Visual Object Recognition

Lecture 5: Compound Descriptors and Metrics

Per-Erik Forssén, docent Computer Vision Laboratory Department of Electrical Engineering Linköping University

Seminar 8 date

- All seminars shifted by one week.
- Exception: LE8 will take place on Wednesday March 25 12.30-15.

Lecture 5: Compound Descriptors and Metrics

- Until now we have focused on how to construct the observation.
- This lecture is about how to arrange observations for matching.
- We will also look at similarity, and distance measures.

Lecture 5: Compound Descriptors and Metrics

- Feature Constellations
- Bags of Features and Visual Words
 Feature Sampling, Spatial Pyramids
- Descriptor distances Chi² distance, Earth Mover's Distance (EMD)
- Ratio Score Matching
- Learning the metric

- Both Local appearance and constellations contribute to the recognition process.
- Case study of visual agnosia: Oliver Sacks, "The man who misstook his wife for a hat", 1985

The Librarian

Vertumnus, Rudolf II

• Italian painter Giuseppe Arcimboldo 1527-1593 exploited how constellations inform recognition

- D.G. Lowe, "Local Feature View Clustering for 3D Object Recognition", CVPR'01
- A *view based* object representation.
- An object is a set of views. In each view an affine transform constrains the feature constellation.

- D.G. Lowe, "Local Feature View Clustering for 3D Object Recognition", CVPR'01
- During learning, similar views are clustered into fewer, if they can agree on a feature arrangement under an affine transformation.
- As 3D geometry is not explicitly used, views can represent both pose changes and articulation of the object.

- D.G. Lowe, "Local Feature View Clustering for 3D Object Recognition", CVPR'01
- In recognition, matching is first made by having each feature in the query image vote for matching views.
- Views are then verified using the affine constellation model.
- Scales to many objects using ANN-trees (LE6), but eventually trees become too large.

Bags of features

 Another order of magnitude can be handled by Bags of features (introduced in todays paper)
 J. Sivic and A. Zisserman, "Video Google: A text retrieval approach to object matching in videos", ICCV'03

Illustration by Li Fei-Fei, http://people.csail.mit.edu/torralba/shortCourseRLOC/

- Closely related to Bags of Keypoints, Bags of features (BoF), Bags of words (BoW), and Texton histograms.
 G. Csurka et al, "Visual Categorization with Bags of Keypoints", ECCV'04
- Used for quickly indexing large datasets.
- Completely disregards spatial relationships among features.
- Spatial arrangement should be verified in a second step.

 Descriptor space (e.g. SIFT) is vector quantized into K parts on large training set.

• Clustering is done in whitened space:

$$\hat{\mathbf{x}} = \mathbf{C}^{-1/2}(\mathbf{x} - \boldsymbol{\mu})$$

- A form of unsupervised metric learning (more on this later).
- Each descriptor is then approximated by the most similar prototype/visual word.

• The result of VQ is that probability of visual words is somewhat equalized (not completely).

- Analogy with text document matching.
- Each document (i.e. image) is represented as a vector of (TF-IDF) word frequencies (a bag of features)

$$\mathbf{v}_d = (v_1 \ \dots \ v_K)^T \qquad \qquad v_k = \frac{N_{kd}}{N_d} \log \frac{N}{N_k}$$

- term frequency: N_{kd}/N_d (word k, document d) Nistér&Stewénius CVPR06: skip N_d.
- inverse document frequency: N/N_k inverse frequency of word k in whole database.

Image matching is done by a normalised scalar product:

$$\hat{\mathbf{v}}_q^T \hat{\mathbf{v}}_p = \cos\phi$$

• An *inverted file* makes real-time matching possible on very large datasets:

word1: frame 3, frame 17, frame 243... word2: frame 2, frame 23, frame 33...

Bag of Features

- If we set TF=N_{kd}, and omit IDF we get a histogram of visual word occurrences.
- This is called a *bag-of-features/ bag-of-words/bag-of-keypoints* in the literature.
 G. Csurka et al, "Visual Categorization with Bags of Keypoints", ECCV'04
- The IDF weight scales each dimension separately and can be seen as a specific choice of matching metric.

Bag of Features

- The bag-of-features vector is often fed into a machine learning algorithm (LE7) or used in ANN search (LE6)
- Typically K is large and most values are zero.

Csurka et al.'04 K=1000 Sivic&Zisserman'03 K=6000 and 10,000 Nistér&Stewénius'06 K=16e6

Skip interest points?

- E. Nowak, Jurie, Triggs, "Sampling Strategies for Bag-of-Features Image Classification", ECCV'06
- More descriptors in histogram computation result in a more informative BoF vector.
- For low-res images, number of detected points can easily be too low with standard detection thresholds.

Skip interest points?

For low detection thresholds detection is both highly biased and noisy.

Harris-Laplace Harris-Laplace Laplace-of Random sampling no thr Gaussian

 Nowak, Jurie and Triggs improve performance using random sampling. Another popular choice is dense/ gridded sampling.

Spatial Pyramids

- Lazebnink, Schmid &Ponce, "Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories", CVPR'06
- Essentially: stack BoF vectors in grids of several different sizes

Spatial Pyramids

- Lazebnink, Schmid &Ponce, "Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories", CVPR'06
- Larger grid cells are down-weighted to compensate for the higher likelihood of matches there.
- Even with a spatial pyramid, constellation information is not fully exploited in BoF approaches, so spatial verification may be useful afterwards.

Deformable Part Models

- P. Felzenswalb et al. "A Discriminatively Trained, Multiscale, Deformable Part Model", CVPR'08
 - 1. A coarse global model
 - 2. A fixed number of part models with flexible spatial arrangement.

Source code available on github

Deformable Part Models

- P. Felzenswalb et al. "A Discriminatively Trained, Multiscale, Deformable Part Model", CVPR'08
- Detection is done on a coarse pattern
- Constellations are used as a verification
 makes matching tractable.

• For several years this class of methods had the best performance in recognition contests.

- Fidler and Leonardis, "Towards Scalable Representations of Object Categories: Learning a Hierarchy of Parts", CVPR'07
- Many recognition techniques (e.g. discriminative ones) are linear in the number of object categories.
- Fidler&Leonardis present an attempt at automatic feature sharing to reduce the asymptotic complexity.

• Fidler and Leonardis, "Towards Scalable Representations of Object Categories: Learning a Hierarchy of Parts", CVPR'07

Each part is a combination of parts in the previous layer.
 (only a subset of parts shown above for L2-L6)

- Fidler and Leonardis, "Towards Scalable Representations of Object Categories: Learning a Hierarchy of Parts", CVPR'07
- Recognition is done layer by layer, by having features describe all detected L1 features in the image (a generative approach).
- Assignment in L2-L6 is done in hypothesize-verify fashion, where parts vote for constellations.
- Each constellation has flexible position and orientation of parts (amount is learned).

- Fidler and Leonardis, "Towards Scalable Representations of Object Categories: Learning a Hierarchy of Parts", CVPR'07
- Learning is done incrementally, one category at a time.
- Features already present can be re-used in new categories.
- Interesting idea, but currently only contour features are used. SOTA on shape recognition 2007.

Descriptor Distances

For a descriptor **q** in a query image. Which prototype in memory (**p**₁,**p**₂,...,**p**_N) is *most likely* to correspond to the same world object?

Descriptor Distances

- For a descriptor **q** in a query image. Which prototype in memory (**p**₁,**p**₂,...,**p**_N) is most likely to correspond to the same world object?
- Assuming additive i.i.d. Gaussian noise on all elements: $p(\mathbf{q}|\mathbf{p}_k) \propto \prod_{l=1}^{D} e^{-0.5(p_{kl}-q_l)^2/\sigma^2}$ $\max(p) \Leftrightarrow \min(-\log(p))$ $-\log(p(\mathbf{q}|\mathbf{p}_k) \propto \sum_{l=1}^{D} (p_{kl}-q_l)^2$

Descriptor Distances

- So, the match with smallest distance is most likely correct, assuming i.i.d. Gaussian noise.
- What about the scalar product for normalised vectors/NCC?

$$||\mathbf{p} - \mathbf{q}||^2 = \mathbf{p}^T \mathbf{p} + \mathbf{q}^T \mathbf{q} - 2\mathbf{p}^T \mathbf{q} = 2(1 - \mathbf{p}^T \mathbf{q})$$

- But are all values identically distributed?
- ...are they independent?

Chi² Distance

- Many descriptors (e.g. SIFT) are histogram-like in their nature.
- For histograms, the histogram values typically follow the (discrete) *Poisson distribution*: $P(k|\mu) = \mu^k e^{-\mu}/k!$

• Mean and variance:

$$E[P(k)] = \mu \qquad E[(P(k) - \mu)^2] = \mu$$

Chi² Distance

 For large values of μ, (e.g. 1000) a (continuous)
 Gaussian can approximate the Poisson distribution:

$$p(k|\mu) \approx \frac{1}{\mu\sqrt{2\pi}} e^{-0.5(k-\mu)^2/\mu}$$

Again, assuming independence, this leads to a negative log likelihood proportional to:

$$-\log(p(\mathbf{q}|\mathbf{p}_k)) \propto \sum_{l=1}^{D} (p_{kl} - q_l)^2 / \mu_l$$

Chi² Distance

- If we estimate the variance by: $\mu_l \approx (p_{kl}+q_l)/2$
- We find that the most likely match is the one with the smallest Chi-squared distance:

$$\mathcal{X}^{2}(\mathbf{q}, \mathbf{p}_{k}) = \sum_{l=1}^{D} \frac{(p_{kl} - q_{l})^{2}}{p_{kl} + q_{l}}$$

Square root matching

 Another similar histogram measure is the square root distance:

$$d_{1/2}(\mathbf{q}, \mathbf{p}_k)^2 = \sum_{l=1}^{D} (\sqrt{p_{kl}} - \sqrt{q_l})^2$$

 Close approximation to Chi², and faster if SQRT is pre-computed (e.g. RootSIFT).

Histogram Intersection

Histogram intersection similarity measure:

$$d(\mathbf{p}, \mathbf{q}) = \sum_{i=1}^{D} \min(p_i, q_i)$$

- Another common similarity measure for histogram type data.
- This far, all measures assume independence between bins.
- Good for ANN methods (LE6), but an approximation.

 In histograms, neighbouring bins are typically correlated

 Instead of falling in bin i, a sample is likely to fall in bin i+1.

- Distance=cost of moving values in p to q cost=amount*distance
- First solve a linear programming problem: the transportation problem, Hitchcock 1941.

$$\min_{f_{ij}} \sum_{i=1}^{D} \sum_{j=1}^{D} f_{ij} d_{ij} \text{ where } d_{ij} = |i - j|$$

• f_{ij} amount to move from i to j.

- Transportation problem, cost function: $\min_{f_{ij}} \sum_{i=1}^{D} \sum_{j=1}^{D} f_{ij} d_{ij} \text{ where } d_{ij} = |i - j|$
- Constraints:

$$f_{ij} \ge 0 \quad \forall i, j \in [1, D]$$

$$\sum_{\substack{D \\ D}} f_{ij} = q_j \quad \forall j \in [1, D]$$

$$\sum_{\substack{i=1 \\ D}} f_{ij} \le p_j \quad \forall j \in [1, D]$$

- Now compute EMD as: $d(\mathbf{p}, \mathbf{q}) = \min_{f_{ij}} \frac{\sum_{i=1}^{D} \sum_{j=1}^{D} f_{ij} |i-j|}{\sum_{i=1}^{D} \sum_{j=1}^{D} f_{ij}}$
- The denominator is needed if histograms are computed from variable numbers of samples.
- Inroduced in Computer Vision by: Y. Rubner, C. Tomasi, and L. J. Guibas. "The earth mover's distance as a metric for image retrieval". IJCV Nov 2000
- Local expert: Thomas Kaijser

Pyramid Match Kernel

- EMD approximation: Grauman&Darrell, ICCV'05, "Pyramid Match Kernels: Discriminative Classification with sets of image features", ICCV05
- Create "scale pyramid" where bins are hierarchically grouped.
- Downweight coarser scales in a way that ensures Mercer kernel properties (needed for SVM convergence).
- Spatial pyramid for BoF was formulated using PMK.

Ratio Score

- If we have best matches for descriptors q₁ and q₂ in the image. Which one is better?
- Both similarity and risk of misclassification matter!
- Scoring the match for \mathbf{q}_1 , according to the ratio between the best, and the second best match compensates for this risk: $r = d_1/d_2$

Ratio Score

- What we ultimately want is to distinguish good feature matches from bad.
- Collect known corresponding descriptors: $\{(\mathbf{p}_k, \mathbf{q}_k)\}_1^K$ and set $\mathbf{d}_k = \mathbf{p}_k - \mathbf{q}_k$
- We now want to find a linear transformation that makes the noise equal in magnitude in all directions:

 $\mathbf{y}_k = \mathbf{T}\mathbf{p}_k$ assuming $\mathbf{d}_k \sim \mathcal{N}(0, \mathbf{C})$

• Find a whitening transform **T** from the covariance matrix: $1 \sum_{K} I = I^T$

$$\mathbf{C} = \frac{1}{K} \sum_{k=1}^{I} \mathbf{d}_k \mathbf{d}_k^T$$
 with $\mathbf{T}\mathbf{C}\mathbf{T}^T = \mathbf{I}$

• Valid solutions:

$$\mathbf{T} = \mathbf{R}\mathbf{C}^{-1/2}$$
 where $\mathbf{R}\mathbf{R}^T = \mathbf{I}$

 If we only use the first few dimensions we should choose **R** such that it selects dimensions where we "see things happen".

Find **R** from PCA of transformed SIFT feature space:

$$\mathbf{C}_{b} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{y}_{n} \mathbf{y}_{n}^{T} - \mathbf{m}\mathbf{m}^{T} \qquad \mathbf{m} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{y}_{n}$$

 $\mathbf{R}\mathbf{D}\mathbf{R}^T = \mathbf{C}$

• Final contraction operator:

 $\mathbf{P} = \overline{\mathbf{I}}_k \mathbf{R} \mathbf{C}^{-1/2}$

• Where **I**_k is a k*128 truncated identity matrix.

- This Mahalanobis metric for features was published at ICCV07 by Mikolajczyk&Matas, SIFT 128→40 dim
- A similar method that only finds a rotation called linear discriminant embedding(LDE) also at ICCV07 by Hua&Brown&Winder, SIFT128→14/18dim
- Besides reducing dimensionality, these techniques also improve matching results.

- Linear Discriminant Embedding(LDE)
- Maximise $\mathbf{J}(\mathbf{w}) = \frac{\sum_{\text{outlier}(i,j)} \mathbf{w}^T (\mathbf{p}_i - \mathbf{q}_j)^2}{\sum_{\text{inlier}(i,j)} \mathbf{w}^T (\mathbf{p}_i - \mathbf{q}_j)^2}$

$$\mathbf{J}(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{A} \mathbf{w}}{\mathbf{w}^T \mathbf{B} \mathbf{w}}, \quad ||\mathbf{w}|| = 1$$

• Where **A** covariance for outliers and **B** inliers.

- J(w) is maximised by eigenvectors with large eigenvalues in ${\bf B}^{-1}{\bf A}$
- Eigenvalues of **B** are set to $\hat{\lambda}_i = \max(\lambda_i, \lambda_r)$ $r = \arg\min_n \frac{\sum_{i=1}^N \lambda_i}{\sum_{i=1}^N \lambda_i} \ge \alpha$
- *α* can be interpreted as a threshold on SNR.
 This is called *Power Regularisation*
- Many variations of the algorithm in the paper.

 Some LDE results on grey-scale patches: Reducing the amount of power reg:

• Linear filters found on grey-scale patches:

ΙΓ

LD

OI

OLI

P

DE-I	•	•	-	•	•		*	*	•	0	0	0	-	3	-	8	(1)	Φ	3	0	and the second se
E-II	•	•		0	•		+	:	0	•	0	0		3	-	÷			3	3	All Long
DE-I	•			c	6	•	0	0	0	-		0	3	0	(2)	3	0	1	4	10	1 m
DE-II	•	•	-	e	•	•	0	0	0	-		2	0	0	12	3	0	0		1	
CA				٩,	Τ	٠		1		1	-	÷	6	0	H	H	\otimes	Q	9	ď	

Discussion

• Questions/comments on today's paper:

J. Sivic, A. Zisserman, "Video Google: A Text Retrieval Approach to Object Matching in Videos", ICCV 2003

Paper for next week

Paper to read for next week:

M. Muja and D.G. Lowe, "Scalable Nearest Neighbour Algorithms for High Dimensional Data", TPAMI 2014

NB! Journal paper, so longer than previous papers.