Spectral clustering

A simple example

e Two ideal clusters, with two points each

/ 4 1 1 0 0
A 1 1 0 0
Lecture 2 2 0 0 1 1
. 3 0 0 1 1
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Indicator vectors A simple example
* Each cluster has an indicator vector, e Clearly, we can decompose A as
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Eigensystem of A

e An eigenvalue decomposition of A gives

1 1
z v 0
L o0 -1 9
normalized eigenvectors = ‘62 ) 6/5 1
V2 V2
o L+ o L
V2 V2
corresponding eigenvalues = ( 2 2 0 0 )

Initial idea

* To each cluster there is a non-zero eigenvalue
in A
= Number of clusters = number of non-zero

eigenvaluesin A

* To each such eigenvalue/cluster, the
corresponding normalized eigenvector is a
scaled version of the corresponding indicator
vector

Permutations of A

* Two ideal cluster, with two points each

1

4 1 01 0

0 1 0 1

2 A= 1 0 1 0
3 0 1 0 1

Eigensystem of permuted A

* An eigenvalue decomposition of A gives

1 1
VR B
0o L 0 L
normalized eigenvectors = | ; \6 2 1 V2
V2 s
0o L o =L
V2 V2
corresponding eigenvalues = ( 2 ) 0 0 )

Initial idea holds: permutations of the points
carries over to permutations of the elements of
the eigenvectors




Eigensystem of permuted A

e The goal of spectral clustering is to determine
the permutation of A that turns it into a block
diagonal form

* This is done by analyzing the eigensystem of A

A glitch (I)

* In this case: the non-zero eigenvalues are
equal

— Any linear combination of the first two
eigenvectors is also an eigenvector of the same
eigenvalue

— Any small perturbation of A can make a large
change in the eigenvectors

— Eigenvectors will not correspond to the indicator
vectors

A glitch (1)

Again ideally ordered
but with some noise

1 099 0.01 0.02\ "
099 1 0.01 0.03
001 001 1 0.98
0.02 0.03 098 1

A=

| Approximate numerical values

¥

0.53 —-046 -0.28 0.65
0.54 -046 0.27v —0.65
0.46 054 —-0.65 —0.27
0.47 0.53 0.65  0.27

normalized eigenvectors =

corresponding eigenvalues = (2.02 1.95  0.02  0.01 )

A glitch (1)

* Itis still the case the there are two dominant
eigenvalues, corresponding to the two
separate clusters

* But the corresponding eigenvectors do not
directly reveal the points of each cluster
— A linear combination of them, howeuver, will!




Fixing the glitch (I)

e Define, for n points and k clusters:

U = n X k matrix containing the normalized
eigenvectors of the k largest eigenvalues of A
in its columns

— Each row in U corresponds to a data point

Fixing the glitch (I)

* In the last numerical example:

0.53 —-046| —0.28 0.65
0.54 —-046| 0.27 —0.65
0.46 0.54 | —-0.65 —-0.27
0.47 0.53 0.65 0.27

We notice that rows of
U corresponding to the
same cluster are
approximately equal
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Fixing the glitch (1)

Points belonging to the
same cluster clusters in
the row space of U

Use k-means clustering
to find these clusters in
the row space of U

Cluster points are
rotated compared to

the previous case

A clustering algorithm, (I)

Assume n points and k clusters

Compute n x n affinity matrix A

Compute the eigensystem of A

There should be k non-zero eigenvalues

Set U to hold the corresponding normalized
eigenvectors in its columns

Apply k-means clustering on the row space of
U to find the k clusters




An observation (l)

e The self-affinity of each point is a constant
value found in the diagonal of A

e Changing this constant means adding a term

to A that is proportional to the identity matrix:

A=A+al

An observation (l)

e A and A’ have the same eigenvectors but their
eigenvalues differ:

0O 1 0 O
0 0 0 1
0 0 1 O
| Same eigenvectors as before |
corresponding eigenvalues = ( 1 1 -1 -1 )

An observation (l)

* In the literature it is common to set the
self-affinity to zero
— All diagonal elements of A are zero

* The phrase
“k eigenvalues of A are non-zero”
should then be replaced by
“k eigenvalues of A are large”

An observation (I1)

In the previous numerical example:

* Not only are the row vectors of U for points in
different clusters distinct, they are orthogonal

%
S

e This is not a coincidence!




An observation (ll) A clustering algorithm (ll)

Assume n points and k clusters
Compute n x n affinity matrix A (0 in diagonal!)

e Assuming that the k largest eigenvalues of A
are approximately equal (to \):

Compute eigensystem of A

There should be k “large” eigenvalues which are
approximately equal

Set U to hold the corresponding normalized
eigenvectors in its columns

Apply k-means clustering on the row space of U
to find the k clusters

The inner product of rows from

A+ o | = )\ U UT « different clusters correspond to

zero affinity in an ideal A

In the ideal case: rows in U belonging to
different clusters must be orthogonal

— But not necessarily of unit length!
— We will return to this later on!

An observation (lIl) Degree matrix

e Using the “larger” or “significant” eigenvalues * We define
of A can be replaced with “equal to zero” or

o ” . H
close-to-zero” eigenvalues of related matrices . .
& D = diagonal matrix { d, }

* We need to modify A accordingly where d;; = sum of row/columniin A

* Leads to the Laplacian L of A, and we do
clustering based on the eigensystem of L

instead of A as the degree matrix of A




A simple example

0O 1 0 0 O 1 0 0 0 O
1 0 0 0 O 01 0 0 O
A=1]10 0 0 1 1 D=0 0 2 0 0
0O 01 0 1 0O 0 0 2 0
0O 01 1 0 0O 0 0 0 2
1 0 In the ideal case:
1 0 The indicator vectors are
c| = 0 Ccy = 1 eigenvectors both to A and D
0 1 and have eigenvalues {1, 2}
0 1 relative both A and D

Laplacian

e Formally, we define
L=D-A
as the Laplacian of A

e The indicator vectors are eigenvectors also of
L, with eigenvalue O

Properties of L

In the ideal case:
* L has the same eigenvectors as A and D
* L has eigenvalues = 0 for the indicator vectors

In general (also with noise):
| a;; > 0 for affinity matrix A |

1 < /
uTLu: 5 Z aij(ui—uj)2

i,j=1

L is positive semi-definite! |

Properties of L

In the general case (also with noise):

* Positive semi-definite

e Sum along rows/columns of L vanishes
e There is always one eigenvalue=0inL

e Corresponding eigenvector = is 1 (constant 1)
= 1 is the sum of all indicator vectors!




Properties of L

In the ideal case
e L has a block structure,

— Non-zero blocks representing fully connected
components

— Zero blocks representing unconnected
components

Properties of L

From this follows:

1. Ifuis a cluster indicator vector =
uis an eigenvector of L with eigenvalue 0

2. If uis an eigenvector of L with eigenvalue 0 =
u is a linear combination of the cluster indicator
vectors

From this follows:

1. The number of eigenvalues =0inLis =k
(k= number of clusters)

2. The corresponding eigenvectors span the space
of indicator vectors

A clustering algorithm (1)
Unnormalized spectral clustering

e Assume n points and k clusters

e Compute n x n affinity matrix A

e Compute D, and computeL=D-A

e Compute eigensystem of L

* There should be k “zero” eigenvalues

e Set U to hold the corresponding normalized
eigenvectors in its columns

* Apply k-means clustering on the row space of U
to find the k clusters

Fiedler’s method for k=2

* The Laplacian L has always (even for noisy
data) an eigenvalue A\, =0

* Corresponding eigenvector e, is 1

e If k=2, there should be a second eigenvalue
=0, or at least close to zero

 Corresponding eigenvector denoted e,

e The row space of {e,, e,} should form clusters
in two orthogonal directions




Fiedler’s method for k=2

Consequently, the signs of the elements in e,
must be indicators of the two classes

For example:

“+” means class 1

“” means class 2

We don’t really need e,

Only the signs of the elements in e,

= e, is often referred to as the Fiedler vector

An observation (IV)

e Should we do clustering on A or on L?
e Forideal data

— full connections internally in each component
— no connects between components

there is, in general, no difference in the result

e For non-ideal data, (= in practice) the results
differ

— Often: clustering based on L is better!

A numerical example
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A numerical example

Possibly mis-classified
Perturbed data point in k-mean clustering
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Analysis

* It can be shown that the clustering on A is
equivalent to solving the mincut problem of
the corresponding graph [see von Luxburg]

Prefers to cut fewer edges, even if they have
higher affinity, than more edges even when
each has lower affinity

In our example: there is a risk of cutting the
edge between point 1 and the rest of the
points in the first cluster

Analysis

* It can be shown that the clustering on L is for
k = 2 approximates the solution of the
Ratio-cut problem of the corresponding graph
[see von Luxburg]

* Normalizes the cost of a cut with the number
of vertices of each sub-graph

* In our example: reduces the risk of cutting the
edge between point 1 and the rest of the
points in the first cluster

A glitch (1)

e The last clustering algorithm works well for
arbitrary k, but assumes that the number of
points in each cluster, n,, is approximately
equal

Otherwise, eigenvalues which are “zero” and
“non-zero” may mix in the data of real data

A simple example

e Anideal A with k=2 and n, and n, points in
each cluster
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A simple example

e Eigensystem of A

A simple example

m-1 0 0 0 0 0 0 0
0 n;—1 0 .. 0 0 0 0 0
) 0 0 0 m-1 .. 0 0 0 0 0 L n
1 0 : : S0 0 0 0 0 0
: ‘ - o_| o 0 0 0 m-1 0 0 0o 0 0 ]
: =1 o 0 0 0 0 m-1 0 0 .. 0
e =1 cy = - 0 0 0 0 0 0 me—-1 0 ... 0
! 0 1 0 0 0o 0 0 0 0 mp—1 ... 0 - n,
0 ! - n, 0 0 o 0 0 0
: 0 0 o 0 0 0 0 0 0 mp-1
0 1 .
corresponding eigenvalues = ( ny —1  ng—1 —1 -1)
n-2 41 42
A simple example A simple example
e Eigensystem of D e Eigensystem of L
1 0 1 0
1 0 1 0
. . - om . : -
1 0 1 0
Ci = 0 Cy = 1 c = 0 co = 1
0 1 0 1
) roMm ) -
0 1 J 0 1 J
(nl—l TLQ—l nl—l TL]_—l TLQ—l ’I’Lz—l) (0 0 ni n1 Ng ... n2)
“ f : : / | ‘ / “ Y
|
n,-1 n, - n -1 n,-1

44




A glitch (Il)
* For this example:

— There are 2 eigenvalues approximately =0
— There are n, - 1 eigenvalues approximately = n,
— There are n, - 1 eigenvalues approximately = n,

* If n, >> n, and with sufficiently noisy data:
— The first two types of eigenvalues can mix
— Also their eigenvectors will mix
— Poor clustering performance

Fixing the glitch (ll)

e There are (at least) two ways of fixing this
glitch, where both normalize the Laplacian L
before computing the eigensystem:

— Normalized spectral clustering according to
Shi & Malik (2000) [Not covered here!]
* Based on EVD of L, = D"IL

— Normalized spectral clustering according to
Ng et al (2002) [Next!]

Fixing the glitch (Il)

* We define a normalized Laplacian as
Lym = D2 L D12

» Referred to as the normalized symmetric
Laplacian

Fixing the glitch (Il)

* L, is symmetric, and (in the ideal case):
— Diagonal elementsin L, areall =1

— Off-diagonal elements sum to -1 along row and
columns

— Same number of eigenvalues=0as L
— Same block structure as L
— Same eigenvectors as L

— An non-zero eigenvalue n, in L becomes
ne/ (ng—1)in Loym




Fixing the glitch (ll)

e The cluster indicator vectors are eigenvectors
alsoof L, with eigenvalues =0

sym’
* We can consider the eigensystem of L,
instead!

* Better separation between “zero” and “non-
zero” eigenvalues

A glitch (1l1)

A simple example with three ideal clusters
n,, n,, n; points each

* The indicator vectors c,, ¢c,, ¢; are eigenvectors
of Ly, with eigenvalue 0

* Normalized to unit norm they become

1/y/n1 0 0 1
: : : - m
e ; 0 |
0 1/y/z 0
& = : &= : Cs = 5 L
0 1/ 0
0 g_z 1/yns \
: : : ( n3
0 0 1z ) -

A glitch (1l1)

* In the practical case, these is some noise and the
three eigenvectors if Lym corresponding to
eigenvalue “zero” are linear combinations of the
previous vectors

— Normalized linear combinations!

— Correspond to rotations of the previous vectors

— Therefore we do k-means clustering on the row space
of U to find the clusters

— If ny, n,, n; are of different magnitudes:

e Clusters with many points are found close to the origin
* (Why?)

Fixing the glitch (llI)

We normalize the rows of U before the final
k-means clustering

The resulting rows lie on a unit hyper-sphere

This leads to a better separation of the
clusters in the row space of U

We return to the issue of clustering points on
a sphere in the following lecture




A clustering algorithm (1V)
Ng et al (2002)

* Assume n points and k clusters

e Compute n x n affinity matrix A, and its D
e ComputeL=D-A

 Compute Ly, =D/2LD/>

e Compute eigensystem of Loym

* There should be k “zero” eigenvalues

e Set U to hold the corresponding normalized
eigenvectors in its columns

¢ Set T = U but with each row normalized to unit norm

* Apply k-means clustering on the row space of T to find
the k clusters

Does it matter with algorithm we use?

The unnormalized algorithm is attractive since
it is simple, but

— Use it only when you know that the clusters have
the same order of points

The two normalized methods (S-M & Ng) are
approximately of the same order of additional
computations

— Von Luxburg suggests S-M before Ng method

— In practice Ng’s method appears to work as well

Summary

* 3 basic algorithms for spectral clustering
— Unnormalized: Lu= A u
— Shi-Malik
* Solve: L, u=Au,whereL, =DL
— Ng, et al:
* Solve: Ly, u=Au, wherel, =D?%2LD??
e Spectral properties of A, D, L
— Relations to the cluster indicator vectors




