Spectral clustering

Lecture 2 Spectral clustering: from confusion to clarity

Indicator vectors

• Each cluster has an indicator vector, represented by a binary vector that contains "1" for points in the cluster and "0" otherwise:

$$\mathbf{c}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{c}_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

A simple example

• Two ideal clusters, with two points each

A simple example

• Clearly, we can decompose **A** as

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\mathbf{c_1} \text{ and } \mathbf{c_2}$$

$$\mathbf{A} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 1 \end{pmatrix}$$

Eigensystem of A

• An eigenvalue decomposition of **A** gives

$$\label{eq:normalized eigenvectors} \begin{aligned} \text{normalized eigenvectors} &= \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \end{pmatrix} \\ \text{corresponding eigenvalues} &= \begin{pmatrix} 2 & 2 & 0 & 0 \end{pmatrix} \end{aligned}$$

Permutations of A

• Two ideal cluster, with two points each

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

Initial idea

- To each cluster there is a non-zero eigenvalue in A
 - Number of clusters = number of non-zero eigenvalues in A
- To each such eigenvalue/cluster, the corresponding normalized eigenvector is a scaled version of the corresponding indicator vector

Eigensystem of permuted A

• An eigenvalue decomposition of **A** gives

$$\mbox{normalized eigenvectors} = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\mbox{corresponding eigenvalues} = \begin{pmatrix} 2 & 2 & 0 & 0 \end{pmatrix}$$

Initial idea holds: permutations of the points carries over to permutations of the elements of the eigenvectors

Eigensystem of permuted A

- The goal of spectral clustering is to determine the permutation of **A** that turns it into a block diagonal form
- This is done by analyzing the eigensystem of A

A glitch (I)

- In this case: the non-zero eigenvalues are equal
 - Any linear combination of the first two eigenvectors is also an eigenvector of the same eigenvalue
 - Any small perturbation of **A** can make a large change in the eigenvectors
 - Eigenvectors will not correspond to the indicator vectors

11

A glitch (I)

$$\mathbf{A} = \begin{pmatrix} 1 & 0.99 & 0.01 & 0.02 \\ 0.99 & 1 & 0.01 & 0.03 \\ 0.01 & 0.01 & 1 & 0.98 \\ 0.02 & 0.03 & 0.98 & 1 \end{pmatrix}$$
 Again ideally but with soil b

Again ideally ordered but with some noise

proximate numerical values

$$\text{normalized eigenvectors} = \begin{pmatrix} 0.53 & -0.46 & -0.28 & 0.65 \\ 0.54 & -0.46 & 0.27 & -0.65 \\ 0.46 & 0.54 & -0.65 & -0.27 \\ 0.47 & 0.53 & 0.65 & 0.27 \end{pmatrix}$$

$$\text{corresponding eigenvalues} = \begin{pmatrix} 2.02 & 1.95 & 0.02 & 0.01 \end{pmatrix}$$

A glitch (I)

- It is still the case the there are two dominant eigenvalues, corresponding to the two separate clusters
- But the corresponding eigenvectors do not directly reveal the points of each cluster
 - A linear combination of them, however, will!

10

Fixing the glitch (I)

• Define, for *n* points and *k* clusters:

 $\mathbf{U} = n \times k$ matrix containing the normalized eigenvectors of the k largest eigenvalues of \mathbf{A} in its columns

Each row in U corresponds to a data point

Fixing the glitch (I)

• In the last numerical example:

= U

We notice that rows of **U** corresponding to the same cluster are approximately equal

13

Fixing the glitch (I)

A clustering algorithm, (I)

- Assume *n* points and *k* clusters
- Compute $n \times n$ affinity matrix **A**
- Compute the eigensystem of A
- There should be *k* non-zero eigenvalues
- Set U to hold the corresponding normalized eigenvectors in its columns
- Apply k-means clustering on the row space of
 U to find the k clusters

An observation (I)

- The **self-affinity** of each point is a constant value found in the diagonal of **A**
- Changing this constant means adding a term to **A** that is proportional to the identity matrix:

$$A' = A + \alpha I$$

An observation (I)

- In the literature it is common to set the self-affinity to zero
 - All diagonal elements of **A** are zero
- The phrase
 "k eigenvalues of A are non-zero"
 should then be replaced by
 "k eigenvalues of A are large"

An observation (I)

• A and A' have the same eigenvectors but their eigenvalues differ:

$$\mathbf{A'}_{\mathsf{k}} = \lambda_k + \alpha \qquad \qquad \mathbf{A'} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Same eigenvectors as before

With α = -1

corresponding eigenvalues = $\begin{pmatrix} 1 & 1 & -1 & -1 \end{pmatrix}$

18

An observation (II)

In the previous numerical example:

 Not only are the row vectors of U for points in different clusters distinct, they are orthogonal

• This is not a coincidence!

An observation (II)

• Assuming that the k largest eigenvalues of \mathbf{A} are approximately equal (to λ):

$$\mathbf{A} + \alpha \mathbf{I} = \lambda \mathbf{U} \mathbf{U}^\mathsf{T}$$

The inner product of rows from different clusters correspond to zero affinity in an ideal **A**

In the ideal case: rows in **U** belonging to different clusters must be orthogonal

- But not necessarily of unit length!
- We will return to this later on!

21

A clustering algorithm (II)

- Assume *n* points and *k* clusters
- Compute $n \times n$ affinity matrix **A** (0 in diagonal!)
- Compute eigensystem of A
- There should be *k* "large" eigenvalues which are approximately equal
- Set U to hold the corresponding normalized eigenvectors in its columns
- Apply k-means clustering on the row space of U to find the k clusters

22

An observation (III)

- Using the "larger" or "significant" eigenvalues of A can be replaced with "equal to zero" or "close-to-zero" eigenvalues of related matrices
- We need to modify A accordingly
- Leads to the Laplacian L of A, and we do clustering based on the eigensystem of L instead of A

Degree matrix

• We define

D = diagonal matrix $\{d_{ii}\}$ where d_{ii} = sum of row/column i in **A**

as the degree matrix of A

A simple example

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix} \qquad \mathbf{D} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

$$\mathbf{D} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

$$\mathbf{c}_1 = \left(egin{array}{c} 1 \ 1 \ 0 \ 0 \ 0 \end{array}
ight) \quad \mathbf{c}_2 = \left(egin{array}{c} 0 \ 0 \ 1 \ 1 \ 1 \end{array}
ight)$$

The indicator vectors are

Laplacian

Formally, we define

$$L = D - A$$

as the Laplacian of A

• The indicator vectors are eigenvectors also of L, with eigenvalue 0

25

26

Properties of L

In the ideal case:

- L has the same eigenvectors as A and D
- L has eigenvalues = 0 for the indicator vectors In general (also with noise):

$$\mathbf{u}^T \mathbf{L} \ \mathbf{u} = \frac{1}{2} \sum_{i,j=1}^n a_{ij}^{\prime} (u_i - u_j)^2$$

L is positive semi-definite!

Properties of L

In the general case (also with noise):

- Positive semi-definite
- Sum along rows/columns of **L** vanishes
- There is always one eigenvalue = 0 in L
- Corresponding eigenvector = is 1 (constant 1)
 - 1 is the sum of all indicator vectors!

Properties of L

In the ideal case

- L has a block structure,
 - Non-zero blocks representing fully connected components
 - Zero blocks representing unconnected components

29

Properties of L

From this follows:

- If u is a cluster indicator vector ⇒
 u is an eigenvector of L with eigenvalue 0
- If u is an eigenvector of L with eigenvalue 0 ⇒
 u is a linear combination of the cluster indicator
 vectors

From this follows:

- 1. The number of eigenvalues = 0 in \mathbf{L} is = k (k= number of clusters)
- 2. The corresponding eigenvectors span the space of indicator vectors

30

A clustering algorithm (III) Unnormalized spectral clustering

- Assume *n* points and *k* clusters
- Compute $n \times n$ affinity matrix **A**
- Compute **D**, and compute **L** = **D A**
- Compute eigensystem of L
- There should be *k* "zero" eigenvalues
- Set **U** to hold the corresponding normalized eigenvectors in its columns
- Apply k-means clustering on the row space of U to find the k clusters

Fiedler's method for k = 2

- The Laplacian **L** has always (even for noisy data) an eigenvalue $\lambda_1 = 0$
- Corresponding eigenvector e₁ is 1
- If k = 2, there should be a second eigenvalue
 = 0, or at least close to zero
- Corresponding eigenvector denoted e₂
- The row space of {e₁, e₂} should form clusters in two orthogonal directions

-

Fiedler's method for k = 2

- Consequently, the signs of the elements in e₂
 must be indicators of the two classes
- For example:
 - "+" means class 1
 - "-" means class 2
- We don't really need **e**₁
- Only the signs of the elements in **e**₂
 - **e**₂ is often referred to as the *Fiedler vector*

An observation (IV)

- Should we do clustering on **A** or on **L**?
- For ideal data
 - full connections internally in each component
 - no connects between components
 there is, in general, no difference in the result
- For non-ideal data, (= in practice) the results differ
 - Often: clustering based on L is better!

33

34

A numerical example

Analysis

- It can be shown that the clustering on A is equivalent to solving the mincut problem of the corresponding graph [see von Luxburg]
- Prefers to cut fewer edges, even if they have higher affinity, than more edges even when each has lower affinity
- In our example: there is a risk of cutting the edge between point 1 and the rest of the points in the first cluster

Analysis

- It can be shown that the clustering on L is for k = 2 approximates the solution of the Ratio-cut problem of the corresponding graph [see von Luxburg]
- Normalizes the cost of a cut with the number of vertices of each sub-graph
- In our example: reduces the risk of cutting the edge between point 1 and the rest of the points in the first cluster

A glitch (II)

- The last clustering algorithm works well for arbitrary k, but assumes that the number of points in each cluster, n_k , is approximately equal
- Otherwise, eigenvalues which are "zero" and "non-zero" may mix in the data of real data

A simple example

• An ideal **A** with k = 2 and n_1 and n_2 points in each cluster

A simple example

• Eigensystem of A

$$\mathbf{c}_1 = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad \mathbf{c}_2 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \begin{matrix} n_1 \\ \vdots \\ n_2 \\ n_2 \\ \end{matrix}$$

$$\mathbf{corresponding eigenvalues} = \begin{pmatrix} n_1 - 1 & n_2 - 1 & -1 & \dots & -1 \end{pmatrix}$$

A simple example

A simple example

• Eigensystem of **D**

$$\mathbf{c}_{1} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \mathbf{c}_{2} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad n_{1}$$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{c}_{2} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad n_{2}$$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad n_{2}$$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad n_{2}$$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad n_{1} - 1 \qquad \qquad n_{1} - 1 \qquad \qquad n_{2} - 1 \qquad \qquad n_{2}$$

A simple example

• Eigensystem of **L**

$$\mathbf{c}_{1} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \mathbf{c}_{2} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad n_{1}$$

$$\begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ 0 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad n_{2}$$

$$\begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ 0 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ 1 \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{1}$$

A glitch (II)

- For this example:
 - There are 2 eigenvalues approximately = 0
 - There are n_1 1 eigenvalues approximately = n_1
 - There are n_2 1 eigenvalues approximately = n_2
- If $n_2 >> n_1$ and with sufficiently noisy data:
 - The first two types of eigenvalues can mix
 - Also their eigenvectors will mix
 - Poor clustering performance

Fixing the glitch (II)

- There are (at least) two ways of fixing this glitch, where both normalize the Laplacian L before computing the eigensystem:
 - Normalized spectral clustering according to Shi & Malik (2000) [Not covered here!]
 - Based on EVD of $\mathbf{L}_{rw} = \mathbf{D}^{-1}\mathbf{L}$
 - Normalized spectral clustering according to Ng et al (2002) [Next!]

4.

...

Fixing the glitch (II)

• We define a normalized Laplacian as

$$L_{\text{sym}} = D^{-1/2} L D^{-1/2}$$

 Referred to as the normalized symmetric Laplacian

Fixing the glitch (II)

- **L**_{sym} is symmetric, and (in the ideal case):
 - Diagonal elements in \mathbf{L}_{sym} are all = 1
 - Off-diagonal elements sum to -1 along row and columns
 - Same number of eigenvalues = 0 as L
 - Same block structure as L
 - Same eigenvectors as L
 - An non-zero eigenvalue n_k in **L** becomes $n_k / (n_k 1)$ in \mathbf{L}_{sym}

Fixing the glitch (II)

- The cluster indicator vectors are eigenvectors also of L_{sym}, with eigenvalues = 0
- We can consider the eigensystem of **L**_{sym} instead!
- Better separation between "zero" and "nonzero" eigenvalues

49

A glitch (III)

A simple example with three ideal clusters

- n_1 , n_2 , n_3 points each
- The indicator vectors c₁, c₂, c₃ are eigenvectors of L_{sym} with eigenvalue 0
- Normalized to unit norm they become

$$\hat{\mathbf{c}}_{1} = \begin{pmatrix} 1/\sqrt{n_{1}} \\ \vdots \\ 1/\sqrt{n_{1}} \\ 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \hat{\mathbf{c}}_{2} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1/\sqrt{n_{2}} \\ \vdots \\ 1/\sqrt{n_{2}} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \hat{\mathbf{c}}_{3} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1/\sqrt{n_{3}} \\ \vdots \\ 1/\sqrt{n_{3}} \\ \vdots \\ 1/\sqrt{n_{3}} \end{pmatrix} \begin{bmatrix} n_{1} \\ n_{2} \\ \vdots \\ n_{3} \\ \vdots \\ 1/\sqrt{n_{3}} \end{bmatrix}$$

50

A glitch (III)

- In the practical case, these is some noise and the three eigenvectors if L_{sym} corresponding to eigenvalue "zero" are linear combinations of the previous vectors
 - Normalized linear combinations!
 - Correspond to rotations of the previous vectors
 - Therefore we do k-means clustering on the row space of **U** to find the clusters
 - If n_1 , n_2 , n_3 are of different magnitudes:
 - Clusters with many points are found close to the origin
 - (Why?)

Fixing the glitch (III)

- We normalize the rows of U before the final k-means clustering
- The resulting rows lie on a unit hyper-sphere
- This leads to a better separation of the clusters in the row space of U
- We return to the issue of clustering points on a sphere in the following lecture

A clustering algorithm (IV) Ng et al (2002)

- Assume *n* points and *k* clusters
- Compute $n \times n$ affinity matrix **A**, and its **D**
- Compute L = D A
- Compute $L_{sym} = D^{-1/2} L D^{-1/2}$
- ullet Compute eigensystem of ${f L}_{
 m sym}$
- There should be *k* "zero" eigenvalues
- Set **U** to hold the corresponding normalized eigenvectors in its columns
- Set **T** = **U** but with each row normalized to unit norm
- Apply k-means clustering on the row space of T to find the k clusters

Does it matter with algorithm we use?

- The unnormalized algorithm is attractive since it is simple, but
 - Use it only when you know that the clusters have the same order of points
- The two normalized methods (S-M & Ng) are approximately of the same order of additional computations
 - Von Luxburg suggests S-M before Ng method
 - In practice Ng's method appears to work as well

53

Summary

- 3 basic algorithms for spectral clustering
 - Unnormalized: **L u** = λ **u**
 - Shi-Malik
 - Solve: $\mathbf{L}_{rw} \mathbf{u} = \lambda \mathbf{u}$, where $\mathbf{L}_{rw} = \mathbf{D}^{-1} \mathbf{L}$
 - Ng, et al:
 - Solve: $\mathbf{L}_{\text{sym}} \mathbf{u} = \lambda \mathbf{u}$, where $\mathbf{L}_{\text{sym}} = \mathbf{D}^{-1/2} \mathbf{L} \mathbf{D}^{-1/2}$
- Spectral properties of A, D, L
 - Relations to the cluster indicator vectors