:
– It contains a low-pass component that 

maintains the local image mean intensity

– It contains a high-pass component that 
depends on the local signal structure

– Also: the resulting operation for computing 
h should be simple to implement

Independent of x

Dependent of x

Computational efficient



Ansatz for gx
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We apply a filter that is given in the Fourier domain 
as

– GHP is polar separable

– It attenuates frequency components that are ? to ê

– It maintains all frequency components that are || to ê 



How to implement gx ?
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• We know that [EDUPACK – ORIENTATION (20)]

where T(x) = êêT              (assume A = 1!)

• Using a N-D tensor basis Nk = nknk
T and its dual 

Ñk, we obtain:

^ ^ ^



How to implement gx ?
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depends on u 
but not on ê

depends on ê 
but not on u



How to implement gx ?
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• Plug this into the expression for GHP :

depends on u 
but not on ê

depends on ê 
but not on u



How to implement gx ?
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Consequently, the filter GHP is a linear 
combination of N filters, where each filter has 
a Fourier transform:

and N scalars:

Independent of x

Dependent of x



How to implement gx ?
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Summarizing, the adaptive filter can be 
written as

A fixed LP-filter N fixed HP-filters

N position dependent scalars



How to implement gx ?
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If the filter is applied to a signal, we obtain

Standard convolution Standard convolutions

Position dependent scalars



Outline Adaptive Filtering v.1
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1. Estimate the orientation tensor T(x) at each point x
2. Apply a number of fixed filters to the image:

one LP-filter gLP and the N HP-filters gHP,k

3. At each point x:
1. Compute the N scalars

2. Form the linear combination of the N HP-filter responses 
and the N scalars and add the LP-filter response

4. At each point x, the result is the filter response h(x) of the 
locally adapted filter gx

The filter gx is also called a steerable filter



Observation
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• T can be estimated for any image dimension

• The filters gLP and gHP,k can be formulated for 
any image dimension

 ) The method can be implemented for any
 dimension of the signal (2D, 3D, 4D, …)



Remaining questions
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1. What happens in regions that are not i1D, 
i.e., if T has not rank 1?

2. What happens if A≠1?

3. How to choose the radial function G?



Non-i1D signals
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• The tensor eigenvectors with non-zero 
eigenvalues span the subspace of the 
Fourier domain that contains the signal 
energy

• Equivalent: For a given local region with 
orientation tensor T, let û define an 
arbitrary orientation. The product ûTT û is 
a measure of how much energy in this 
orientation the region contains.



Non-i1D signals
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• But

which means that the adaptive filtering 
should work in general, even if the signal is 
non-i1D



How about A = 1?
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• Previously we assumed A = 1, but normally A 
depends on the local amplitude of the signal 
(depends on x)

• In order to achieve A = 1, T must be
pre-processed

• The resulting tensor is called the
control tensor C

• Replace T with C in all previous expressions!



Pre-processing of T
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• The filter gx is supposed to vary slowly with x, 
but T contains high-frequency noise that 
comes from the image noise

• This noise can be reduced by an initial
LP-filtering of T (i.e., of its elements)

• The result is denoted TLP



Pre-processing of T
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TLP must be normalized (similar to the 
diffusion 
tensor D):

Eigen-decomposition of TLP

Same eigenvectors as TLP,

but different eigenvalues



Modification of the eigenvalues 
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Modification of the eigenvalues
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The radial function G
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• Should “mainly” be equal to 1

• Should tend to 0 for u = 

• Together with the LP-filter gLP: an all-pass filter

Radial part of GLP Radial part of GHP Radial part of GLP + GHP



The adaptive filter in 2D
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Examples of G(u) for 
different C(x)



Outline Adaptive Filtering v.2
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1. Estimate the local tensor in each image point: T(x)

2. LP-filter the tensor: TLP(x)

3. In each image point:
1. Compute the eigenvalues and eigenvectors of TLP(x).

2. Map the eigenvalues k to k.

3. Re-combine k and the eigenvectors to form the control 
tensor C

4. Compute the scalars hC|Ñki for all k = 1,…, N

4. Filter the image with gLP and the N HP-filters gHP,k

5. In each image point: form the linear combination 
of the filter responses and the scalars



Example
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Original noisy image Image after enhancement



Example

68



An iterative method
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• Adaptive filtering can be iterated for reducing 
the noise

• If the filter size is reduced at the same time, a 
close-to continuous transition is achieved 
(evolution)

• This is closely related to the previous method 
for image enhancement: anisotropic diffusion
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