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Seminar 8 date
• All seminars shifted by one week. 

• Exception: 
LE8 will take place on Wednesday March 25 
12.30-15.
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Lecture 5: Compound Descriptors 
and Metrics

• Until now we have focused 
on how to construct the 
observation. 

• This lecture is about how to 
arrange observations for 
matching. 

• We will also look at similarity, 
and distance measures.

matching

memoryobservation

decision
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Lecture 5: Compound 
Descriptors and Metrics

• Feature Constellations 

• Bags of Features and Visual Words  
Feature Sampling, Spatial Pyramids 

• Descriptor distances  
Chi2 distance, Earth Mover’s Distance (EMD) 

• Ratio Score Matching 

• Learning the metric
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Feature constellations
• Both Local appearance and constellations  

contribute to the recognition process. 

• Case study of visual agnosia: 
Oliver Sacks, ”The man who misstook his wife for a 
hat”, 1985
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Feature constellations

The Librarian Vertumnus, Rudolf II

• Italian painter Giuseppe Arcimboldo 1527-1593  
exploited how constellations inform recognition
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Feature constellations
• D.G. Lowe, ”Local Feature View Clustering for 3D 

Object Recognition”, CVPR’01 

• A view based object 
representation. 

• An object is a set of 
views. In each view 
an affine transform 
constrains the feature 
constellation.
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Feature constellations
• D.G. Lowe, ”Local Feature View Clustering for 

3D Object Recognition”, CVPR’01 

• During learning, similar views are clustered into 
fewer, if they can agree on a feature 
arrangement under an affine transformation. 

• As 3D geometry is not explicitly used, views can 
represent both pose changes and articulation of 
the object.
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Feature constellations
• D.G. Lowe, ”Local Feature View Clustering for 3D 

Object Recognition”, CVPR’01 

• In recognition, matching is first made by having each 
feature in the query image vote for matching views. 

• Views are then verified using the affine constellation 
model. 

• Scales to many objects using ANN-trees (LE6), but 
eventually trees become too large.
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Bags of features
• Another order of magnitude can be handled by 

Bags of features (introduced in todays paper) 
J. Sivic and A. Zisserman, ”Video Google: A text retrieval 
approach to object matching in videos”, ICCV’03

Object Bag of features

Illustration by Li Fei-Fei, http://people.csail.mit.edu/torralba/shortCourseRLOC/

http://people.csail.mit.edu/torralba/shortCourseRLOC/
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• Closely related to Bags of Keypoints, Bags of features 
(BoF), Bags of words (BoW), and Texton histograms.  
G. Csurka et al, ”Visual Categorization with Bags of Keypoints”, 
ECCV’04 

• Used for quickly indexing large datasets. 

• Completely disregards spatial relationships among 
features. 

• Spatial arrangement should be verified in a second 
step.

Visual Words
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Visual Words
• Descriptor space (e.g. SIFT) is vector quantized 

into K parts on large training set. 

• Clustering is done in whitened space: 

• A form of unsupervised metric learning (more on 
this later). 

• Each descriptor is then approximated by the most 
similar prototype/visual word.
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Visual Words
• The result of VQ is that probability of visual 

words is somewhat equalized (not completely).
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Visual Words
• Analogy with text document matching. 

• Each document (i.e. image) is represented as a vector 
of (TF-IDF) word frequencies (a bag of features) 
 

• term frequency: Nkd/Nd (word k, document d) 
Nistér&Stewénius CVPR06: skip Nd. 

• inverse document frequency: N/Nk - inverse frequency 
of word k in whole database.
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Visual Words
• Image matching is done by a normalised scalar 

product: 

• An inverted file makes real-time matching 
possible on very large datasets:  
 
    word1: frame 3, frame 17, frame 243...  
    word2: frame 2, frame 23, frame 33... 
    ...
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Bag of Features
• If we set TF=Nkd, and omit IDF we get a 

histogram of visual word occurrences. 

• This is called a bag-of-features/  
bag-of-words/bag-of-keypoints in the literature. 
G. Csurka et al, ”Visual Categorization with Bags of 
Keypoints”, ECCV’04 

• The IDF weight scales each dimension 
separately and can be seen as a specific choice 
of matching metric.
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• The bag-of-features vector is often fed into a 
machine learning algorithm (LE7) or used in 
ANN search (LE6) 

• Typically K is large and most values are zero.  
 
    Csurka et al.’04 K=1000  
    Sivic&Zisserman’03 K=6000 and 10,000 
    Nistér&Stewénius’06 K=16e6  
   

Bag of Features
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• E. Nowak, Jurie, Triggs, ”Sampling Strategies for 
Bag-of-Features Image Classification”, ECCV’06 

• More descriptors in histogram computation 
result in a more informative BoF vector. 

• For low-res images, number of detected points 
can easily be too low with standard detection 
thresholds.

Skip interest points?
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• For low detection thresholds detection is both highly 
biased and noisy. 

• Nowak, Jurie and Triggs improve performance using 
random sampling. Another popular choice is dense/
gridded sampling.

Skip interest points?

Harris-Laplace Harris-Laplace
no thr

Laplace-of
Gaussian

Random sampling



© 2 0 1 5  P e r - E r i k  F o r s s é n

• Lazebnink, Schmid &Ponce, ”Beyond Bags of 
Features: Spatial Pyramid Matching for Recognizing 
Natural Scene Categories”, CVPR’06 

• Essentially: 
stack BoF 
vectors in grids 
of several 
different sizes

Spatial Pyramids
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• Lazebnink, Schmid &Ponce, ”Beyond Bags of 
Features: Spatial Pyramid Matching for Recognizing 
Natural Scene Categories”, CVPR’06 

• Larger grid cells are down-weighted to compensate 
for the higher likelihood of matches there. 

• Even with a spatial pyramid, constellation information 
is not fully exploited in BoF approaches, so spatial 
verification may be useful afterwards.

Spatial Pyramids
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• P. Felzenswalb et al. ”A Discriminatively Trained, 
Multiscale, Deformable Part Model”, CVPR’08

Deformable Part Models

1. A coarse global model 
2. A fixed number of part models with flexible spatial 

arrangement.

Source code available on github
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• P. Felzenswalb et al. ”A Discriminatively Trained, 
Multiscale, Deformable Part Model”, CVPR’08 

• Detection is done 
on a coarse pattern 

• Constellations are 
used as a verification step. 
- makes matching tractable. 

• For several years this class of methods had the best 
performance in recognition contests.

Deformable Part Models
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• Fidler and Leonardis, ”Towards Scalable Representations of 
Object Categories: Learning a Hierarchy of Parts”, CVPR’07 

• Many recognition techniques (e.g. discriminative 
ones) are linear in the number of object 
categories. 

• Fidler&Leonardis present an attempt at 
automatic feature sharing to reduce the 
asymptotic complexity.

Hierarchical Compositional 
Models
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• Fidler and Leonardis, ”Towards Scalable Representations of 
Object Categories: Learning a Hierarchy of Parts”, CVPR’07 

• Each part is a combination of parts in the previous layer.  
(only a subset of parts shown above for L2-L6)

Hierarchical Compositional 
Models
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• Fidler and Leonardis, ”Towards Scalable Representations of 
Object Categories: Learning a Hierarchy of Parts”, CVPR’07 

• Recognition is done layer by layer, by having features 
describe all detected L1 features in the image (a generative 
approach). 

• Assignment in L2-L6 is done in hypothesize-verify fashion, 
where parts vote for constellations. 

• Each constellation has flexible position and orientation of 
parts (amount is learned).

Hierarchical Compositional 
Models
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• Fidler and Leonardis, ”Towards Scalable Representations of 
Object Categories: Learning a Hierarchy of Parts”, CVPR’07 

• Learning is done incrementally, one category at a time. 

• Features already present can be re-used in new categories. 

• Interesting idea, but currently only contour features are 
used. SOTA on shape recognition 2007.

Hierarchical Compositional 
Models
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Descriptor Distances
• For a descriptor q in a query image. Which 

prototype in memory (p1,p2,...,pN) is most likely 
to correspond to the same world object?
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Descriptor Distances
• For a descriptor q in a query image. Which 

prototype in memory (p1,p2,...,pN) is most likely 
to correspond to the same world object? 

• Assuming additive i.i.d. Gaussian noise on all 
elements:
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Descriptor Distances
• So, the match with smallest distance is most likely 

correct, assuming i.i.d. Gaussian noise. 

• What about the scalar product for normalised 
vectors/NCC?  
 

• But are all values identically distributed? 

• ...are they independent?
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Chi2 Distance
• Many descriptors (e.g. SIFT) are histogram-like 

in their nature. 

• For histograms, the histogram values typically 
follow the (discrete) 
 Poisson distribution:  

• Mean and variance: 
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Chi2 Distance
• For large values of 𝜇, (e.g. 1000) a (continuous) 

Gaussian can approximate the Poisson 
distribution: 
 

• Again, assuming independence, this leads to a 
negative log likelihood proportional to:
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Chi2 Distance
• If we estimate the variance by:  

• We find that the most likely match is the one with 
the smallest Chi-squared distance:  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Square root matching
• Another similar histogram measure is the square 

root distance: 

• Close approximation to Chi2, and faster if SQRT 
is pre-computed (e.g. RootSIFT).
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Histogram Intersection
• Histogram intersection similarity measure: 

• Another common similarity measure for histogram 
type data.  

• This far, all measures assume independence 
between bins. 

• Good for ANN methods (LE6), but an approximation.
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Earth Mover’s Distance
• In histograms, neighbouring bins are  

typically correlated 
 
 
 
 
 

• Instead of falling in bin i, a sample is likely to fall in 
bin  i+1.
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Earth Mover’s Distance
• Distance=cost of moving values in p to q 

cost=amount*distance

• First solve a linear programming problem:  
the transportation problem, Hitchcock 1941. 
 
 

• fij amount to move from i to j.
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Earth Mover’s Distance
• Transportation problem, cost function:  
 

• Constraints:
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Earth Mover’s Distance
• Now compute EMD as: 
 

• The denominator is needed if histograms are 
computed from variable numbers of samples. 

• Inroduced in Computer Vision by: 
Y. Rubner, C. Tomasi, and L. J. Guibas. ”The earth mover's 
distance as a metric for image retrieval”. IJCV Nov 2000 

• Local expert: Thomas Kaijser
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Pyramid Match Kernel
• EMD approximation:  

Grauman&Darrell, ICCV’05, ”Pyramid Match Kernels: Discriminative 
Classification with sets of image features”, ICCV05 

• Create ”scale pyramid” where bins are 
hierarchically grouped. 

• Downweight coarser scales in a way that ensures Mercer 
kernel properties (needed for SVM convergence). 

• Spatial pyramid for BoF was formulated using 
PMK.
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Ratio Score
• If we have best matches for descriptors q1 and 

q2 in the image. Which one is better? 

• Both similarity and risk of misclassification 
matter! 

• Scoring the match for q1, according to the ratio 
between the best, and the second best match 
compensates for this risk:
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Ratio Score

• From Lowe’04

Lowe IJCV04 Goshen&Shimshoni PAMI08
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Learning the Metric
• What we ultimately want is to distinguish good 

feature matches from bad. 

• Collect known corresponding descriptors:  

• We now want to find a linear transformation that 
makes the noise equal in magnitude in all 
directions:
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Learning the Metric
• Find a whitening transform T from the covariance 

matrix: 
 

• Valid solutions: 

• If we only use the first few dimensions we should 
choose R such that it selects dimensions where 
we “see things happen”.
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Learning the Metric
• Find R from PCA of transformed SIFT feature 

space: 
 
 

• Final contraction operator:  

• Where Ik is a k*128 truncated identity matrix.
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Learning the Metric
• This Mahalanobis metric for features was published 

at ICCV07 by Mikolajczyk&Matas, SIFT 128→40 dim 

• A similar method that only finds a rotation  called 
linear discriminant embedding(LDE) also at ICCV07 
by Hua&Brown&Winder,  
SIFT128→14/18dim 

• Besides reducing dimensionality, these techniques 
also improve matching results. 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Learning the Metric
• Linear Discriminant Embedding(LDE) 

• Maximise  
 
 
 
 

• Where A covariance for outliers and B inliers.
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Learning the Metric
• J(w) is maximised by eigenvectors with large 

eigenvalues in  

• Eigenvalues of B are set to 
 

• 𝜶 can be interpreted as a threshold on SNR.  
This is called Power Regularisation 

• Many variations of the algorithm in the paper.
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Learning the Metric
• Some LDE results on grey-scale patches: 

Reducing the amount of power reg:  
 
 

• Linear filters found on grey-scale patches:

20%
10%
2%
0%

LDE-I
LDE-II
OLDE-I
OLDE-II

PCA
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Discussion
• Questions/comments on today's paper:  
 
J. Sivic, A. Zisserman, "Video Google: A Text 
Retrieval Approach to Object Matching in 
Videos", ICCV 2003
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Paper for next week
• Paper to read for next week:  
 
M. Muja and D.G. Lowe, ”Scalable Nearest 
Neighbour Algorithms for High Dimensional 
Data”, TPAMI 2014 

• NB! Journal paper, so longer than previous 
papers.


