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Overview
1. Lens effects (distortion, vignetting)
2. Extrinsic and intrinsic camera parameters
3. Zhang’s camera calibration
4. Calibrated epipolar geometry (intro)
5. Oriented epipolar geometry

Break
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The pin-hole camera

A brightly illuminated scene will be projected 
onto a wall opposite of the pin-hole.

The image is rotated        .
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The pin-hole camera

• From similar triangles we get:

4

x = f
X

Z
y = f

Y

Z


 










 









May 20, 2014 Computer Vision lecture 4a

Computer Vision Laboratory

The pin-hole camera

• From similar triangles we get:
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• More generally, we write:

• f-focal length, s-skew, a-aspect ratio,
(cx,cy)-projection of optical centre
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The pin-hole camera
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The pin-hole camera

x � KX̃
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The pin-hole camera

Motivation:

f-focal length, s-skew, a-aspect ratio,
(cx,cy)-projection of optical centre
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Thin Lens Camera
Real cameras use lenses, not pin-holes!
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Thin Lens Camera
A thin lens is a (positive) lens with

Parallel rays converge at the focal points
Rays through the optical centre are not 

refracted
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Thin Lens Camera

Thin lens relation (from similar triangles):
1
f

=
1
Z

+
1
l

















11



May 20, 2014 Computer Vision lecture 4a

Computer Vision Laboratory

Thin Lens Camera

- Focus at one depth only. 
- Objects at other depths are blurred. 
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
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Thin Lens Camera

An aperture increases the depth-of-field, the 
range which is sharp in the image.

A compromise between pinhole and thin lens.
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Lens effects

• Radial distortion
• For zoom lenses: Barrel at wide FoV

pin-cushion at narrow FoV

Barrel distortionCorrect Pin-cushion distortion
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Lens effects

• Modelling
• Used in optimisation such as BA

DistortedCorrect image
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x ⇠ Kf(u,⇥0)
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Lens effects

•  Rectification
•  Used in dense stereo

Distorted image Correct
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Distorsion polynomials
• Different models for different classes

of cameras
• Radial model for normal and telecentric 

lenses with moderate distortion

• Also model centre of distortion
17
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Distorsion polynomials
• For better accuracy:
• Tangential distorsion
• Rational model [Claus & Fitzgibbon 05]

• Specialised models:
• wide-angle cameras [Kannala&Brandt 06]
• catadioptric cameras [Micusik&Pajdla 03]
• most simple is the FoV model [Devernay & 

Faugeras 2001]:
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r0 = atan(r✓1)/✓1
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Lens effects

• Vignetting and cos4-law
• Stronger effects in wide FoV

Darkened peripheryCorrect
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Lens effects
Vignetting
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Lens effects
Vignetting

cos4-law
dampening with
cos4(w)

http://software.canon-europe.com/files/documents/EF_Lens_Work_Book_10_EN.pdf
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For a general position of the world 
coordinate system (WCS) we have:
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Camera parameters
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For a general position of the world 
coordinate system (WCS) we have:

K contains the intrinsic parameters
[R | t] contain the extrinsic parameters
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Camera parameters
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Camera parameters
Metric points transformed to the camera’s 

coordinate system are called 
normalised image coordinates

In contrast to regular image coordinates

K contains the intrinsic parameters
[R | t] contain the extrinsic parameters

24

x ⇠ K [R|t]X

x̂ ⇠ [R|t]X

x = Kx̂
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Camera calibration
Zhang’s camera calibration (A flexible new 

technique for camera calibration, PAMI 
2000)

In OpenCV, and in Matlab toolbox
Finds K from 3 or more photos of a planar

calibration target
Moderate lens

distorsion can also
be estimated.

25



May 20, 2014 Computer Vision lecture 4a

Computer Vision Laboratory

Camera calibration
We now imagine a world coordinate 

system fixed to the planar target
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Camera calibration
We now imagine a world coordinate 

system fixed to the planar target
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Camera calibration

If we estimate a homography between the 
image and the model plane (lecture 3) we 
know H

We also know that
                             and

28

rT
1 r2 = 0 rT

1 r1 = rT
2 r2

H = [h1 h2 h3] = K [r1 r2 t]



May 20, 2014 Computer Vision lecture 4a

Computer Vision Laboratory

Camera calibration

If we estimate a homography between the 
image and the model plane (lecture 3) we 
know H

We also know that
                             and
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Camera calibration

For a K of the form
It can be shown that (use e.g. Maple)
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Camera calibration

For a K of the form
It can be shown that (use e.g. Maple)

Remember our constraints
                       and
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Camera calibration

As B is symmetric

32
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Camera calibration

As B is symmetric

If we now define
The constraints can be written as
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Camera calibration

Each view of the plane gives us two rows in 
the system:

As b has 6 unknowns, we need 3 views of 
the plane.

Two views can also work if we require 

34
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Camera calibration
Once b has been estimated, we can extract the 

parameters in K according to

35
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Camera calibration
Once b has been estimated, we can extract the 

parameters in K according to

The H&Z book instead suggests Cholesky factorisation
36
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Camera calibration
Cholesky factorisation of B(b)

Gives us           which is invertible.

37

B(b) = K�1TK�1

K�1
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Camera calibration

Once K is computed we can also find the extrinsic 
camera parameters R,t for each image:

           (                                                   )

38

r1 = �K�1h1 r2 = �K�1h2 r3 = r1 ⇥ r2

R = [r1 r2 r3] t = �K�1h3

� = 1/||K�1h1|| = 1/||K�1h2||
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Camera calibration

Once K is computed we can also find the extrinsic 
camera parameters R,t for each image:

Finally, K, Ri, ti are refined using ML (minimising 
the cost function)

39
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Camera calibration

Once K is computed we can also find the extrinsic 
camera parameters R,t for each image:

Optionally, all of K,   ,Ri, ti are refined using ML:

40

r1 = �K�1h1 r2 = �K�1h2 r3 = r1 ⇥ r2
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Camera calibration

So what about the initial homographies?

Assign each point a WCS value 

41

H = K [r1 r2 t]
X = [x y 0]T
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Camera calibration

So what about the initial homographies?

Assign each point a WCS value 
Do we need to know which point is the upper left 
one on the checker-board? Why not?

42

H = K [r1 r2 t]
X = [x y 0]T
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Camera calibration
Can we use any combination images of the calibration plane?

43
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Camera calibration
Can we use any combination images of the calibration plane?

The constraints used:                 and
have to be linearly independent.

          Planes must not be parallel!

44
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Calibrated epipolar geometry

Recall the epipolar constraint

45
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Calibrated epipolar geometry

Recall the epipolar constraint
...and the normalised image coordinates

We can instead express the epipolar constraint 
in normalised coordinates

The matrix E is called the essential matrix.
It has some interesting properties...

46
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Calibrated epipolar geometry
In lecture 2 we saw that for cameras P1 and P2:

Now, if

We get                          and

47

P+
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
K�1

2

0T

�
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2
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2
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Calibrated epipolar geometry
Using the cross-product-commutator rule:

(A4.3)

on 

...we may express F as either of

48
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1 [t]⇥RK�1
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1 R
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Calibrated epipolar geometry
This gives us the essential matrix 

expressions:

E has only 5 dof (3 from R, 2 from t)
recall that F has 7

A necessary and sufficient condition on E is 
that it has the singular values [a,a,0]
(see 9.6.1 in the H&Z book for proof)

49

E = [t]⇥R = R
⇥
RT t

⇤
⇥
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Calibrated epipolar geometry
This gives us the essential matrix 

expressions:

We can extract R and t (up to scale) from E
if we also make use of one point 
correspondence (a 3D point known to be in 
front of both cameras). See 9.6.2 in the 
H&Z book.  

50

E = [t]⇥R = R
⇥
RT t

⇤
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Calibrated epipolar geometry
4 cases for R and t, just one has point in front 

of both cameras.

51
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Oriented epipolar geometry
The regular epipolar constraint

ignores the knowledge that points are in front
of the camera.

52
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Oriented epipolar geometry
In oriented projective geometry a (visible) 

point in front of the camera is defined as 
having a projection

 and a (hidden) point behind the camera has a 
projection

53
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Oriented epipolar geometry
The oriented epipolar constraint properly 

distinguishes points in front of and behind the 
camera

54





 




 

 








�e1 ⇥ x1 = Fx2 , � 2 R+



May 20, 2014 Computer Vision lecture 4a

Computer Vision Laboratory

Oriented epipolar geometry
The oriented epipolar constraint can be 

interpreted as comparing oriented lines
                     and 

(NB! image planes drawn in front of cameras)
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�e1 ⇥ x1 Fx2










 
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Oriented epipolar geometry
Line normalisation is not unique

The extra information in the sign can be used to 
encode the line orientation.
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normD(l) =
⇥
cos↵ sin↵ �⇢

⇤T

normD(�l) =
⇥
� cos↵ � sin↵ ⇢

⇤T
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Oriented epipolar geometry
Usage:
The oriented epipolar constraint can be used 

to quickly reject a hypothesized F inside a 
RANSAC loop.

See today’s paper: Chum, Werner and Matas, 
Epipolar Geometry Estimation via RANSAC 
benefits from the Oriented Epipolar 
Constraint, ICPR04
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