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Overview
• The 5-point Algorithm
• Structure from Motion
• Bundle Adjustment
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Planar degeneracy

In the uncalibrated case, two view geometry 
is encoded by the fundamental matrix
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Planar degeneracy

In the uncalibrated case, two view geometry 
is encoded by the fundamental matrix

If all scene points lie on a plane, or if the 
camera has undergone a pure rotation 
(no translation), we also have:

Big trouble!
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Planar degeneracy
If              , then the epipolar constraint 

becomes
For                , this is true whenever M is 

skew-symmetric, i.e.
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Planar degeneracy
If              , then the epipolar constraint 

becomes
For                , this is true whenever M is 

skew-symmetric, i.e.
  

Thus                  where m may be chosen 
freely!

A two-parameter family of solutions.
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The 5-point algorithm
Recap from last week’s lecture...
In the calibrated case, epipolar geometry 

is encoded by the essential matrix, E 
according to:
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The 5-point algorithm
Recap from last week’s lecture...
In the calibrated case, epipolar geometry 

is encoded by the essential matrix, E 
according to:

In the calibrated setting there are just two possibilities 
if a plane is seen. See Negahdaripour, Closed-
form relationship between the two interpretations 
of a moving plane. JOSA90
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The 5-point algorithm
• E can be estimated from 5 corresponding 

points (see today’s paper).
• A small sample is useful for RANSAC (le 

3).
• The plane degeneracy is essentially 

avoided.
• There are however up to 10 solutions for E 

to test. Today’s paper!
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In lecture 4 we saw that:

...and how R and t (up to scale) can be 
retrieved from E, using the visibility 
constraint on a point correspondence.
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The 5-point algorithm
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Estimation of the essential matrix is usually 
the first step in Structure from Motion 
(SfM)
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Structure from Motion
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Estimation of the essential matrix is usually 
the first step in Structure from Motion 
(SfM)
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Input:

Output:

Structure from Motion
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Structure from Motion

Definition:

Given a collection of images
depicting a static scene
compute the 3D scene structure
and the position of each camera (motion)
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Cost function:

May 27, 2014 Computer Vision lecture 5b

Computer Vision Laboratory

Structure from Motion
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Structure from Motion

Definition of variables:

Given:

Sought:

By minimising:
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{Xk}K1 , {Rl, tl}L1

xk,l visible at vk,l

"({Xk}K1 , {Rl, tl}L1 )



Cost function:
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Structure from Motion
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" =
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k=1

LX

l=1

vk,l⇢(xk,l � proj(Rl(Xk � tl)))
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Structure from Motion

Robust cost function:
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Structure from Motion

Challenges:

1. Non-linear cost function
   - least squares solution not possible
2. Very large problem
   - efficiency is paramount
3. Non-convex problem
   - many local minima
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Structure from Motion

Typical solution:

1. Use an approximate method to find a solution 
close to the global min

2. Use a regularized Newton method (e.g. 
Levenberg-Marquardt) to refine the solution. 
This is called Bundle Adjustment (BA)
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Incremental Structure from Motion

Incremental Structure from Motion.
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Incremental Structure from Motion

Natural approach if the input is a video.

Used in many open source packages e.g.:
1. Bundler by Noah Snavely

http://www.cs.cornell.edu/~snavely/bundler/
2. The Visual SFM package:

http://ccwu.me/vsfm/
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http://www.cs.cornell.edu/~snavely/bundler/
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Structure from Motion

Parallel Incremental Bundle Adjustment.
(From an unordered image collection)

1. Building Rome in a Day, Agawal, Snavely, Simon, Seitz, 
Szeliski, ICCV 2009

2. Building Rome on a Cloudless Day, Frahm, Georgel, 
Gallup, Johnsson, Raguram, Wu, Yen, Dun, Clip, Lazebnik, 
Pollefeys, ECCV 2010
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Rotation based SfM
Solve for rotation first [Martinec and Pajdla CVPR07]

1. Find Euclidean reconstructions from pairs of views.

2. Solve for all absolute orientations

3. Solve for translations with a reduced point set

23
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Rotation based SfM
Solve for rotation first [Martinec and Pajdla CVPR07]

1. Find Euclidean reconstructions from pairs of views.
Results in

2. Solve for all absolute orientations

using:
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Rl,m, tl,m , l,m 2 [1 . . . L]

Rl , l 2 [1 . . . L]

Rl(:, i)�Rl,mRm(:, i) = 0 , i 2 [1, 2, 3]



May 27, 2014 Computer Vision lecture 5b

Computer Vision Laboratory

Rotation based SfM
2. Solve for all absolute orientations

using:

This results in a large sparse linear system.

All         can be found from the three smallest eigenvectors 
to the system (orthogonality of        is enforced after 
estimation).
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Rl , l 2 [1 . . . L]

Rl(:, i)�Rl,mRm(:, i) = 0 , i 2 [1, 2, 3]

Rl
Rl
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Rotation based SfM
2. Solve for all absolute orientations

Martinec and Pajdla used eigs in Matlab and this took
0.37 sec, to solve for 259 views, and 2049 relative 
orientations. (we’ve also tested this with similar results)
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Rotation based SfM
3. Solve for translations with a reduced point set

Idea: look at 

and find just four representatives Xk that span M
(Matlab code provided in paper)
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M = [m1 · · · ] ,where mk = [Rl|tl]Xk
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Rotation based SfM
3. Solve for translations with a reduced point set
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Rotation based SfM
Martinec and Pajdla method timing:

46 frame example. 186131 3D points.
Full BA took 3h 6 min, max residual 98.57 pixels
Reduced BA took 4.68 sec, max residual 98.46 pixels
>2000x speedup (compared to using all points)
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Rotation based SfM
Bonus feature: Better detection of incorrect EG.
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Rotation based SfM
Also extended by Enqvist, Kahl, and Olsson,

Non-Sequential Structure from Motion, ICCV11 
workshop

• Better detection of incorrect epipolar-geometries
• Translations are found using Using Second Order Cone 

Programming(SOCP). Auxiliary variables are used to be 
robust to outliers.
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Why bundle adjustment?

A decent 3D model can often be found by 
incrementally adding new cameras using 
PnP (or even using today’s paper)

But...
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Why bundle adjustment?

A decent 3D model can often be found by 
incrementally adding new cameras using 
PnP (or even using today’s paper)

But for long trajectories, errors will start to 
accumulate.
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BA is essentially ML over all image 
correspondences given all cameras, and all 
3D points.

34

{R⇤, t⇤,X⇤} = arg min
{R,t,X}

X

k,l

d(xkl,K[Rk|tk]Xl)2

Bundle Adjustment
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BA is essentially ML over all image 
correspondences given all cameras, and all 
3D points. (Optionally also intrinsics.)

Needs initial guess. (Obtained by RANSAC 
on 5-point method and P3P)

35

{R⇤, t⇤,X⇤} = arg min
{R,t,X}

X

k,l

d(xkl,K[Rk|tk]Xl)2

Bundle Adjustment
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The choice of parametrisation of 3D 
points, and camera rotations is important.

If both near and far points are seen, it might 
be better to use
than

Good choices for rotations are unit 
quarternions, and axis-angle vectors
(lecture 7)
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X = [X1, X2, X3, X4]T

X = [X1, X2, X3, 1]T

Bundle Adjustment



Bundle adjustment cost function:

May 27, 2014 Computer Vision lecture 5b

Computer Vision Laboratory

Bundle Adjustment
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Bundle adjustment cost function:

New notation:
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Bundle Adjustment
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New notation for cost function...
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Bundle Adjustment
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"({Rl, tl}L1 , {Xk}K1 ) = "(x) = r(x)T r(x)



New notation for cost function...

Taylor expansion...

Stationary point (set derivative of cost = 0)

Now solve for           .... 
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Bundle Adjustment

40

�x

"({Rl, tl}L1 , {Xk}K1 ) = "(x) = r(x)T r(x)

r(x+�x) ⇡ r(x) + J(x)�x

J(x)TJ(x)�x = �J(x)T r(x)



Levenberg-
Marqardt:
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Bundle Adjustment
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Solving the 
normal 

equations



Jacobian and approximate Hessian matrices:
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Bundle Adjustment
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J
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Shur complement from text book:
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Bundle Adjustment
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Comments:
1. To solve for the cameras, Cholesky factorisation is used 

instead of an explicit inverse.

2. For very large systems, sparse Cholesky solvers are 
preferable.

3. It quickly becomes impossible to store matrices explicitly, 
due to memory requirements
(e.g. 200 cameras, 20K 3D points ➟ 30 TB for JTJ).
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Bundle Adjustment
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Too many details to mention!
See the paper: Triggs et al., Bundle 

Adjustment - A Modern Synthesis, LNCS 
Book chapter, 2000

45

Bundle Adjustment
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Discussion
Discussion of the papers:

1. David Nistér, An Efficient Solution to 
the Five-Point Relative Pose Problem, 
CVPR’03

2. Long Quan, Invariants of six points 
and projective reconstruction from 
three uncalibrated images, TPAMI’95
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