VISUAL OBJECT RECOGNITION

STATE-OF-THE-ART
TECHNIQUES AND
PERFORMANCE EVALUATION

LECTURE 5:METRICS FOR MATCHING

- Descriptor distances
 - **Chi**² distance
 - * Earth Mover's Distance (EMD)
- Ratio Score
- Wisual Words
- ** Learning the metric

DESCRIPTOR DISTANCES

- For a descriptor **q** in a query image. Which prototype in memory (**p**₁,**p**₂,...,**p**_N) is *most likely* to correspond to the same world object.
- **Assuming additive i.i.d. Gaussian noise on all elements:

$$p(\mathbf{q}|\mathbf{p}_k) \propto \prod_{l=1}^{D} e^{-.5(p_{kl} - q_l)^2/\sigma^2}$$

$$\max(p) \iff \min(-\log(p))$$

$$-\log(p(\mathbf{q}|\mathbf{p}_k)) \propto \sum_{l=1}^{D} (p_{kl} - q_l)^2$$

DESCRIPTOR DISTANCES

- So, the match with smallest distance is most likely correct, assuming i.i.d. Gaussian noise.
- What about the scalar product for normalised vectors/NCC?

$$||\mathbf{p} - \mathbf{q}||^2 = \mathbf{p}^T \mathbf{p} + \mathbf{q}^T \mathbf{q} - 2\mathbf{p}^T \mathbf{q} = 2(1 - \mathbf{p}^T \mathbf{q})$$

- **But are all values identically distributed?
- ...are they independent?

CHI² DISTANCE

- Many descriptors are histogram-like in their nature.
- ** For histograms, the histogram values typically follow the (discrete)

 *Poisson distribution:

$$P(k|\mu) = \mu^k e^{-\mu}/k!$$

With the statistics:

$$E[P(k)] = \mu$$
 $E[(P(k) - \mu)^2] = \mu$

CHI2 DISTANCE

**For large values of μ , (e.g. 1000) a (continuous) Gaussian can approximate the Poisson distribution:

$$p(k|\mu) \approx \frac{1}{\mu\sqrt{2\pi}}e^{-.5(k-\mu)^2/\mu}$$

** Again, assuming independence, this leads to a negative log likelihood proportional to:

$$-\log(p(\mathbf{q}|\mathbf{p}_k)) \propto \sum_{l=1}^{D} (p_{kl} - q_l)^2 / \mu_l$$

CHI² DISTANCE

If we estimate the variance by:

$$\mu_l \approx (p_{kl} + q_l)/2$$

We find that the most likely match is the one with the smallest Chi-squared distance:

$$\mathcal{X}^{2}(\mathbf{q}, \mathbf{p}_{k}) = \sum_{l=1}^{D} \frac{(p_{kl} - q_{l})^{2}}{p_{kl} + q_{l}}$$

** This is assuming independence between bins.

In histograms, neighbouring bins are typically correlated

Instead of falling in bin i, a sample is likely to fall in bin i+1.

- Distance=cost of moving values in p to q cost=amount*distance
- ** First solve a linear programming problem: the transportation problem, Hitchcock 1941.

$$\min_{f_{ij}} \sum_{i=1}^{D} \sum_{j=1}^{D} f_{ij} d_{ij} \quad \text{here} \quad d_{ij} = |i - j|$$

fij amount to move from i to j.

** Transportation problem, cost function:

$$\min_{f_{ij}} \sum_{i=1}^{D} \sum_{j=1}^{D} f_{ij} d_{ij} \quad d_{ij} = |i - j|$$

Constraints:

$$f_{ij} \ge 0 \quad \forall i, j \in [1, D]$$

$$\sum_{i=1}^{D} f_{ij} = q_j \quad \forall j \in [1, D]$$

$$\sum_{i=1}^{D} f_{ij} \le p_j \quad \forall j \in [1, D]$$

** Now compute EMD as:

$$d(\mathbf{p}, \mathbf{q}) = \min_{f_{ij}} \frac{\sum_{i=1}^{D} \sum_{j=1}^{D} f_{ij} |i - j|}{\sum_{i=1}^{D} \sum_{j=1}^{D} f_{ij}}$$

- The denominator is needed if histograms are computed from different numbers of samples.
- Introduced in Computer Vision by Rubner&Tomasi&Guibas, at ICCV98
- ** Local expert: Thomas Kaijser

RATIO SCORE

- If we have best matches for descriptors **q**₁ and **q**₂ in the image. Which one is better?
- Some features are *more common than others*, and by scoring the match for **q**₁, according to the ratio between the best, and the second best match we can compensate for this:

$$r = d_1/d_2$$

RATIO SCORE

Lowe IJCV04

Goshen&Shimshoni PAMI08

BAGS-OF-FEATURES AND VISUAL WORDS

** A common technique for matching in large datasets. Sivic&Zisserman "Video Google" ICCV03.

Illustration by Li Fei-Fei, http://people.csail.mit.edu/torralba/shortCourseRLOC/

Completely disregards spatial relationships among features.

- Wector quantize feature space to into K parts using e.g. K-means clustering (e.g. function kmeans in Matlab) on large training set.
- Clustering is done in whitened space:

$$\hat{\mathbf{x}} = \mathbf{C}^{-1/2}(\mathbf{x} - \mu)$$

Each descriptor is then approximated by the most similar prototype/visual word.

** K-means finds a local min of the following objective function (x-samples, p-prototypes):

$$J = \sum_{n=1}^{N} \min_{k \in [1...K]} ||\mathbf{x}_n - \mathbf{p}_k||^2$$

- **Probability of visual words is somewhat equalized. cf. ratio score and histogram eq.
- ** K-means is not perfectly repeatable.

 (Try several times and pick highest J.)

- ** Analogy with text document matching.
- Each document (i.e. image) is represented as a vector of (TF-IDF) word frequencies

$$\mathbf{v}_d = \begin{pmatrix} v_1 & \dots & v_K \end{pmatrix}^T \quad v_k = \frac{N_{kd}}{N_d} \log \frac{N}{N_k}$$

- **term frequency: N_{kd}/N_d (word k, document d) Nistér&Stewénius CVPR06: skip N_d.
- inverse document frequency: N/N_k inverse frequency of word k in whole database.

Image matching is done by a normalised scalar product:

$$\hat{\mathbf{v}}_q^T \hat{\mathbf{v}}_p = \cos \phi$$

An inverted file makes real-time matching possible on very large datasets:

word1: frame 3, frame 17, frame 243...

word2: frame 2, frame 23, frame 33...

• • •

BAG-OF-FEATURES

- **Instead of the TF-IDF vector in the visual words method, one could simply compute a histogram of visual word occurrences.
- This is called a bag-of-features, or bag-of-keypoints
- ₩ With IDF as metric this is equivalent to the TF-IDF vector (when TF=N_{kd}).

BAG-OF-FEATURES

- The bag-of-features vector is often fed into a machine learning algorithm. (E.g. in today's article).
- ** Typically K is large and most values are zero.

Csurka et al. K=1000 Sivic&Zisserman K=6000 and 10,000 Nistér&Stewénius K=16e6

- What we ultimately want is to distinguish good feature matches from bad.
- ** Collect known corresponding descriptors:

$$\{(\mathbf{p}_k, \mathbf{q}_k)\}_1^K$$
 and set $\mathbf{d}_k = \mathbf{p}_k - \mathbf{q}_k$

We now want to find a linear transformation that makes the noise equal in magnitude in all directions:

$$\mathbf{y}_k = \mathbf{T}\mathbf{p}_k$$
 assuming $\mathbf{d}_k \sim \mathcal{N}(0, \mathbf{C})$

Find a whitening transform T from the covariance matrix:

$$\mathbf{C} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{d}_k \mathbf{d}_k^T \quad \text{with} \quad \mathbf{T}\mathbf{C}\mathbf{T}^T = \mathbf{I}$$

Walid solutions:

$$\mathbf{T} = \mathbf{R}\mathbf{C}^{-1/2}$$
 where $\mathbf{R}\mathbf{R}^T = \mathbf{I}$

If we only use the first few dimensions we should choose **R** such that it selects dimensions where we "see things happen".

Find R from PCA of transformed SIFT feature space:

$$\mathbf{C}_b = \frac{1}{N} \sum_{n=1}^{N} \mathbf{y}_n \mathbf{y}_n^T - \mathbf{m} \mathbf{m}^T \quad \mathbf{m} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{y}_n$$

$$\mathbf{R}\mathbf{D}\mathbf{R}^T = \mathbf{C}$$

*Final contraction operator:

$$\mathbf{P} = \bar{\mathbf{I}}_k \mathbf{R} \mathbf{C}^{-1/2}$$

₩ Where I_k is a k*128 truncated identity matrix.

- This Mahalanobis metric for features was published at ICCV07 by Mikolajczyk&Matas, SIFT 128->40 dim
- **A similar method that only finds a rotation called linear discriminant embedding(LDE) also at ICCV07 by Hua&Brown&Winder, SIFT128->14/18dim
- Besides reducing dimensionality, these techniques also improve matching results.

- ** Linear Discriminant Embedding(LDE)
- **Maximise**

$$\mathbf{J}(\mathbf{w}) = \frac{\sum_{\text{outlier}(i,j)} \mathbf{w}^T (\mathbf{p}_i - \mathbf{q}_j)^2}{\sum_{\text{inlier}(i,j)} \mathbf{w}^T (\mathbf{p}_i - \mathbf{q}_j)^2}$$

$$\mathbf{J}(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{A} \mathbf{w}}{\mathbf{w}^T \mathbf{B} \mathbf{w}}, \quad ||\mathbf{w}|| = 1$$

* Where A covariance for outliers and B inliers.

- J(w) is maximised by eigenvectors with large eigenvalues in $B^{-1}A$
- # Eigenvalues of **B** are set to $\tilde{\lambda}_i = \max(\lambda_i, \lambda_r)$

$$r = \arg\min_{n} \frac{\sum_{i=n}^{N} \lambda_{i}}{\sum_{i=1}^{N} \lambda_{i}} \ge \alpha$$

- α can be interpreted as a threshold on SNR. This is called *Power Regularisation*
- Many variations of the algorithm in the paper.

- Some LDE results on grey-scale patches:
- Reducing the amount of power reg:

** Linear filters found on grey-scale patches:

DISCUSSION

** Questions/comments on paper and lecture.