

# Visual Representations for Machine Learning

Spectral Clustering and Channel Representations

Lecture 1

Spectral Clustering: introduction and confusion

**Michael Felsberg** 

Klas Nordberg



- The Spectral Clustering part is to a large extent the same as the 2012 course
- Then planned and presented by

   Vasileios Zografos & Klas Nordberg



### What this course is

- Basic introduction into the core ideas of spectral clustering and channel representations
- Sufficient to get a basic understanding of how the methods work
- Application mainly to computer vision



### **Course contents**

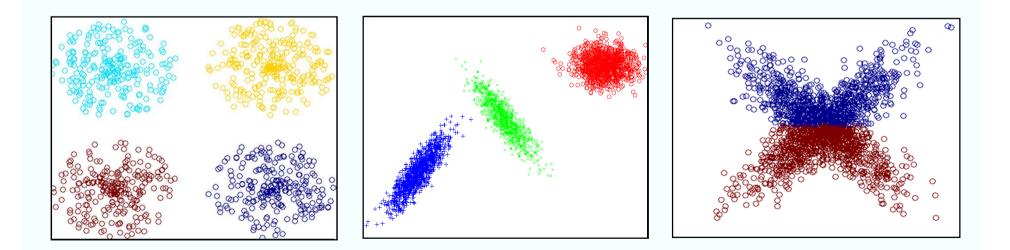
- 4 lectures
  - Lecture 1: Spectral clustering: Introduction and confusion, KN
  - Lecture 2: Spectral clustering: From confusion to clarity, KN
  - Lecture 3: Channel Representations: encoding, MF
  - Lecture 4: Channel Representations: decoding, MF
- 2 courseworks (seminars)
  - Article seminar on spectral clustering
  - Article seminar on channel representations



## **Overview of clustering**

#### • What is clustering?

- Given some data and a notion of *similarity*
- Partition the input data into maximally homogeneous groups (i.e. clusters)







## **Overview of clustering**

- Applications
  - Image processing and computer vision
  - Computational biology
  - Data mining and information retrieval
  - Statistical data analysis
  - Machine learning and pattern recognition

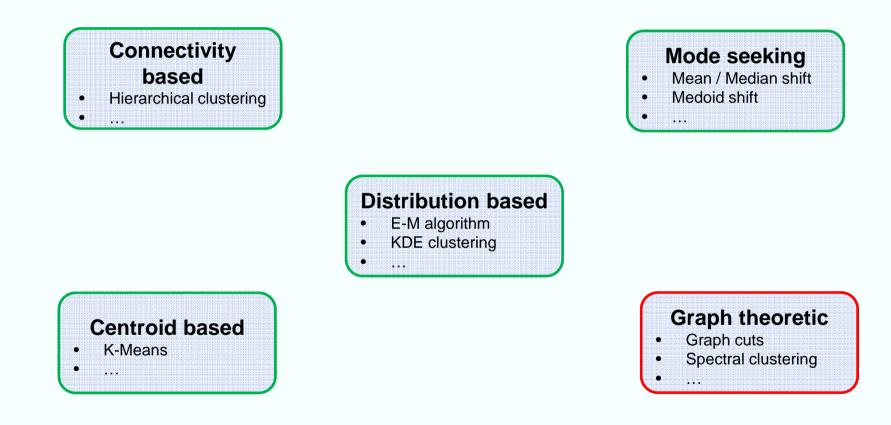


## **Overview of clustering**

#### • What is a cluster?

- Homogeneous group
- No universally accepted definition of *homogeneity*
- In general a cluster should satisfy two criteria:
  - Internal: All data inside a cluster should be highly similar (intra-cluster)
  - External: Data between clusters should be highly dissimilar (inter-cluster)







#### K-means

• Basic clustering algorithm. Given a set of observations  $x_1, \dots x_N$ , partition them into k clusters with means  $\mu_i$  s.t. the within cluster sum of squares (distortion) is minimised

$$\arg\min\sum_{i=1}^k \sum_{x_j \in C_i} \|x_j - \mu_i\|^2$$

- NP-hard. Iterative algorithm available
  - 1. Initialise k clusters
  - 2. Calculate cluster means  $\mu_i$
  - 3. Calculate distances of each point  $x_i$  to each cluster mean  $\mu_i$
  - 4. Assign point to nearest cluster
  - 5. Goto 2 until convergence
- Number of clusters *k* need to be known. Gives convex clusters



- In relation to spectral clustering
   Similarity is quantified by affinity
  - Affinity A between two points x, y:
    - In general:  $0 \le A \le 1$  and

 $A(x,y) = \begin{cases} \approx 1, & \text{when } x \text{ and } y \text{ are similar,} \\ \approx 0, & \text{when } x \text{ and } y \text{ are dissimilar.} \end{cases}$ 

# What is spectral clustering

- Clustering algorithm:
  - Treats clustering as a graph partitioning problem without making specific assumptions on the form of the clusters.
  - Cluster points using eigensystem of matrices derived from the data.
  - Data projected to a low-dimensional space that are separated and can be easily clustered.



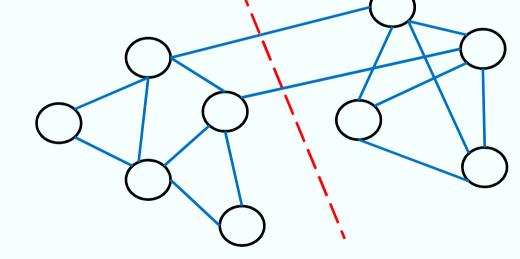
#### Pros and cons of spectral clustering

- Advantages:
  - Does not make strong assumptions on the statistics or shape of the clusters
  - Easy to implement.
  - Good clustering results.
  - Reasonably fast for sparse data sets of several thousand elements.
- Disadvantages:
  - May be sensitive to choice of parameters
  - Computationaly expensive for large datasets



#### Graph partitioning Graph cut point of view

- Given data points  $x_1, ..., xN$ , pairwise affinities  $A_{ij} = A(xi, xj)$
- Build similarity graph



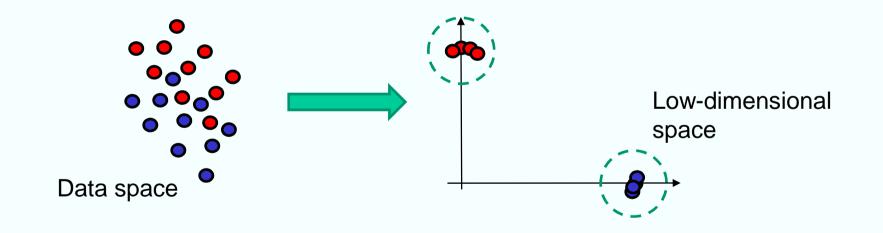
- Clustering = find a cut through the graph
  - Define a cost function, a function over different partitions (cuts)
  - Solve it = find cut of minimal cost





#### **Spectral clustering** Low-dimensional embedding point of view

- Given data points  $x_1, \dots xN$ , pairwise affinities  $A_{ij} = A(xi, xj)$
- Find a low-dimensional embedding (not same as PCA!)
- Project data points to new space



• Cluster using favourite clustering algorithm (e.g. k-means)

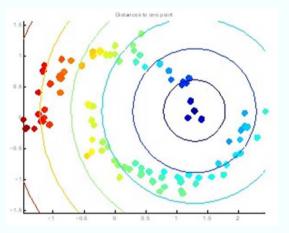


- The two points of views are related
- The low-dimensional space is determined by the data
- Spectral clustering makes use of the *spectrum* of the graph for dimensionality reduction
  - Embed data points in the subpace of the "largest" eigenvectors
- Projection and clustering equates to graph partition by different min-cut criteria



## Graphs

- Graphs are an important component of spectral clustering
- Many datasets have natural graph structure
  - Web pages and links
  - Protein structures
  - Citation graphs
  - ...
- Other datasets can be transformed simply into similarity (or affinity) graphs
  - Affinity can encode local-structure in the data
  - Global structure induced by a distance function is often misleading



- Suited for representing data based on pairwise relationships (e.g. affinities, local distances)
- A positive symmetric matrix can be represented as a graph



### Affinity and distance

- An affinity score between two objects x<sub>i</sub>, xj is "high" if the objects are "very similar"
  - E.g. the Gaussian kernel  $s(i,j) = \exp\left(-\frac{\|x_i x_j\|}{2\sigma^2}\right)$   $\sigma$  is a

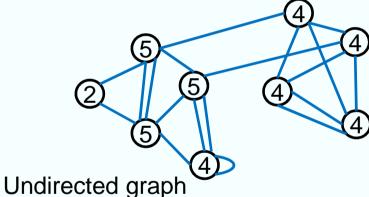
 $\sigma$  is a parameter!

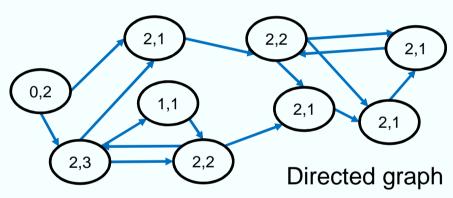
- A **distance score** between two objects *x*, *y* is "small" if the objects are "close" to each other
  - E.g. the Euclidean distance  $d(i,j) = ||x_i xj||$
- Distances and affinities have an inverse relationship high affinity ↔ small distance
- A distance can be turned into an affinity by using an appropriate kernel
- Many choices of kernels. One of the most important choices in spectral clustering

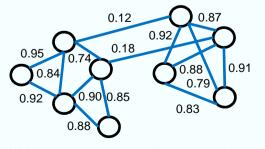


### **Graph basics**

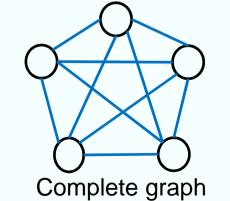
 Definition: A graph G is a triple consisting of a vertex set V(G), an edge set E(G) and a relation that associates with each edge two vertices.







In spectral clustering we always work with undirected graphs, weighted or not



Weighted undirected graph



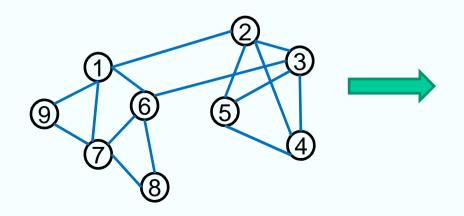
### **Graph basics**

#### The Adjacency matrix *W* of an undirected graph

- $N \times N$  symmetric binary matrix
- rows and columns represent the vertices and entries represent the edges of the graph.
- Simple graph = **zero diagonal**

W(i, j) = 0 if i, j are not connected

W(i, j) = 1 if i, j are connected



| 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |



### **Graph basics**

The Affinity matrix A of an undirected graph

- Weighted adjacency matrix
- Each edge is weighted by pairwise vertex affinity

A(i,j) = 0 if *i*, *j* are not connected A(i,j) = s(i,j) if *i*, *j* are connected

*s*(*i,j*) is the previous kernel function

- By adjusting the kernel parameter we can set the affinity of dissimilar vertices to zero and essentially **disconnect them**
- A is similar to W, but allows "non-binary" relations



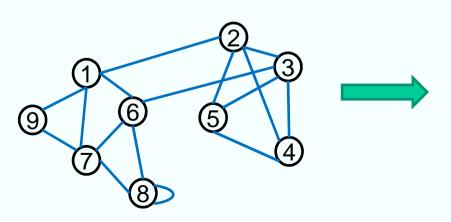
### **Graph basics**

#### The **Degree matrix** *D* of an undirected graph

- $N \times N$  diagonal matrix that contains information about the degree of each vertex
- Degree  $d(v_i)$  of a vertex  $v_i$  of a graph is the number of edges incident to the vertex. Loops are counted twice

$$D(i,j) = 0 \text{ if } i \neq j$$
  

$$D(i,j) = d(vi) \text{ if } i = j \implies D = \text{diag}(d_1, \dots, dN)$$



| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|
| 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |



## **Graph basics**

Laplacian matrix of simple undirected graph

- L = D W (Degree Adjacency), or
- L = D A (Degree Affinity)
- *L* is symmetric and positive semi-definite



# **Vertex labeling**

- All these matrices are symmetric
  - ON-basis of eigenvectors in  $R^N$  exists
- All these matrices depend on the labeling of the graph vertices
- Re-labeling of the vertices = permutation of the matrix rows and columns
  - Same permutation of both rows and columns!



## Laplacian matrix

- The smallest eigenvalue is 0, the corresponding eigenvector is the constant one **1** (when L = D W)
- *N* non-negative real-valued eigen-values

$$0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_N$$

• The smallest non-zero eigenvalue of L is called the spectral gap.

The gap can be seen as a quality mesure of the clustering



### Graph spectrum

• The **spectrum** os a graph *G* is the multiset of the eigenvalues of the Laplacian matrix or the graph associated with it

Spec(G) = 
$$\begin{pmatrix} \lambda_1 \dots \lambda_t \\ m_1 \dots mt \end{pmatrix}$$

where  $\lambda_1 \dots \lambda_t$  is the set of **distinct** eigenvalues and  $m_1 \dots mt$  their multiplicities.





### Graph spectrum

- The Laplacian matrix depends on the vertex labeling,
  - Re-labeling = row & column permutation
  - but its spectrum is **invariant**, it does not depend on the labeling
- Multiplicity of 0 eigenvalue is the number of connected components k of the graph (i.e. clusters)
- The corresponding eigenvectors are the **indicator vectors**  $\mathbf{1}_{V_1}, \dots, \mathbf{1}_{V_N}$  of those components

Number of clusters need not be known!?



 $Z_2$ 

# Clustering as a graph-theoretic problem

• Given a similarity graph with affinity matrix A the simplest way to construct a partition is to solve the min-cut problem:

– Choose the partition 
$$Z_1, \dots, Zk$$
 that minimises

 $Z_1$ 

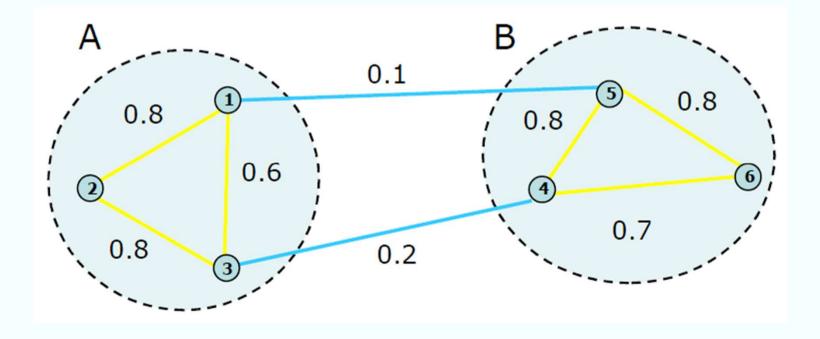
$$\operatorname{cut}(Z_1, \dots, Zk) = \frac{1}{2} \sum_{i=1}^{k} A(Zi, \overline{Z}_i) \quad \text{where } A(Z_1, Z_2) = \sum_{i \in Z_1, i \in Z_2} A(i, i)$$

Min-cut



# Clustering as a graph-theoretic problem – An example

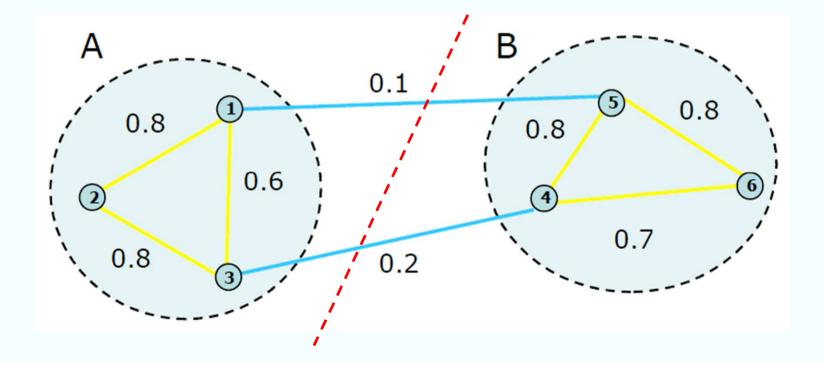
• We require 2 clusters





# Clustering as a graph-theoretic problem – An example

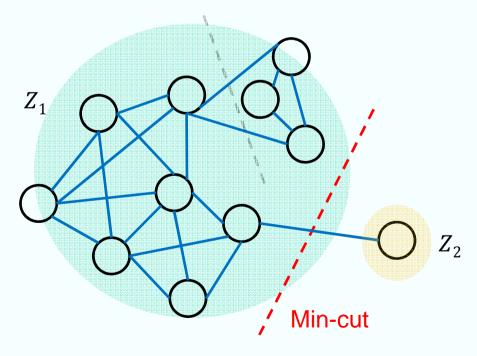
•  $\operatorname{cut}(A,B) = \frac{1}{2} \sum_{i \in A, j \in B} \operatorname{Affinity}(A,B) = 0.3$ 





# Clustering as a graph-theoretic problem

- Min-cut can be solved efficiently especially for k = 2
- Does not always lead to reasonable results if the connected components are not balanced



- Workaround: Ensure that the partitions  $Z_1, ..., Zk$  are sufficiently "large"
- This should lead to more balanced partitions



#### Clustering as a graph-theoretic problem

 Ratio-cut [Hagen and Kahng, 1992]: The size of a subset Z is measured by its number of vertices |Z|

$$RatioCut(Z_1, ..., Z_k) = \frac{1}{2} \sum_{i=1}^k \frac{A(Z_i, \overline{Z}_i)}{|Z_i|} = \sum_{i=1}^k \frac{\operatorname{cut}(Z_i, \overline{Z}_i)}{|Z_i|}$$

 Normalised cut [Shi and Malik, 2000]: The size of a subset Z is measured by the weights of its edges vol(Z)

$$NCut(Z_1, ..., Zk) = \frac{1}{2} \sum_{i=1}^{k} \frac{A(Zi, \overline{Z}_i)}{\operatorname{vol}(Zi)} = \sum_{i=1}^{k} \frac{\operatorname{cut}(Zi, \overline{Z}_i)}{\operatorname{vol}(Zi)}$$

• Min-max cut [Ding et al. 2001]:

$$Min - Max - Cut(Z_1, \dots, Zk) = \frac{1}{2} \sum_{i=1}^{k} \frac{A(Zi, \overline{Z}_i)}{A(Z_i, Z_i)} = \sum_{i=1}^{k} \frac{cut(Zi, \overline{Z}_i)}{A(Z_i, Zi)}$$

Min similarity between

Max similarity within



#### Clustering as a graph-theoretic problem

- Due to the normalisations introduced the solution becomes NP-hard
- Relaxing Ncut and Min–Max–Cut lead to normalised spectral clustering. Relaxing RatioCut leads to unormalised spectral clustering [von Luxburg 2007]
- Relaxed RatioCut solution: eigenvectors

$$X = (v_1, v_2, \dots, v_k)$$
 s.t.  $Lv_k = \lambda_k v_k$  where  $L = D - W$ 

- Relaxed Ncut solution: eigenvectors  $Y = (u_1, u_2, ..., u_k)$  s.t.  $(I - L_{sym})u_k = \lambda_k u_k$  where  $L_{sym} = D^{-0.5}AD^{-0.5}$
- Relaxed Min-Max-cut solution: eigenvectors  $Y = (u_1, u_2, ..., uk) \ s.t. \ L_{sym}u_k = \lambda_k u_k$  where  $L_{sym} = D^{-0.5}AD^{-0.5}$
- Quality of solution with relaxation is not guaranteed compared to exact solution



[Perona and Freeman 1999]

- Partition using only one eigenvector at a time
- Use procedure recursively
  - Uses 2<sup>nd</sup> (smallest) eigenvector to define optimal cut
  - Recursively generates two clusters with each cut



[Shi and Malik 2000, Scott and Longuet-Higgins, Ng et al. 2002]

- Use the *k* smallest eigenvectors
- Directly compute *k*-way partitioning
- Usually performs better
- We will be using this approach from now on



**Input**: Data matrix  $P \in \mathbb{R}^{N \times F}$  (*N* =data points, *F* = dimensions), *k* number of clusters

- Construct **pairwise** affinity matrix  $A(i, j) = exp\left(-\frac{\|x_i x_j\|}{2\sigma^2}\right)$  [
- Construct degree matrix  $D = \text{diag}(d_1, \dots, dN)$
- Compute Laplacian L = D A  $A \approx W$
- Compute the k smallest eigenvectors  $u_1, \dots, uk$  of L
- Let  $U \in \mathbb{R}^{N \times k}$  contain the vectors  $u_1, ..., u_k$  as columns
- Let  $y_i \in \mathbb{R}^k$  be the vector corresponding to the *i*-th row of *U*
- Cluster the points  $(y_i)$  i = 1, ..., N into k clusters  $h_1, ..., hk$  with k-means

**Output**: Clusters  $Z_1, \dots Zk$  with  $Z_i = \{j | yj \in h_i\}$ 

One **y**<sub>i</sub> per point

For example!

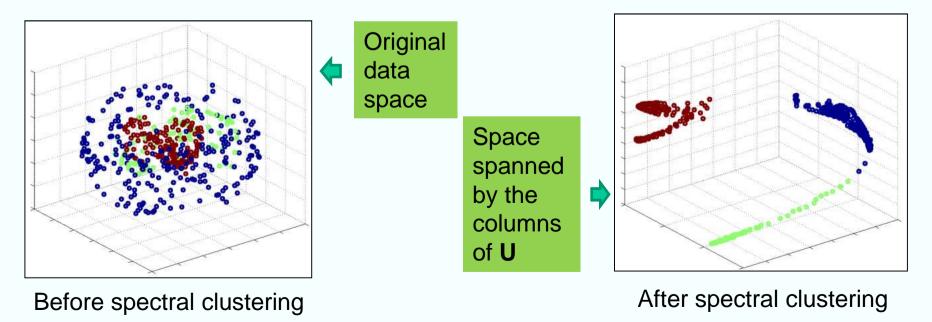
k known !?

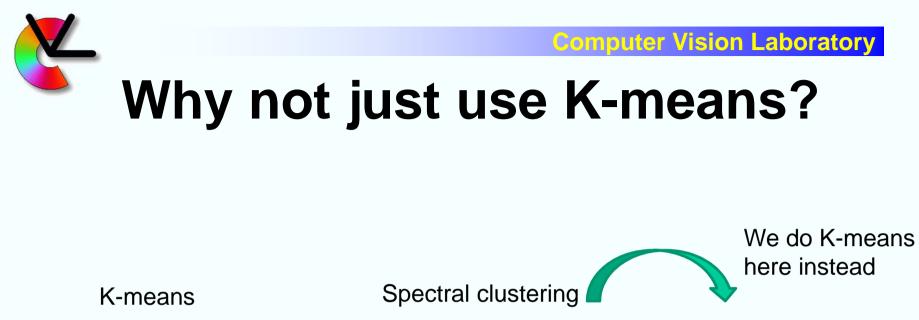


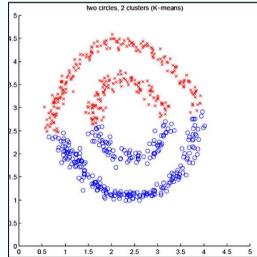


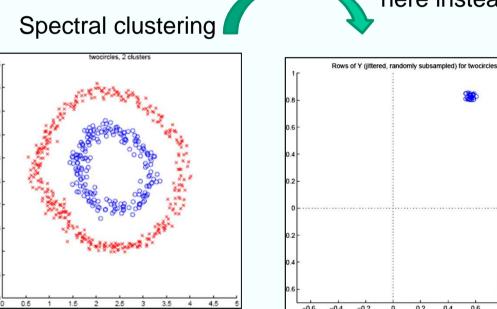
### Why not just use *k*-means?

- One could use k-means directly in the data space (or some other clustering approach such as mean shift)
- S.C. separates data (based on affinity) into projecting in the low-dimensional eigenspace (rows of **U**)
- Allows clustering of non-convex data





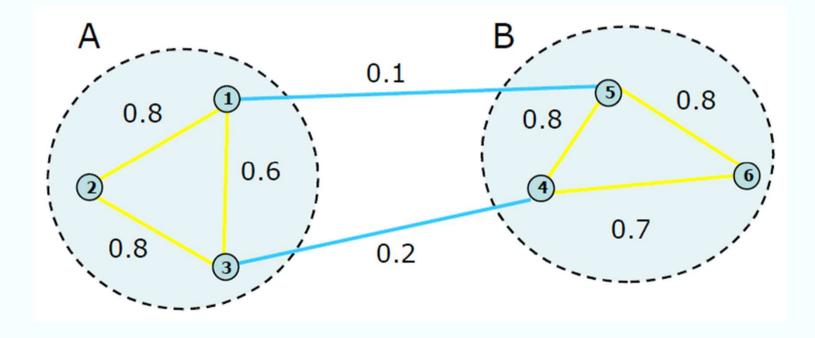




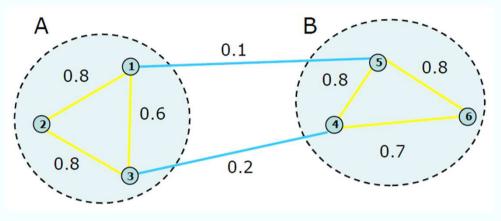


### Simple example revisited

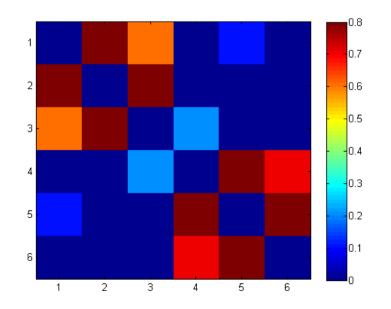
• Now we will use spectral clustering instead





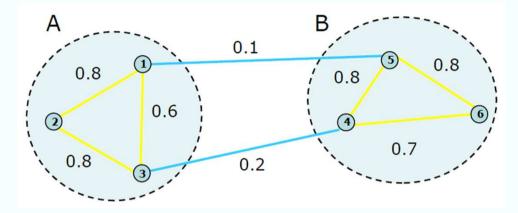


|                | X <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | X <sub>4</sub> | X <sub>5</sub> | X <sub>6</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| X <sub>1</sub> | 0              | 0.8            | 0.6            | 0              | 0.1            | 0              |
| X <sub>2</sub> | 0.8            | 0              | 0.8            | 0              | 0              | 0              |
| X <sub>3</sub> | 0.6            | 0.8            | 0              | 0.2            | 0              | 0              |
| X <sub>4</sub> | 0              | 0              | 0.2            | 0              | 0.8            | 0.7            |
| X <sub>5</sub> | 0.1            | 0              | 0              | 0.8            | 0              | 0.8            |
| X <sub>6</sub> | 0              | 0              | 0              | 0.7            | 0.8            | 0              |



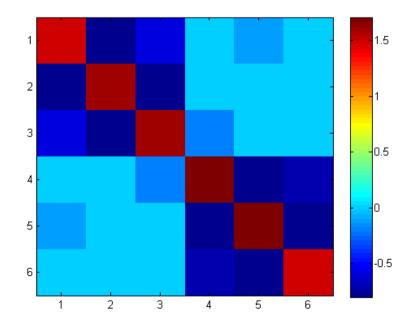


#### **Step 2: Laplacian matrix**



#### L = D - A

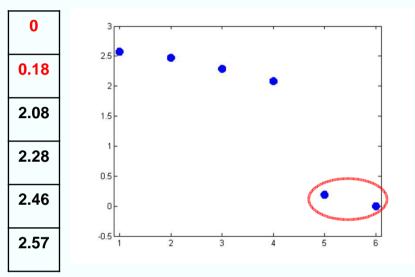
|                | X <sub>1</sub> | X <sub>2</sub> | Х <sub>3</sub> | X <sub>4</sub> | Х <sub>5</sub> | Х <sub>6</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| X <sub>1</sub> | 1.5            | -0.8           | -0.6           | 0              | -0.1           | 0              |
| X <sub>2</sub> | -0.8           | 1.6            | -0.8           | 0              | 0              | 0              |
| X <sub>3</sub> | -0.6           | -0.8           | 1.6            | -0.2           | 0              | 0              |
| X <sub>4</sub> | 0              | 0              | -0.2           | 1.7            | -0.8           | -0.7           |
| X <sub>5</sub> | -0.1           | 0              | 0              | -0.8           | 1.7            | -0.8           |
| X <sub>6</sub> | 0              | 0              | 0              | -0.7           | -0.8           | 1.5            |



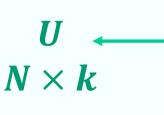


# Step 3: Eigen-decomposition

• Eigen-values  $\lambda =$ 



• Eigen-vectors v =



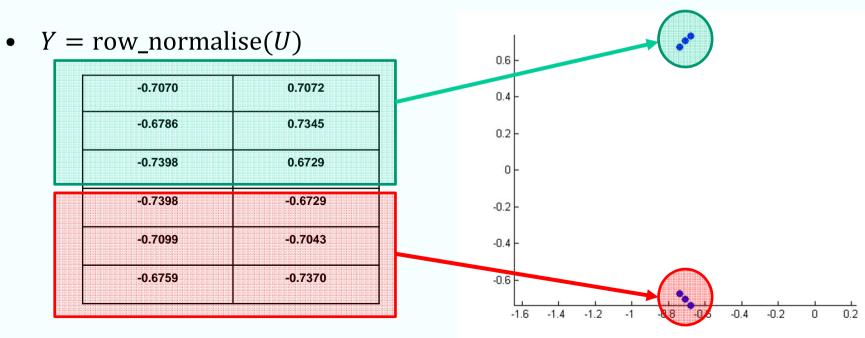
| -0.4082 | 0.4084  |  |
|---------|---------|--|
| -0.4082 | 0.4418  |  |
| -0.4082 | 0.3713  |  |
| -0.4082 | -0.3713 |  |
| -0.4082 | -0.4050 |  |
| -0.4082 | -0.4452 |  |
|         |         |  |



#### **Step 4: Embedding**

| U= | -0.4082 | 0.4084                                   |
|----|---------|------------------------------------------|
|    | -0.4082 | 0.4418                                   |
|    | -0.4082 | 0.3713                                   |
|    | -0.4082 | -0.3713                                  |
|    | -0.4082 | -0.4050                                  |
|    | -0.4082 | -0.4452                                  |
|    | U=      | -0.4082<br>-0.4082<br>-0.4082<br>-0.4082 |

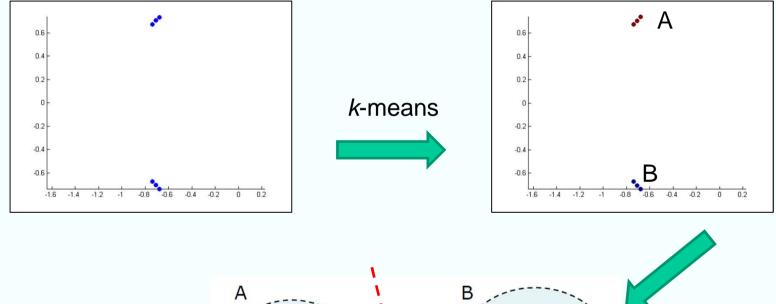
• Each row of *Y* is a point in "eigenspace"

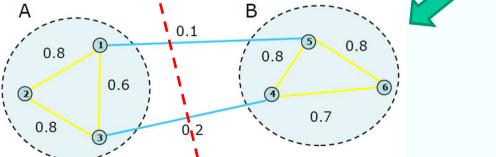




### **Step 5: Clustering**

- *k*-means clustering with 2 clusters
- Easy, convex clustering problem

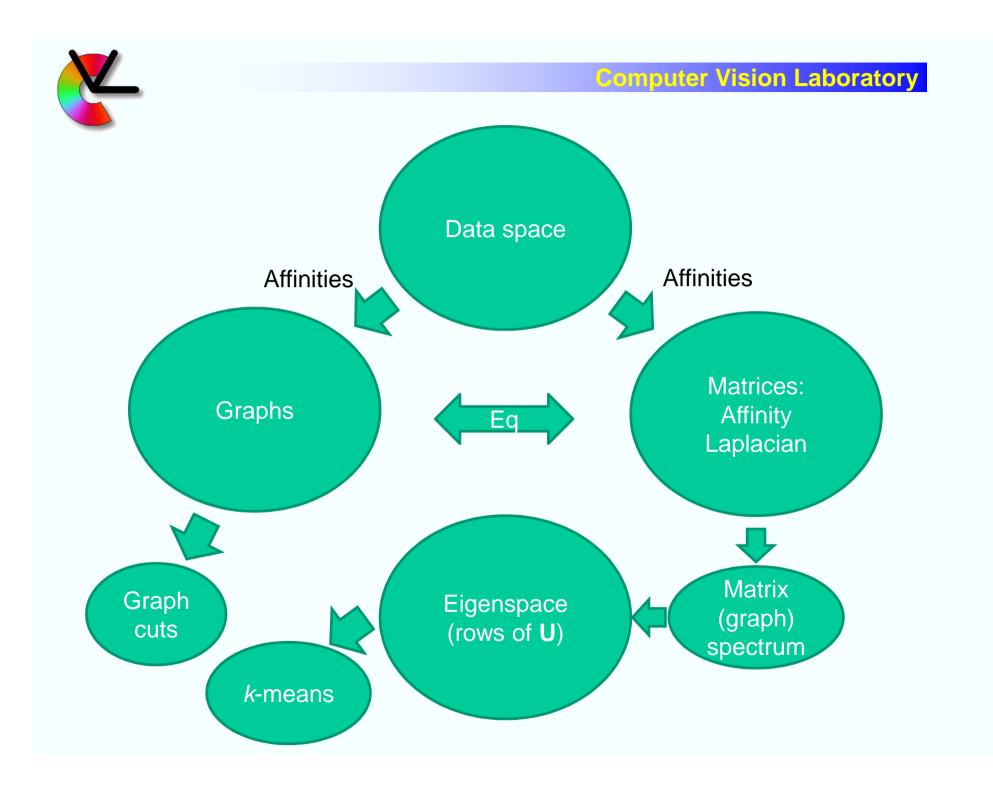






#### Choices choices...

- Affinity matrix construction (distance and kernel)
- Choice of kernel parameter σ (scaling factor)
   Practically, search over σ and pick value that gives the tightest clusters
- Choice of *k*, the number of clusters
- Choice of clustering method





### Summary

- We have seen so far
  - Basic definitions of cluster, clustering and cluster quality
  - Graph basics, affinity, graph construction, graph spectrum
  - Graph cuts
  - Spectral clustering and graph cuts
  - A spectral clustering algorithm and a simple example
  - k-means and spectral clustering

#### • For the next lecture

- Intuitive explanation of different S.C. algorithms