Geometry for Computer Vision

Lecture 4 a
 Calibration and Oriented Epipolar Geometry

Per-Erik Forssén

Overview

1. Lens effects (distortion, vignetting)
2. Extrinsic and intrinsic camera parameters
3. Zhang's camera calibration
4. Calibrated epipolar geometry (intro)
5. Oriented epipolar geometry

Break

The pin-hole camera

A brightly illuminated scene will be projected onto a wall opposite of the pin-hole.
The image is rotated 180°.

The pin-hole camera

- From similar triangles we get:

$$
x=f \frac{X}{Z} \quad y=f \frac{Y}{Z}
$$

The pin-hole camera

- From similar triangles we get:

$$
\gamma\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

The pin-hole camera

$$
\gamma\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

- More generally, we write:

$$
\gamma\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
f & s & c_{x} \\
0 & f a & c_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

- f-focal length, s-skew, a-aspect ratio, ($\mathrm{c}_{\mathrm{x}}, \mathrm{c}_{\mathrm{y}}$)-projection of optical centre

The pin-hole camera

$$
\gamma \underbrace{\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}_{\mathbf{x}}=\underbrace{\left[\begin{array}{ccc}
f & s & c_{x} \\
0 & f a & c_{y} \\
0 & 0 & 1
\end{array}\right]}_{\mathbf{K}} \underbrace{\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]}_{\tilde{\mathbf{x}}}
$$

$$
\mathbf{x} \sim \mathbf{K} \tilde{\mathbf{X}}
$$

The pin-hole camera

$\gamma \underbrace{\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]}_{\mathbf{x}}=\underbrace{\left[\begin{array}{ccc}f & s & c_{x} \\ 0 & f a & c_{y} \\ 0 & 0 & 1\end{array}\right]}_{\mathbf{K}} \underbrace{\left[\begin{array}{c}X \\ Y \\ Z\end{array}\right]}_{\tilde{\mathbf{x}}}$
Motivation:

$$
\mathbf{x} \sim \mathbf{K} \tilde{\mathbf{X}}
$$

Image Plane

Image Grid

f-focal length, s-skew, a-aspect ratio, ($\mathrm{c}_{\mathrm{x}}, \mathrm{c}_{\mathrm{y}}$)-projection of optical centre

Thin Lens Camera

Real cameras use lenses, not pin-holes!

Thin Lens Camera

A thin lens is a (positive) lens with $d \ll f$

Parallel rays converge at the focal points
Rays through the optical centre are not refracted

Thin Lens Camera

Thin lens relation (from similar triangles):

$$
\frac{1}{f}=\frac{1}{Z}+\frac{1}{l}
$$

Thin Lens Camera

- Focus at one depth only.
- Objects at other depths are blurred.

Thin Lens Camera

An aperture increases the depth-of-field, the range which is sharp in the image.
A compromise between pinhole and thin lens.

Lens effects

Correct

Barrel distortion

Pin-cushion distortion

- Radial distortion
- For zoom lenses: Barrel at wide FoV pin-cushion at narrow FoV

Lens effects

Correct image

- Modelling $\quad \mathbf{x} \sim \mathbf{K} f\left(\mathbf{u}, \boldsymbol{\Theta}^{\prime}\right)$
- Used in optimisation such as BA

Lens effects

Distorted image

Correct

- Rectification $\mathbf{x}^{\prime} \sim f^{-1}(\mathbf{x}, \boldsymbol{\Theta})$
- Used in dense stereo

Distorsion polynomials

- Different models for different classes of cameras
- Radial model for normal and telecentric lenses with moderate distortion

$$
\begin{aligned}
& r=\sqrt{x_{1}^{2}+x_{2}^{2}} \quad \varphi=\operatorname{atan} 2\left(x_{2}, x_{1}\right) \\
& r^{\prime}=\theta_{1} r+\theta_{2} r_{3} \ldots \quad \varphi^{\prime}=\varphi \\
& x_{1}^{\prime}=r^{\prime} \cos \varphi^{\prime} \quad x_{2}^{\prime}=r^{\prime} \sin \varphi^{\prime} \\
& \text { - Also model centre of distortion }
\end{aligned}
$$

Distorsion polynomials

- For better accuracy:
- Tangential distorsion
- Rational model [Claus \& Fitzgibbon 05]
- Specialised models:
- wide-angle cameras [Kannala\&Brandt 06]
- catadioptric cameras [Micusik\&Pajdla 03]
- most simple is the FoV model [Devernay \& Faugeras 2001]:

$$
r^{\prime}=\operatorname{atan}\left(r \theta_{1}\right) / \theta_{1}
$$

Lens effects

Correct

Darkened periphery

- Vignetting and $\cos ^{4}$-law
- Stronger effects in wide FoV

Lens effects

Vignetting

Lens effects

Vignetting

$\cos ^{4}$-law dampening with $\cos ^{4}(w)$

Camera parameters

For a general position of the world coordinate system (WCS) we have:

$$
\mathbf{x} \sim \mathbf{K} \underbrace{\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3}
\end{array}\right]}_{[\mathbf{R} \mid \mathbf{t}]} \underbrace{\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]}_{\mathbf{X}}
$$

Camera parameters

For a general position of the world coordinate system (WCS) we have:

$$
\mathbf{x} \sim \mathbf{K} \underbrace{\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3}
\end{array}\right]}_{[\mathbf{R} \mid \mathbf{t}]} \underbrace{\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]}_{\mathbf{X}}
$$

K contains the intrinsic parameters
[$\mathbf{R} \mid \mathbf{t}]$ contain the extrinsic parameters

Camera parameters

Metric points transformed to the camera's coordinate system are called normalised image coordinates

$$
\hat{\mathbf{x}} \sim[\mathbf{R} \mid \mathbf{t}] \mathbf{X}
$$

In contrast to regular image coordinates

$$
\mathbf{x} \sim \mathbf{K}[\mathbf{R} \mid \mathbf{t}] \mathbf{X} \quad \mathbf{x}=\mathbf{K} \hat{\mathbf{x}}
$$

\mathbf{K} contains the intrinsic parameters
[$\mathbf{R} \mid \mathbf{t}]$ contain the extrinsic parameters

Camera calibration

Zhang's camera calibration (A flexible new technique for camera calibration, PAMI 2000)

In OpenCV, and in Matlab toolbox
Finds \mathbf{K} from 3 or more photos of a planar calibration target
Moderate lens
distorsion can also be estimated.

Camera calibration

We now imagine a world coordinate system fixed to the planar target

Camera calibration

We now imagine a world coordinate system fixed to the planar target

Camera calibration

If we estimate a homography between the image and the model plane (lecture 3) we know H

$$
\mathbf{H}=\left[\begin{array}{lll}
\mathbf{h}_{1} & \mathbf{h}_{2} & \mathbf{h}_{3}
\end{array}\right]=\mathbf{K}\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{t}
\end{array}\right]
$$

We also know that

$$
\mathbf{r}_{1}^{T} \mathbf{r}_{2}=0 \quad \text { and } \quad \mathbf{r}_{1}^{T} \mathbf{r}_{1}=\mathbf{r}_{2}^{T} \mathbf{r}_{2}
$$

Camera calibration

If we estimate a homography between the image and the model plane (lecture 3) we know H

$$
\mathbf{H}=\left[\begin{array}{lll}
\mathbf{h}_{1} & \mathbf{h}_{2} & \mathbf{h}_{3}
\end{array}\right]=\mathbf{K}\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{t}
\end{array}\right]
$$

We also know that

$$
\begin{gathered}
\mathbf{r}_{1}^{T} \mathbf{r}_{2}=0 \quad \text { and } \quad \mathbf{r}_{1}^{T} \mathbf{r}_{1}=\mathbf{r}_{2}^{T} \mathbf{r}_{2} \\
\Rightarrow \mathbf{h}_{1}^{T} \mathbf{K}^{-T} \mathbf{K}^{-1} \mathbf{h}_{2}=0 \\
\quad \mathbf{h}_{1}^{T} \mathbf{K}^{-T} \mathbf{K}^{-1} \mathbf{h}_{1}=\mathbf{h}_{2}^{T} \mathbf{K}^{-T} \mathbf{K}^{-1} \mathbf{h}_{2}
\end{gathered}
$$

Camera calibration

For a K of the form $\mathbf{K}=\left[\begin{array}{lll}\alpha & \gamma & u_{0} \\ 0 & \beta & v_{0} \\ 0 & 0 & 1\end{array}\right]$
It can be shown that (use e.g. Maple)

$$
\mathbf{K}^{-T} \mathbf{K}^{-1}=\mathbf{B}=\left[\begin{array}{ccc}
\frac{1}{\alpha^{2}} & -\frac{\gamma}{\alpha^{2} \beta} & \frac{v_{0} \gamma-u_{0} \beta}{\alpha^{2}} \\
-\frac{\gamma}{\alpha^{2} \beta} & \frac{\gamma^{2}}{\alpha^{2} \beta^{2}}+\frac{1}{\beta^{2}} & -\frac{\gamma\left(v_{0} \gamma u_{0} \beta\right)}{\alpha^{2} u_{0}}-\frac{v_{0}}{\beta^{2}} \\
\frac{v_{0} \gamma-u_{0} \beta}{\alpha^{2} \beta} & -\frac{\gamma\left(v_{0} \gamma-u_{0} \beta\right)}{\alpha^{2} \beta^{2}}-\frac{v_{0}}{\beta^{2}} & \frac{\left(v_{0} \gamma-u_{0} \beta\right)^{2}}{\alpha^{2} \beta^{2}}+\frac{v_{0}^{2}}{\beta^{2}}+1
\end{array}\right]
$$

Camera calibration

For a K of the form $\mathbf{K}=\left[\begin{array}{lll}\alpha & \gamma & u_{0} \\ 0 & \beta & v_{0} \\ 0 & 0 & 1\end{array}\right]$
It can be shown that (use e.g. Maple)

Remember our constraints $\mathbf{h}_{1}^{T} \mathbf{B h}_{2}=0$ and $\mathbf{h}_{1}^{T} \mathbf{B h}_{1}-\mathbf{h}_{2}^{T} \mathbf{B h}_{2}=0$

Camera calibration

As \mathbf{B} is symmetric $\quad \mathbf{B}=\left[\begin{array}{lll}b_{1} & b_{2} & b_{4} \\ b_{2} & b_{3} & b_{5} \\ b_{4} & b_{5} & b_{6}\end{array}\right]$

Camera calibration

As \mathbf{B} is symmetric

$$
\mathbf{B}=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{4} \\
b_{2} & b_{3} & b_{5} \\
b_{4} & b_{5} & b_{6}
\end{array}\right]
$$

If we now define $\quad \mathbf{b}=\left[\begin{array}{llllll}b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & b_{6}\end{array}\right]^{T}$
The constraints can be written as

$$
\left[\begin{array}{c}
\mathbf{v}_{12}^{T} \\
\left(\mathbf{v}_{11}-\mathbf{v}_{22}\right)^{T}
\end{array}\right] \mathbf{b}=0
$$

$$
\mathbf{v}_{i j}=\left[h_{i 1} h_{j 1}, h_{i 1} h_{j 2}+h_{i 2} h_{j 1}, h_{i 2} h_{j 2}, h_{i 3} h_{j 1}+h_{i 1} h_{j 3}, h_{i 3} h_{j 2}+h_{i 2} h_{j 3}, h_{i 3} h_{j 3}\right]^{T}
$$

Camera calibration

Each view of the plane gives us two rows in the system:

$$
\mathbf{V b}=0
$$

As \mathbf{b} has 6 unknowns, we need 3 views of the plane.
Two views can also work if we require $\gamma=0$

Camera calibration

Once b has been estimated, we can extract the parameters in \mathbf{K} according to

$$
\begin{aligned}
v_{0} & =\left(b_{2} b_{4}-b_{1} b_{5}\right) /\left(b_{1} b_{3}-b_{2}^{2}\right) \\
\lambda & =b_{6}-\left(b_{3}^{2}+v_{0}\left(b_{2} b_{4}-b_{1} b_{5}\right) / b_{1}\right. \\
\alpha & =\sqrt{\lambda / b_{1}} \\
\beta & =\sqrt{\lambda b_{1} /\left(b_{1} b_{3}-b_{2}^{2}\right)} \\
\gamma & =-b_{2} \alpha^{2} \beta / \lambda \\
u_{0} & =\gamma v_{0} \alpha-b_{4} \alpha^{2} / \lambda
\end{aligned}
$$

Camera calibration

Once b has been estimated, we can extract the parameters in \mathbf{K} according to

$$
\begin{aligned}
v_{0} & =\left(b_{2} b_{4}-b_{1} b_{5}\right) /\left(b_{1} b_{3}-b_{2}^{2}\right) \\
\lambda & =b_{6}-\left(b_{3}^{2}+v_{0}\left(b_{2} b_{4}-b_{1} b_{5}\right) / b_{1}\right. \\
\alpha & =\sqrt{\lambda / b_{1}} \\
\beta & =\sqrt{\lambda b_{1} /\left(b_{1} b_{3}-b_{2}^{2}\right)} \\
\gamma & =-b_{2} \alpha^{2} \beta / \lambda \\
u_{0} & =\gamma v_{0} \alpha-b_{4} \alpha^{2} / \lambda
\end{aligned}
$$

The H\&Z book instead suggests Cholesky factorisation

Camera calibration

Cholesky factorisation of $\mathbf{B}(\mathrm{b})$

$$
\mathbf{B}(\mathbf{b})=\mathbf{K}^{-1^{T}} \mathbf{K}^{-1}
$$

Gives us \mathbf{K}^{-1} which is invertible.

Camera calibration

Once \mathbf{K} is computed we can also find the extrinsic camera parameters \mathbf{R}, \mathbf{t} for each image:

$$
\begin{gathered}
\mathbf{r}_{1}=\lambda \mathbf{K}^{-1} \mathbf{h}_{1} \quad \mathbf{r}_{2}=\lambda \mathbf{K}^{-1} \mathbf{h}_{2} \quad \mathbf{r}_{3}=\mathbf{r}_{1} \times \mathbf{r}_{2} \\
\mathbf{R}=\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3}
\end{array}\right] \quad \mathbf{t}=\lambda \mathbf{K}^{-1} \mathbf{h}_{3} \\
\left(\lambda=1 /\left\|\mathbf{K}^{-1} \mathbf{h}_{1}\right\|=1 /\left\|\mathbf{K}^{-1} \mathbf{h}_{2}\right\|\right)
\end{gathered}
$$

Camera calibration

Once \mathbf{K} is computed we can also find the extrinsic camera parameters \mathbf{R}, \mathbf{t} for each image:

$$
\begin{aligned}
& \mathbf{r}_{1}=\lambda \mathbf{K}^{-1} \mathbf{h}_{1} \quad \mathbf{r}_{2}=\lambda \mathbf{K}^{-1} \mathbf{h}_{2} \quad \mathbf{r}_{3}=\mathbf{r}_{1} \times \mathbf{r}_{2} \\
& \mathbf{R}=\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3}
\end{array}\right] \quad \mathbf{t}=\lambda \mathbf{K}^{-1} \mathbf{h}_{3}
\end{aligned}
$$

Finally, $\mathbf{K}, \mathbf{R}_{\mathbf{i}}, \mathbf{t}_{\mathbf{i}}$ are refined using ML (minimising the cost function)

$$
\arg \min \sum_{i=1}^{n} \sum_{j=1}^{m^{\prime}}\left\|\mathbf{x}_{i j}-\hat{\mathbf{x}}\left(\mathbf{K}, \mathbf{R}_{i}, \mathbf{t}_{i}, \mathbf{X}_{j}\right)\right\|^{2}
$$

Camera calibration

Once \mathbf{K} is computed we can also find the extrinsic camera parameters \mathbf{R}, \mathbf{t} for each image:

$$
\begin{aligned}
& \mathbf{r}_{1}=\lambda \mathbf{K}^{-1} \mathbf{h}_{1} \quad \mathbf{r}_{2}=\lambda \mathbf{K}^{-1} \mathbf{h}_{2} \quad \mathbf{r}_{3}=\mathbf{r}_{1} \times \mathbf{r}_{2} \\
& \mathbf{R}=\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3}
\end{array}\right] \quad \mathbf{t}=\lambda \mathbf{K}^{-1} \mathbf{h}_{3}
\end{aligned}
$$

Optionally, all of $\mathbf{K}, \boldsymbol{\Theta}, \mathbf{R}_{\mathbf{i}}, \mathbf{t}_{\mathbf{i}}$ are refined using ML:
$\arg \min \sum_{i=1}^{n} \sum_{j=1}^{m}\left\|\mathbf{x}_{i j}-\hat{\mathbf{x}}\left(\mathbf{K}, \boldsymbol{\Theta}, \mathbf{R}_{i}, \mathbf{t}_{i}, \mathbf{X}_{j}\right)\right\|^{2}$

Camera calibration

So what about the initial homographies?
$\mathbf{H}=\mathbf{K}\left[\begin{array}{lll}\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{t}\end{array}\right]$
Assign each point a WCS value $\mathbf{X}=\left[\begin{array}{ll}x & y\end{array}\right]^{T}$

Camera calibration

So what about the initial homographies?

$$
\mathbf{H}=\mathbf{K}\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{t}
\end{array}\right]
$$

Assign each point a WCS value $\mathbf{X}=\left[\begin{array}{ll}x & y\end{array}\right]^{T}$
Do we need to know which point is the upper left one on the checker-board? Why not?

Camera calibration

Can we use any combination images of the calibration plane?

Camera calibration

Can we use any combination images of the calibration plane?

The constraints used: $\mathbf{r}_{1}^{T} \mathbf{r}_{2}=0$ and $\mathbf{r}_{1}^{T} \mathbf{r}_{1}=\mathbf{r}_{2}^{T} \mathbf{r}_{2}$ have to be linearly independent.
\Rightarrow Planes must not be parallel!

Calibrated epipolar geometry

Recall the epipolar constraint $\quad \mathbf{x}_{1}^{T} \mathbf{F x}_{2}=0$

Calibrated epipolar geometry

Recall the epipolar constraint $\quad \mathbf{x}_{1}^{T} \mathbf{F} \mathbf{x}_{2}=0$
...and the normalised image coordinates

$$
\mathbf{x}=\mathbf{K} \hat{\mathbf{x}}
$$

We can instead express the epipolar constraint in normalised coordinates

$$
\hat{\mathbf{x}}_{1}^{T} \mathbf{K}_{1}^{T} \mathbf{F} \mathbf{K}_{2} \hat{\mathbf{x}}_{2}=0 \quad \text { or } \quad \hat{\mathbf{x}}_{1}^{T} \mathbf{E} \hat{\mathbf{x}}_{2}=0
$$

The matrix \mathbf{E} is called the essential matrix. It has some interesting properties...

Calibrated epipolar geometry

In lecture 2 we saw that for cameras $\mathbf{P}_{\mathbf{1}}$ and $\mathbf{P}_{\mathbf{2}}$:

$$
\mathbf{F}=\left[\mathbf{e}_{12}\right]_{\times} \mathbf{P}_{1} \mathbf{P}_{2}^{+} \quad \mathbf{e}_{12}=\mathbf{P}_{1} \mathbf{O}_{2}
$$

Now, if $\mathbf{P}_{2}=\mathbf{K}_{2}[\mathbf{I} \mid \mathbf{0}] \quad$ and $\quad \mathbf{P}_{1}=\mathbf{K}_{1}[\mathbf{R} \mid \mathbf{t}]$
We get $\quad \mathbf{P}_{2}^{+}=\left[\begin{array}{c}\mathbf{K}_{2}^{-1} \\ \mathbf{0}^{T}\end{array}\right] \quad$ and

$$
\mathbf{F}=\left[\mathbf{K}_{1} \mathbf{t}\right]_{\times} \mathbf{K}_{1} \mathbf{R} \mathbf{K}_{2}^{-1}
$$

Calibrated epipolar geometry

Using the cross-product-commutator rule:
(A4.3)

$$
[\mathbf{b}]_{\times} \mathbf{A}=\operatorname{det}(\mathbf{A}) \mathbf{A}^{-T}\left[\mathbf{A}^{-1} \mathbf{b}\right]_{\times}
$$

$$
\mathbf{F}=\left[\mathbf{K}_{1} \mathbf{t}\right]_{\times} \mathbf{K}_{1} \mathbf{R} \mathbf{K}_{2}^{-1}
$$

...we may express \mathbf{F} as either of

$$
\begin{array}{r}
\mathbf{F}=\mathbf{K}_{1}^{-T}[\mathbf{t}]_{\times} \mathbf{R} \mathbf{K}_{2}^{-1} \quad \mathbf{F}=\mathbf{K}_{1}^{-T} \mathbf{R}\left[\mathbf{R}^{T} \mathbf{t}\right]_{\times} \mathbf{K}_{2}^{-1} \\
\mathbf{F}=\mathbf{K}_{1}^{-T} \mathbf{R}\left[\mathbf{t}_{2}\right]_{\times} \mathbf{K}_{2}^{-1}
\end{array}
$$

This gives us the essential matrix expressions:

$$
\mathbf{E}=[\mathbf{t}]_{\times} \mathbf{R}=\mathbf{R}\left[\mathbf{R}^{T} \mathbf{t}\right]_{\times}
$$

\mathbf{E} has only 5 dof (3 from $\mathbf{R}, 2$ from \mathbf{t}) recall that F has 7
A necessary and sufficient condition on E is that it has the singular values $[a, a, 0]$ (see 9.6.1 in the H\&Z book for proof)

This gives us the essential matrix expressions:

$$
\mathbf{E}=[\mathbf{t}]_{\times} \mathbf{R}=\mathbf{R}\left[\mathbf{R}^{T} \mathbf{t}\right]_{\times}
$$

We can extract \mathbf{R} and \mathbf{t} (up to scale) from E if we also make use of one point correspondence (a 3D point known to be in front of both cameras). See 9.6.2 in the H\&Z book.

Calibrated epipolar geometry

4 cases for \mathbf{R} and \mathbf{t}, just one has point in front of both cameras.

Oriented epipolar geometry

The regular epipolar constraint $\quad \mathbf{x}_{1}^{T} \mathbf{F} \mathbf{x}_{2}=0$ ignores the knowledge that points are in front of the camera.

Oriented epipolar geometry

In oriented projective geometry a (visible) point in front of the camera is defined as having a projection

$$
\mathbf{x}=\lambda\left[\begin{array}{lll}
x_{1} & x_{2} & 1
\end{array}\right]^{T} \quad \text { with } \quad \lambda>0
$$

and a (hidden) point behind the camera has a projection

$$
\mathbf{x}=\lambda\left[\begin{array}{lll}
x_{1} & x_{2} & 1
\end{array}\right]^{T} \quad \text { with } \quad \lambda<0
$$

Oriented epipolar geometry

The oriented epipolar constraint properly distinguishes points in front of and behind the camera $\quad \lambda \mathbf{e}_{1} \times \mathbf{x}_{1}=\mathbf{F x}_{2}, \quad \lambda \in \mathbb{R}^{+}$

Oriented epipolar geometry

The oriented epipolar constraint can be interpreted as comparing oriented lines $\lambda \mathbf{e}_{1} \times \mathbf{x}_{1}$ and $\mathbf{F x}_{2}$

(NB! image planes drawn in front of cameras)

Oriented epipolar geometry

Line normalisation is not unique

$$
\begin{aligned}
\operatorname{norm}_{D}(\mathbf{l}) & =\left[\begin{array}{lll}
\cos \alpha & \sin \alpha & -\rho
\end{array}\right]^{T} \\
\operatorname{norm}_{D}(-\mathbf{l}) & =\left[\begin{array}{lll}
-\cos \alpha & -\sin \alpha & \rho
\end{array}\right]^{T}
\end{aligned}
$$

The extra information in the sign can be used to encode the line orientation.

Oriented epipolar geometry

Usage:
The oriented epipolar constraint can be used to quickly reject a hypothesized \mathbf{F} inside a RANSAC loop.
See today's paper: Chum, Werner and Matas, Epipolar Geometry Estimation via RANSAC benefits from the Oriented Epipolar Constraint, ICPR04

