Geometry in Computer Vision

Spring 2010 Lecture 2 Epipolar Geometry

Epipolar geometry

- Epipolar geometry is the geometry related to how <u>two</u> cameras (stereo cameras) depict the same scene
- Three or more cameras:
 - Multi-view geometry
- Basic assumptions:
 - Pin-hole cameras
 - All images are taken from different positions
 - \Rightarrow The cameras have distinct camera centers

Possible camera configurations

Two camera units

- Possibly with different internal parameters
- Possibly taking their images simultaneously
- Non-static scene is allowed

1

3

- One camera unit that moves from position 1 to position 2
- Image are taken at different time points
- Scene must be static

Examples of camera motion patterns

The camera rotates around the scene

The camera moves along

Epipolar geometry

Two basic issues of epipolar geometry:

- The correspondence problem: How can we know if a point in image 1 is the same as some point in image 2?
- The *reconstruction problem*: Given that two image points correspond, which 3D point do they refer to?

Basic setup

- Let ${\bf C}_1$ and ${\bf C}_2$ be the camera matrices of the two cameras
- Let **x** be the homogeneous coordinates of a 3D point
- Let y₁ and y₂ be the homogeneous coordinates of the images of x
- Let n₁ and n₂ be the homogeneous coordinates of the camera centers

5

7

$$C_1 n_1 = 0$$

 $C_2 n_2 = 0$

6

Here we assume $t \neq 0$

Pseudo-inverse

 For an n×m matrix (n < m) A we define its pseudo-inverse A⁺ as

 $\mathbf{A}^{+} = \mathbf{A}^{\top} (\mathbf{A} \ \mathbf{A}^{\top})^{-1}$

- \mathbf{A}^+ is $m \times n$ and satisfy $\mathbf{A} \mathbf{A}^+ = \mathbf{I}$
- Assumes **A** is of rank *n*

Reprojection line

- If **y**₁ is known, what can be said about **x**?
- We known that **x** lies somewhere on <u>a 3D line</u>

• Parametric representation of the line:

$$(1-t)$$
 n₁ + t C⁺₁y₁

Check:

Epipolar degeneracies

• If the two camera centers coincide

 $\mathbf{F} = [\mathbf{e}_{21}]_{\times} \mathbf{C}_{2} \mathbf{C}_{1}^{+} = \mathbf{0}$ (why?)

• From previous lecture we know that in this case

 $\mathbf{y}_2 = \mathbf{H} \mathbf{y}_1$, where **H** is a homography

21

Epipolar degeneracies

- A similar situations occurs when the 3D scene consists points in a plane
- All observations of image points y₁ and y₂ can be written y₂ = H y₁ = H₂ H₁ y₁

Epipolar degeneracies

• Follows:

 $\mathbf{0} = [\mathbf{y}_2]_{\times} \mathbf{H} \mathbf{y}_1$

- 3 constraints on the two image coordinates!
- They are linearly independent (why?)
- Conclusion:
 - In this case the fundamental matrix is not unique
 - This is flagged by F=0 when computed from \textbf{C}_1 and \textbf{C}_2
 - F lies in a 3-dim space of possible solutions to the epipolar constraint

22

Two cases of determining **F**

- The calibrated case:
 - **F** is computed from C_1 and C_2
- The uncalibrated case:
 - Given a set of *N* corresponding image points,
 y_{1k} in image 1 and y_{2k} in image 2, it is
 possible to determine F from the constraints:

$$\mathbf{y}_{2k}^{T} \mathbf{F} \mathbf{y}_{1k} = 0, \quad k = 1, ..., N$$

The uncalibrated case

- No camera matrices need to be known
 We estimte F from image coordinates only
- Image coordinates can only be determined up to a certain accuracy
 - lens distortion
 - quantization to integer pixel coordinates
 - detection inaccuracy
- This accuracy affects the estimation of F

Estimation of ${\ensuremath{\mathsf{F}}}$

 Let y and y' be corresponding points in image 1 and image 2 (no image noise!)

Estimation of ${\ensuremath{\mathsf{F}}}$

• The epipolar constraint: $\mathbf{y}^{\mathsf{T}} \mathbf{F} \mathbf{y} = 0$

$$\mathbf{y'}^{T} \mathbf{F} \mathbf{y} = y'_{1} y_{1} f_{11} + y'_{2} y_{1} f_{21} + y'_{3} y_{1} f_{31} + y'_{1} y_{2} f_{12} + y'_{2} y_{2} f_{22} + y'_{3} y_{2} f_{32} + y'_{1} y_{3} f_{13} + y'_{2} y_{3} f_{23} + y'_{3} y_{3} f_{33}$$

Estimation of **F**

• The epipolar constraint: $\mathbf{Y} \cdot \mathbf{F}_{vec} = 0$

$$\mathbf{Y} = \begin{pmatrix} y_1' y_1 \\ y_2' y_1 \\ y_3' y_1 \\ y_1' y_2 \\ y_1' y_2 \\ y_2' y_2 \\ y_3' y_2 \\ y_1' y_3 \\ y_2' y_3 \\ y_2' y_3 \\ y_3' y_3 \end{pmatrix} \quad \mathbf{F}_{vec} = \begin{pmatrix} f_{11} \\ f_{21} \\ f_{31} \\ f_{12} \\ f_{22} \\ f_{32} \\ f_{13} \\ f_{23} \\ f_{33} \end{pmatrix} \quad \mathbf{The mapping from}_{\substack{\mathbf{F} \text{ to } \mathbf{F}_{vec} \text{ is one-to-one !}}$$

25

Estimation of F

 Conclusion: each pair of corresponding points y_{1k}, y_{2k} in the two images represents <u>one linear & homogeneous equation</u> in F_{vec}

$$\mathbf{Y}_k \cdot \mathbf{F}_{vec} = 0$$
$$\mathbf{Y}_k^{\mathsf{T}} \mathbf{F}_{vec} = 0$$

29

The basic 8-point algorithm

Given *N* pairs of corresponding points \mathbf{y}_{1k} , \mathbf{y}_{2k}

- 1. Form \mathbf{Y}_k from these pairs for k = 1, ..., N and then **A** from all \mathbf{Y}_k
- 2. \mathbf{F}_{vec} = right singular vector of **A**, of singular value zero
- 3. Reshape \mathbf{F}_{vec} back to a 3 \times 3 matrix \mathbf{F} . This \mathbf{F} is an estimate of the fundamental matrix

[Longuet-Higgins, Nature, 1981]

Estimation of **F**

Conclusion: F_{vec} must satisfy the linear homogeneous equation

$$\mathbf{A} \, \mathbf{F}_{vec} = \mathbf{0} \qquad \Rightarrow \qquad \mathbf{A}^{\mathsf{T}} \mathbf{A} \, \mathbf{F}_{vec} = \mathbf{0}$$

where **A** is an $N \times 9$ matrix that contains $\mathbf{Y}_k^{\mathsf{T}}$ for k = 1, ..., N in its rows

- **F**_{vec} is a right singular vector of **A**, of singular value zero
- Alt: F_{vec} is an eigenvector of A^TA, of eigenvalue zero

The 8-point algorithm, practice

- In practice the image coordinates will be perturbed by noise
 - Geometric distortion
 - Coordinate quantization
 - Estimation noise
- Corresponding image coordinates do not satisfy the epipolar constraint exactly
- **Edgwklqjv** can happen
 - The estimated ${\ensuremath{\mathsf{F}}}$ may not satisfy the int. contr.
 - \Rightarrow Epipolar points are not well-defined
 - \Rightarrow The epipolar geometry is not well-defined

Enforcement of the internal constraint

- If det $\mathbf{F} \neq 0$, we can enforce its internal constraint:
 - Make the smallest possible change in \mathbf{F} to \mathbf{F}_{0} (in Frobenius norm) such that det $\mathbf{F}_0 = 0$
- Ho to do this:

det **F** = $\pm \sigma_1 \cdot \sigma_2 \cdot \sigma_3$ An SVD of **F** gives: $\mathbf{F} = \mathbf{U} \mathbf{S} \mathbf{V}^{\mathsf{T}}$

S is diagonal, holding the singular values
$$\sigma_1 \ge \sigma_2 \ge \sigma_3 >$$

 $(\sigma_1 \quad 0 \quad 0)$

Set
$$\mathbf{S}_0 = \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $\mathbf{F}_0 = \mathbf{U} \, \mathbf{S}_0 \, \mathbf{V}^{\mathsf{T}}$
e smallest singular alue is set to zero

. . . .

33

The 8-point algorithm, practice

If N=8, then **F** is well-defined from **A F**_{vec} = **0**

Assumes that we don't have degeneracies

- This F satisfies the epipolar constraint for the 8 corresponding point pairs.
- However, for *N* > 8 and noisy image points **A** $\mathbf{F}_{vec} = \mathbf{0}$ does not have a well-defined solution

34

The 8-point algorithm, practice

 We can, for example, obtain a total least squares estimate:

Get **F** from the \mathbf{F}_{vec} that is the right singular vector of A corresponding to the smallest singular value of A

Equivalently: find \mathbf{F}_{vec} with $||\mathbf{F}_{vec}||=1$ that minimizes ||A F_{vec}|| (why?)

35

Hartley normalization

Distribution of singular values from A

Hartley normalization

- Hartley analyzed the numerical sensitivity of the 8-point algorithm and devised a solution: *Hartley-normalization* of the image coordinates
- Transform the coordinate system of each image <u>independently</u> such that
 - The origin is the centroid of the image points
 - The mean distance to the origin = $2^{1/2}$

(why?)

37

[Hartley, In defense of the 8-point algorithm, PAMI, 1997]

The normalized 8-point algorithm

Putting all this into one single algorithm gives:

- 1. Start with $N \ge 8$ corresponding points in the two images: \mathbf{y}_{1k} and \mathbf{y}_{2k} with k = 1, ..., N
- 2. In each image: transform the coordinates to Hartley normalized form: $\mathbf{y}'_{1k} = \mathbf{H}_1 \mathbf{y}_{1k}$ and $\mathbf{y}'_{2k} = \mathbf{H}_2 \mathbf{y}_{2k}$
- 3. Build the $N \times 9$ data matrix **A**' from $\mathbf{y'}_{1k}$ and $\mathbf{y'}_{2k}$
- 4. Find \mathbf{F}'_{vec} as the singular vector of smallest singular value relative \mathbf{A}'

(why is this correct?)

- 5. Reshape \mathbf{F}'_{vec} to the 3×3 matrix \mathbf{F}'
- 6. Enforce the internal constraint on \mathbf{F} ' to get \mathbf{F}'_0
- 7. Transform back to original coordinate system:

 $\mathbf{F} = \mathbf{H}_2^{\mathsf{T}} \mathbf{F}'_0 \mathbf{H}_1$

39

Hartley normalization

Consequently:

Whenever we want estimate geometric objects based on total least squares:

- 1. Transform all image point to Hartley-normalized coordinates (translation and scaling)
- 2. Estimate geometric object (e.g. F)
- 3. Transform the object back to standard coordinates

HZ: Hartley-normalization is not optional, it is often required to get useful results

38

Estimation of **F**: Algebraic minimization

- When F is estimated from the normalized 8-point algorithm:
 - The initial estimate is guaranteed to minimize the algebraic error $||\mathbf{A} \mathbf{F}_{vec}||$ with $||\mathbf{F}_{vec}|| = 1$
 - We then enforce the internal constraint
 - This, in general, increases the algebraic error
- Can we find **F** that satisfies its internal constraint and minmizes the algebraic error?
- An iterative algoritm exists for doing this (HZ)
- Uses F from N8PA as initial estimate
- In general, gives a better estimate for F

Epipolar line transfer

- In epipolar geometry we cannot map y₁ directly to its corresponding point \mathbf{y}_2
- We can however map \mathbf{y}_1 to an epipolar line \mathbf{I}_2 , that intersects \mathbf{y}_2 (or $1 \leftrightarrow 2$)
- All points **y**₁ that are mapped to the same epipolar line I_2 lie on the same epipolar line I_1 (why?)
- $[\mathbf{e}_{12}]_{\mathbf{v}}\mathbf{I}_1$ is a point on epipolar line \mathbf{I}_1 (why?)
- Then $\mathbf{F}^{\mathsf{T}}[\mathbf{e}_{12}]_{\mathsf{x}}\mathbf{I}_1$ is the corresponding epipolar line \mathbf{I}_2 (previous result!)

$$\mathbf{I}_2 = \mathbf{F}^{\mathsf{T}}[\mathbf{e}_{12}]_{\times}\mathbf{I}_1$$

43

Epipolar lines and plane

Special cases of ${\bf F}$

- In some practical cases the two cameras C₁ and C₂ are, in fact, the same camera that moves in 3D space
- Special cases of the camera motion corresponds to special cases of F
 - Pure translation
 - Planar motion
- Both cases assume that internal camera parameters are constant!

45

Pure translation

• As long as the translation is $\neq 0$, the two epipoles are well-defined – But may be points at infinity • In the case of pure translation $\mathbf{e}_{12} \sim \mathbf{e}_{21}$ (why?) $\mathbf{F} = [\mathbf{e}_{12}]_x = [\mathbf{e}_{21}]_x$ (why?) - Example:"horizontal" translation $\mathbf{F} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$

Planar motion

• The camera translation is <u>perpendicular</u> to the rotation axis

Planar motion

- Both cases are equivalent
- The rotation axis is *invariant*:
 - The image of a point on this axis must be the same in the two images
 - The image of the rotation axis is a line I in both images

• $\mathbf{F} = [\mathbf{e}_{12}]_{\times} [\mathbf{I}]_{\times} [\mathbf{e}_{21}]_{\times}$ (why?)

F has 6 d.o.f.

Cameras from F

- Given that C₁ and C₂ are known, F can be determined
- What about the outer way around?
- C₁ and C₂ can be determined but not uniquely
- With **F** known \Rightarrow **e**₁₂ and **e**₂₁ are known

Canonical cameras from F

• It is straight-forward to show that $\mathbf{C}_{1} = \left(\begin{array}{c|c} \mathbf{I} & \mathbf{0} \end{array} \right)$ $\mathbf{C}_{2} = \left(\begin{array}{c|c} \mathbf{e}_{12} \end{array} \right]_{\times} \mathbf{F} + \mathbf{e}_{12} \mathbf{v}^{T} & \lambda \mathbf{e}_{12} \end{array} \right)$ satisfy $\mathbf{F} = [\mathbf{e}_{21}]_{\times} \mathbf{C}_{2} \mathbf{C}_{1}^{+}$

for arbitrary $\mathbf{v} \in R^3$, $\lambda \in R$, $\lambda \neq 0$

50

General cameras from F

- However, these cameras are not unique:
- Take \mathbf{C}_1 and \mathbf{C}_2 such that
 - $\mathbf{F} = [\mathbf{e}_{21}]_{\times} \mathbf{C}_{2} \mathbf{C}_{1}^{+}$
- Then C'₁ = C₁H and C'₂ = C₂H also give the same F for any 3D homography transformation H (why?)

Stereo rig

- A general stereo rig consists of two cameras with
 - distinct camera centers
 - general orientations of the camera principal axes (although often toward a common scene!)

Research stereo rig, Aalborg University

Point Grey, Bumblebee stereo cameras

For a general stereo rig

- In each image: the epipolar lines may not be parallel
 - Instead they intersect at the epipolar point that is a real point

53

55

Rectified stereo rig

• In a *rectified stereo rig*, the principal directions of the cameras are parallel and orthogonal to the baseline and the cameras are identical

Rectified stereo images

- The rectified stereo rig produces images where
 - The epipolar lines are parallel
 - The epipolar points are points at infinity
- More precisely:

$$e_{12} = e_{21} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}^{*}$$
In a coordinate system where first coordinate: right second coordinate: down

Rectified stereo images

• The corresponding fundamental matrix is

$$\mathbf{F}_{0} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

 $y_1 =$

Same point in image 2, displaced horizontally by d

• Note that
$$\mathbf{y}_2$$
' $\mathbf{F}_0 \mathbf{y}_1 = 0$ for $\begin{pmatrix} u \\ - d \end{pmatrix}$

Some point in

56

Rectified stereo rig

- Although a rectified stereo rig can be accomplished by means of accurate measurements, cameras, and mechanics
 - It is difficult and expensive to accomplish the necessary mechanical accuracy
- At best we can set up an approximate rectified stereo rig

Rectified stereo rig

We know

- All cameras that have the same camera center are equivalent \Rightarrow
- If a camera rotates around its camera center, the image transforms according to a homography H

Rectified images

Consequence:

- If the principal axis of a camera is not exactly pointing in the right direction, this can be compensated for by applying a suitable homography H on the image coordinates
 - This makes the epipolar lines parallel
 - Independent H in each image
- The result are rectified images

Image rectification

- How do we determine H₁ for image 1 and H₂ for image 2 so that both images are rectified (H₁, H₂ are homographies)?
- Estimate **F** from corresponding points in the two images
 - The 8-point algorithm
- Find \mathbf{H}_1 , \mathbf{H}_2 such that $(\underline{\mathbf{H}_2^{-1}})^T \mathbf{F} \mathbf{H}_1^{-1} \sim \mathbf{F}_0$

58

Image rectification

- This relation in **H**₁ and **H**₂ has multiple solutions, some of which are unwanted
 - Ex: horizontal mirroring
 - Extreme geometric distortion
- Several methods for determining "good"
 H₁ and H₂ from F exist, for example:
 - Loop & Zhang, ICPR 1999
 - Determines ${\bf H}_1$ and ${\bf H}_2$ based on minimization of geometric distortion
 - A similar idea is explored in HZ

61

Image rectification

Example of a stereo image pair

Black lines are epipolar lines. Not parallel

From Loop & Zhang

62

Image rectification

Example of rectification

Epipolar lines are parallel and aligned!

From Loop & Zhang 63

Image rectification

Another example, less geometric distortion than previous one

Epipolar lines are parallel and aligned!

From Loop & Zhang

Stereo image rectification, summary

- A stereo image pair that are approximately rectified
 - the principal axes are parallel and perpendicular to the baseline
- can be rectified by homography transformations such that
 - corresponding points are found on the same row
- Multiple solutions to the rectification exist

65

67

Reconstruction

- Given a pair of corresponding image points \boldsymbol{y}_1 and \boldsymbol{y}_2

we know that: $\mathbf{y}_2^{\mathsf{T}} \mathbf{F} \mathbf{y}_1 = 0$

- What about x? Can x be determined?
- This problem is called *triangulation* or *reconstruction*

66

Reconstruction

- In reality, the image points y₁ and y₂ don't satisfy y₂^T F y₁ = 0 exactly
 - Lens distortion
 - Coordinate quantization
 - Estimation inaccuracy
- The two reprojection lines don't intersect
 - In this case: **x** is not well-defined
 - \Rightarrow It somehow has to be approximated

The mid-point method

- Find the unique points x₁ and x₂ on each reprojection line that is closest to the other line
- Draw a line between **x**₁ and **x**₂
- Set x = the mid-point between x₁ and x₂ on this line
- \mathbf{x}_1 and \mathbf{x}_2 are identical $\Leftrightarrow \mathbf{y}_2^T \mathbf{F} \mathbf{y}_1 = 0$

69

The mid-point method

Linear methods

From $y_1 \sim C_1 \; x$ $v_2 \sim C_2 x$ 3 linear follows homogeneous equations in x $0 = y_1 \times C_1 x$ $0 = y_2 \times C_2 x$ or 3 more linear $0 = [y_1]_{\times} C_1 x$ homogeneous equations in x $0 = [y_2]_{\times} C_2 x^4$ 71

Linear methods

Since $[\mathbf{y}_1]_{\times}$ has rank 2: one of the 3 equations is linearly dependent to the other two:

Linear methods Linear methods In theory B has rank 3 and x is well-defined Alternatively: we know that $\mathbf{x} = \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} = \begin{pmatrix} \bar{\mathbf{x}} \\ 1 \end{pmatrix}$ • In practice (with noise) **B x** = **0** cannot be solved exactly • Solution (for example): determine x that minimizes Total least squares minimzation ||**B** x|| with ||**x**||=1 **B x** = **0** can then be rewritten as $B_1 \bar{x} = b_0$ • **x** = The right singular vector of **B** with smallest Which is solved using standard methods singular value • What about Hartley-normalization? Inhomogeneous triangulation Homogeneous triangulation 73 74 Properties of triangulation methods

- In the ideal case any triangulation method gives the same **x** for any \mathbf{y}_1 , \mathbf{y}_2 that satisfy the epipolar constraint, but
- If the constraint is not satisfy the results differ
- The metods have slightly different computational complexity (SVD, iterative, etc)
- Singularities (e.g. the inhomogeneous method fails for 3D points at infinity) (why?)

Invariance to 3D transformations

- Does the resulting **x** change if we change the 3D coordinate system?
 - the mid-point method is only invariant to translations, rotations, and scalings
 - The inhomogeneous method is only invariant to affine transformations
 - The homogeneous method is invariant only to 3D homographies \in SO(4)

Optimal triangulation

- Assume that **F** is known (or estimated)
- Assume that y₁ and y₂ have been perturbed by noise of isotropic distribution
- Find \mathbf{y}'_1 and \mathbf{y}'_2 such that

$\mathbf{y}_{2}^{T} \mathbf{F} \mathbf{y}_{1}^{T} = 0$ and d is the Euclidean distance in the image (in pixels) $d(\mathbf{y}_{1}, \mathbf{y}_{1}^{T})^{2} + d(\mathbf{y}_{2}, \mathbf{y}_{2}^{T})^{2}$ is minimal	 y'2 Involves solving a 6th order polynomial All 6 roots must be evaluated Invariant to any 3D homography transformation [Hartley & Sturm, <i>Optimal Triangulation</i>, CVIU 1997] 78
The triangulation tensor	The triangulation tensor
 It is also possible to compute x as 	 Low computational complexity Invariant to 3D homography transformations
$\mathbf{x}\sim\mathbf{K}\mathbf{Y}$	 K can be estimated from 3D+2D+2D correspondences No need for camera matrices
where $\mathbf{Y} = \mathbf{y}_1 \mathbf{y}_2^{T}$ reshaped to a 9-dim vector	 Can then be optimized relative to arbitrary error measures (in 2D, in 3D, L₁, L₂)
 K is a 4× 9 matrix (or 4 × 3 × 3 tensor), the <i>triangulation tensor</i> 	 Has a singularity on an arbitrary plane that intersects the camera centers, the <i>blind plane</i> [Nordborg, <i>The triangulation tensor</i>, O)/[11, 2000]
79	
19	

 These y'₁ and y'₂ are then Maximum Likelihood estimates of y₁ and y₂ that also satisfy the epipolar constraint

• Once **y**'₁ and **y**'₂ are determined: use any of the previous methods to determine **x**

• A computational method exist for finding \mathbf{y}_{1}^{\prime} and