
5

Forward Projection through
Voxel Volumes

Forward projection through voxel volumes is a major step in all iterative recon-
struction methods. In the work of this thesis we have used forward projection
when generating synthetic projections of the voxelized head phantom defined in
Appendix B.3.

Most of the material in this chapter, apart from Section 5.3, is based on the
presentation by Köhler, Turbell, and Grass (2000). Additional experiments have
also been designed in collaboration with Thomas Köhler.

5.1 Methods

We present four different approaches to forward projection. All of these methods
can be classified as ray-driven, in the sense that they traverse each ray through
the voxel volume while accumulating the line-integration value. Alternative ap-
proaches are discussed in Section 5.3.

5.1.1 Siddon’s Method

Figure 5.1(a) shows a three-dimensional voxel grid along one axis. The sample
points are centred in the voxels. If nearest-neighbour interpolation is used, the
line-integral can be easily calculated as a weighted sum of the values of the in-
tersected voxels. The weights in the sum are naturally the length of intersection
between each voxel and the ray. Siddon (1985) formulated an efficient way of
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(a) Siddon’s method (b) Joseph’s method

(c) Simple approach (d) Köhler’s method

length of intersection

h

Figure 5.1 Four methods of line-integration as seen along one axis. Triangles
indicate bi-linear interpolation, squares indicate tri-linear interpolation.

calculating this length while traversing the ray. Other efficient ways of incremen-
tally stepping through voxel volumes have been developed for use in computer
graphics, see Cohen (1994) for further references.

The nearest neighbour interpolation is a too simplified model for most appli-
cations. Goertzen, Beekman, and Cherry (2000) present CT reconstruction experi-
ments from data obtained using Siddon’s method. They draw the conclusion that
the input voxel volume has to be of at least the double resolution in each dimen-
sion compared to the desired resolution of the reconstruction.

5.1.2 Joseph’s Method

Joseph (1982) describes a somewhat more elaborate forward projection method
for the two-dimensional case. It is easily extended to three dimensions. Assume
that the integral of the line segment between (x1; y1; z1) and (x2; y2; z2) is to be
computed. By comparing jx1 � x2j, jy1 � y2j, and jz1 � z2j, the principal direction
of the ray is first determined. We will now discuss the case where the principal
direction is along the x-axis, i.e. when jx1 � x2j is the largest of the three absolute
differences. The other cases are handled in similar ways.
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Figure 5.1(b) shows how a bi-linear interpolation is performed on the intersec-
tion points of each (y; z)-plane of the sampling grid. The sum of these interpola-
tions is finally weighted with the factorp

(x1 � x2)2 + (y1 � y2)2 + (z1 � z2)2

jx1 � x2j (5.1)

to compensate for the longer traversal of rays deviating from the principal direc-
tion.

5.1.3 A Simple Method

Köhler, Turbell, and Grass (2000) noted that the problem of calculating line-integrals
can be separated into the two steps:

1. Construction of a continuous volume by interpolation from the discrete data

2. Line-integration in the continuous volume

A simple algorithm is obtained if the interpolation is chosen to be tri-linear and the
integration through the continuous volume is approximated by summing values
at equidistant points along the ray. See Figure 5.1(c).

The step width h is a free parameter that can be used to trade off between
image quality and computation time. We introduce the quantity

N =
�x

h
(5.2)

A value of N = 1 corresponds to a sampling distance equal to the voxel sampling
distance. The quantity N is therefore reffered to as an oversampling factor.

5.1.4 Köhler’s Method

The Simpson rule of integration (Råde and Westergren 1990)Z b

a

f(l) dl � b� a

6
(f(a) + 4f(

a+ b

2
) + f(b)) (5.3)

can be used to numerically approximate the integral of a function given the func-
tion values at the integration borders and at the centre of the integration interval.
For functions which are polynomials of third order the Simpson rule can be shown
to be exact.

Let us define a cell as a box of sides �x, �y, and �z with sampling points at its
corners. The cells can be seen as voxels shifted half a sampling distance. Köhler
et al. (2000) showed that tri-linear interpolation in step 1 above results in a volume
where the density along a ray varies as a polynomial of third order within each
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cell. It is therefore possible to calculate the line-integral in step 2 above analytically
within each cell using the Simpson rule of integration.

The resulting method is illustrated in Figure 5.1(d) and consists of the follow-
ing steps:

Algorithm 5.1 Köhler’s method of line-integration

1: for each cell intersected by the ray do
2: calculate the function value at the two intersections of the cell wall using

bi-linear interpolation
3: calculate the function value at the point halfway between the two intersec-

tion points above using tri-linear interpolation
4: combine the three values using Simpson’s rule (5.3)
5: accumulate the result
6: end for

The values obtained by bi-linear interpolation at the wall intersections can be
reused for the neighbouring cells. The free parameter h appearing in the simple
approach is not used in the Köhler method.

5.2 Experimental results

We have calculated forward projections through the voxelized head phantom us-
ing the simple approach and Köhler’s method. Figure 5.2(a) shows the root mean
square difference between the two methods for different oversampling factors. A
high oversampling factor is clearly needed in the simple approach to obtain the ac-
curacy of Köhler’s method. Figure 5.2(b) shows that the simple approach requires
substantially more computation time for such a high oversampling factor.

In a second experiment we used an analytically described phantom with known
projection values. The phantom was discretized as input to the algorithms. The
results could then be compared with the ideal analytical values.

In order to avoid most of the aliasing a phantom such as a solid box or ellipsoid
would result in we have chosen a spherically symmetric Kaiser-Bessel window as
phantom. This window has only small frequency components above the Nyquist
frequency related to our sampling distance �x. It is defined as

f(x; y; z) =
I0(�

q
1� x2+y2+z2

a2
)

I0(�)
(5.4)

where I0 is the modified Bessel function of order 0. The free parameters a and
� have been chosen as a = Nx=2 = 4 and � = �a. The phantom was sampled
at (Nx �M)3 = 512M3 voxels of side 1=M , where M is a variable oversampling
factor.
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(a) Root mean square difference in arbi-
trary units between the simple approach and
Köler’s method. as a function of the over-
sampling N used in the simple approach.
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(b) Average time needed by the simple ap-
proach as a function of the oversampling
N . The line indicates the time needed using
Köhler’s approach.

Figure 5.2 Comparisons between the simple approach and Köhler’s method.

Lewitt (1990) showed that the projection of a Kaiser-Bessel window only de-
pends on the distance d between the ray and the window centre as

p(d) =
2a

�I0(�)
sinh

 
�

r
1� d2

a2

!
(5.5)

The root mean square of the difference between these ideal projection values and
the calculated ones are plotted in Figure 5.3 as a function of the oversampling
factor M . The Siddon method is clearly inferior to the methods of Joseph and
Köhler that perform similarly.
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Figure 5.3 Root mean square error of the projection values for three different for-
ward projection methods as a function of the oversampling rate M .
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5.3 Discussion

At first sight, it might be surprising to see that the method of Joseph performs as
good as the method of Köhler. We will now present an non-formal explanation.

The Siddon method can easily be expressed in the two steps mentioned above.
The first step is an interpolation with the box function shown in Figure 5.4(a). The
resulting volume is constant within each voxel. The weighting with the length
of intersection clearly evaluates the line-integral through this volume analytically
correct.

The Joseph method can also be expressed in the two steps. The interpolation
should then be seen as being performed with a sheared tri-linear kernel as shown
in Figure 5.4(b). The kernel axis parallel to the principal direction of the ray is
sheared to be parallel with the ray. The other two kernel axes are kept unchanged.
When the sheared axis of the kernel is parallel to the ray it is clear that an an-
alytical integral through the kernel is identical to the bi-linear interpolation and
compensation factor (5.1) in Joseph’s method. Any smoothing in the direction of
the ray is eliminated by the integration.

The only difference between the Joseph and Köhler methods is hence that the
interpolation kernel in the Joseph method is a skewed version of the Köhler kernel
in Figure 5.4(c). This should not have dramatic effects on the obtained quality. It
is not obvious which kernel is optimal.

Figure 5.4(d) shows a rotated tri-linear kernel which could be considered as an
alternative. However, the sum of the kernel values at the sample points not will
be constant over the volume. It is therefore hard to formulate a practical algorithm
for this kernel.

The four presented methods are all ray-driven. Alternative methods also exist.
Lewitt (1992) has proposed the use of spherically symmetric interpolation kernels,
also known as blobs. Mueller, Yagel, and Wheller (1999) investigate voxel driven
approaches where a projection, a footprint, of each voxel is accumulated, splatted,
onto the detector.
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(a) Siddon (b) Joseph

(c) Köhler

(d) Rotated

Figure 5.4 Four interpolation kernels as seen along one axis. The line indicates
the ray along which the integration is performed.


