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LECTURE S5:METRICS
FOR MATCHING

¢ Descriptor distances

5¢ Chi? distance
¢ Earth Mover’s Distance (EMD)

Al

2¢ Ratio Score

o=

3¢ Visual Words

Al

¢ Learning the metric
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A

2t For a descriptor q in a query image. Which

prototype 1n memory (p1,p2,--.,pPN) 18 most
[tkely to correspond to the same world object.

S

2t Assuming additive 1.1.d. Gaussian noise on all
elements: D

p(alpr) o H o) o
=

max(p) < min(— log(p))

—log(p(alpk)) < Y (pr — @)’
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Al

2 So, the match with smallest distance 1s most
likely correct, assuming 1.1.d. Gaussian noise.

* What about the scalar product for normalised

vectors/NCC?

lp—dq|?=p'p+q97q—2p'q=2(1-p7q)
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Al

¢ Many descriptors are histogram-like in their
nature.

Al

* For histograms, the histogram values
typically follow the (discrete)

Poisson distribution:

Pleliy =y c '/

s With the statistics:
E[P(k)]=p E[(P(k)—p) =pu
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¢ For large values of 1, (e.g. 1000) a
(continuous) Gaussian can approximate the
Poisson distribution:

1
k ~
p(k|w) T

¢ Again, assuming independence, this leads to a

S ol

negative log likelihood proportional to:

— log(p(a|pk)) Z Prl — @1)° /1
=

N [ e e [ e |
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Al

¢ If we estimate the variance by:

= (pr +q1)/2
* We find that the most likely match 1s the one
with the smallest Chi-squared distance:

D

Xg(% Pk) 5 Z (pkz o ql)2

wE el

Al

3¢ This 1s assuming independence between bins.
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Al

¢ In histograms, neighbouring bins are

typically correlated
A A
e e
A == A ==

Al

‘¢ Instead of falling in bin 1, a sample 1s likely to
fall in bin 1+1.

fredag, 2009 augusti 07



.

s« Distance=cost of moving values in p to q
cost=amount*distance

Al

¢ First solve a linear programming problem:
the trandsportation problem, Hitchcock 1941.

LrEie])
min 2 *fzdz here dzz ’L—j
in) > fuds e

i=1 j=1

2

“¢f;; amount to move from 1 to J.
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EARTH MOVER’S
DISTANCE

-
P~

‘¢ Transportation problem, cost function:

i aslc)
min ) Y fisdi; dij =i~ |
iJ

i=1 j=1

Al

5¢ Constraints:

a0 oy v =t D)

D
Zfz’jZQj Vi€ |l D]
=1
Zfz’j p s D)
i=1

()Y 2.0 0 = FeErEr-EFI K Sy nigrg =g
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>« Now compute EMD as:
D D Srens
d(p,q) = min Loizt Ly=1 Skt — 1
9 7 D D
Jig Zi—l ;:j—l fij

¢ The denominator 1s needed 1if histograms are

computed from different numbers of samples.

A

¢ Introduced in Computer Vision by
Rubner&Tomasi&Guibas, at ICCV98

A

¢ Local expert: Thomas Kaijser
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2

¢ If we have best matches for descriptors qi
and g2 1n the image. Which one 1s better?

A

2¢ Some features are more common than others, and
by scoring the match for qi, according to the
ratio between the best, and the second best
match we can compensate for this:

T:dl/dg
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RATIO SCORE
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BAGS-OF-FEATURES
AND VISUuAL WORDS

¢ A common technique for matching in large

datasets. Sivic&Zisserman “Video Google”
ICCVO03.

Object » Bag of ‘words’

lllustration by L| Fei- Fel http //people.csail.mit. edu/torralba/shortCourseRLOC/

Al

¢ Completely disregards spatial relationships
among features.
(YD A €) € ) SV TEE TP i o e Card (o [ ATEs T eyt Dol cu o p

fredag, 2009 augusti 07



A

“¢ Vector quantize feature space to into K parts
using e.g. K-means clustering (e.g. function
kmeans in Matlab) on large training set.

Al

2 Clustering 1s done 1n whitened space:

R=C )

2

¢ Each descriptor 1s then approximated by the
most similar prototype/visual word.
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VISUAL WORDS

¢ K-means finds a local min of the following

”
—

objective function (x-samples, p-prototypes):

(= Yy 2.0 €)F FErR-EFI1 Sy nigrg =g
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VISUAL WORDS

¢ Probability of visual words 1s somewhat

”
—

equalized. cf. ratio score and histogram eq.

”
—

¢ K-means 1s not perfectly repeatable.

(Try several times and pick highest J.)

(= Yy 2.0 €)F FErR-EFI1 Sy nigrg =g
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NA

¢ Analogy with text document matching.

Al

¢ Each document (1.e. image) 1s represented as
a vector of (TF-IDF) word frequencies

Nia N
= log —

T
Nel— (vl ?)K) Cre= Nd N,

¢term frequency: Nid/INg (word k, document d)
Nistér&Stewénius CVPRO6: skip Ng.

N

“¢1nverse document frequency: N/Nk - inverse
frequency of word k in whole database.

N [ e e [ e |
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A

¢ Image matching 1s done by a normalised
scalar product:

i

q

vV, Vp = COS ¢

Al

€ An nverted file makes real-time matching
possible on very large datasets:

wordl: frame 3, frame 17, frame 243...

word2: frame 2, frame 23, frame 33...
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3¢ Instead of the TF-IDF vector 1n the visual
words method, one could simply compute a
histogram of visual word occurrences.

A

¢ Thas 1s called a bag-of-features, or
bag-of-keypoints

¢ With IDF as metric this 1s equivalent to the
TE-IDF vector (when TF=Nyq).
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Al

5 The bag-of-features vector 1s often fed into a
machine learning algorithm. (E.g. in today’s
article).

¢ Typically K 1s large and most values are zero.

Csurka et al. K=1000
Sivic&Zisserman K=6000 and 10,000
Nistér&Stewénius K=16e6
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¢ What we ultimately want 1s to distinguish
good feature matches from bad.

Al

¢ Collect known corresponding descriptors:

{(Pr,ar)} and set dg = pr — qx

2% We now want to find a linear transformation
that makes the noise equal 1n magnitude n all
directions:

y, = Tpr assuming di ~ N(0,C)
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2

¢ Find a whitening transtorm T from the
covariance matrix:

K
1 .
§ = ;_1: drd ' withi TCE |

st Valid solutions:

T =RC 2 where RR?Y =1

NA

¢ If we only use the first few dimensions we
should choose R such that 1t selects
dimensions where we “see things happen”.

N [ e e [ e |
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2¢ Find R from PCA of transformed SIFT

feature space:

y L
R E: TR T __E
Gy — Nn:1ynyn mm N — Nn:1yn

RDR! = C

¢ Final contraction operator:
P_LRC I
* Where Ii 1s a k*128 truncated 1dentity

matrix.
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This Mahalanobis metric for features was

published at ICCV07 by
Mikolajczyk & Matas, SIFT 128->40 dim

A similar method that only finds a rotation
called linear discriminant embedding(LDE)

also at ICCV07 by Hua&Brown&Winder,
SIFT128->14/18dim

Besides reducing dimensionality, these
techniques also improve matching results.

. } - | = ) |



¢ Linear Discriminant Embedding (LDE)

A

2 Maximise

J(W) A Zoutlier(i,j) WT(pi e qj)2
Zinlier(i,j) w'(pi — q;)°

wl Aw
Jw)= o flw][ =1

\I

2 Where A covariance for outliers and B inliers.
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2

¢ J(w) 1s maximised by eigenvectors with large
eigenvalues in B™'A

~

NA

¢ Eagenvalues of B are set to \; = max(\;, \,.)

e
r = arg min ——— >«

N
e
¢ a can be interpreted as a threshold on SNR.
This 1s called Power Regulariwation

Al

¢ Many variations of the algorithm 1n the paper.

N [ e e [ e |
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LEARNING THE METRIC

Al

2 Some LDE results on grey-scale patches:

A

* Reducing the amount of power reg:

20%
10%
2%
0% s
3¢ Linear filters found on grey-scale patches:
LDE-I B 2010 O Ol Ok
LDE-II D Pt 0910 BN
OLDE-] N2 0 Feni TS o
OLDE-II ol B IO
PCA ™ BN I NV GG ORI EOSRA,

(c) 20038 PER-ERIKX FORSSE,]
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DISCUSSION

¢ Questions/comments on paper and lecture.
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