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Epipolar geometry

• Epipolar geometry is the geometry related 
to how two cameras (stereo cameras) 
depict the same scene

• Three or more cameras:
– Multi-view geometry

• Basic assumptions:
– Pin-hole cameras
– All images are taken from different positions
⇒ The cameras have distinct camera centers
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Possible camera configurations

Two camera units

• Possibly with different 
internal parameters

• Possibly taking their images 
simultaneously

- Non-static scene is allowed

One camera unit that 
moves from position 1 to 
position 2

• Image are taken at 
different time points

- Scene must be static

1 2 1 2
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Examples of camera motion 
patterns

The camera rotates around the scene

The camera moves along
the principal axis

The camera moves “sideways”
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Two basic issues of epipolar geometry:

• The correspondence problem:
How can we know if a point in image 1 is the 
same as some point in image 2?

• The reconstruction problem:
Given that two image points correspond, 
which 3D point do they refer to?

Epipolar geometry
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• Let C1 and C2 be the camera matrices of the two 
cameras

• Let x be the homogeneous coordinates of a 3D 
point

• Let y1 and y2 be the homogeneous coordinates 
of the images of x

• Let n1 and n2 be the homogeneous coordinates 
of the camera centers

y1 ∼ C1 x C1 n1 = 0
y2 ∼ C2 x C2 n2 = 0

Basic setup
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Pseudo-inverse

• For an n×m matrix (n < m) A we define its 
pseudo-inverse A+ as

• A+ is m×n and satisfy A A+ = I
• Assumes A is of rank n

A+ = AT(A AT)-1
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Reprojection line

• If y1 is known, what can be said about x?
• We known that x lies somewhere on a 3D line

– Passes through: n1

– Passes through: C1
+ y1

• Parametric representation of the line:

• Check:
Here we assume t ≠ 0

Reprojection line

These two points
are always

distinct!
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Reprojection line

Virtual image plane
n1

Camera center

y1

Image of x

x
3D point

C1
+ y1
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Image of a line

• What is the image of this line in camera 2?

• The parametric 3D point is mapped to 
y’2(t) in image 2:

A point in image 2 Another point in image 2

A parameterized line in image 2, passes through both points
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Image of a line
• This is a general result:

– The image of a 3D line is always a 2D line  (why?)

• Form 2D line
l2 = (C2n1) × (C

2
C1

+ y1)

• Follows: the points y’2(t) lie on the 2D line l2
• Follows: y’2(t) · l2 = 0 for all t

• y2 = y’2(t) for some t ⇒ y2 · l2 = 0

y2 is the image of x 12

Conclusions

• Given that y1 in image 1 is known, we know that 
y2 lies on a line l2 in image 2

• The line l2 depends on y1

• l2 is called an epipolar line
• All epipolar lines in image 2 intersect the point 

e21 = C2n1 (why?)
• e21 is called epipolar point

or just epipole
• Symmetry between image 1 and image 2

The image of camera
center 1 in image 2
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Epipolar lines and points

e21

y1

y’1 y’2

y2l2

l’2

y1 generates epipolar line l2 in image 2
y’1 generates epipolar line l’2 in image 2

Both epipolar lines intersect at epipolar point e21

y2 lies on l2 and y’2 lies on l’2

y1 and y2 correspond to the same 3D point x
y’1 and y’2 correspond to the same 3D point x’

Image 1 Image 2
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More conclusions
• The mapping from a point y1 to a line l

2
:

l2 = (C2n1) × (C
2
C1

+ y1)

l2 = [e21]× C
2
C1

+ y1

l2 is given by a “linear mapping” on y1!

The cross product operator, see previous lecture
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The fundamental matrix

• This mapping is called the
fundamental matrix, denoted F.

• F is 3 × 3

l2 = F y1

F = [e21]× C
2
C1

+

F depends only on the
camera matrices

C1 and C2
(e21 depends on C1 and C2)
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The epipolar constraint

• If y1 and y2 correspond to the same 3D 
point x:

y2
T l2 = 0

y2
T F y1 = 0

This relation must always
be satisfied for points y1
and y2 if they correspond

to the same 3D point

Epipolar constraint
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The epipolar constraint

• The epipolar constraint is necessary for 
correspondence (but not sufficient!)

y1 and y2 correspond to the
same 3D point x

y2
T F y1 = 0

(why not sufficient?) 18

Summary so far

• Given that C1 and C2 are known, F can be 
computed

• Given that F is known, we can test if a point in 
image 1 and a point in image 2 correspond to 
the same 3D point

• Given a point y1 in image 1, the corresponding 
point y2 lies on an epipolar line l2 in image 2

• All epipolar lines in image 2 intersect with the 
epipolar point e21

• l2 is given by F y1
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Symmetry
• In the previous derivation we started with a point 

in image 1 that defines an epipolar line in image 
2

• Due to symmetry, we can instead start with a 
point in image 2 and define an epipolar line in 
image 1

l1 = FT y2

FT = [e12]× C
1
C2

+

e12 = C1n2
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Properties of F
• From F = [e21]× C

2
C1

+

⇒ e21
T F = e21

T [e21]× C
2
C1

+ = 0

• From symmetry: F e12 = 0
• Follows: rank F = 2 and det F = 0
• The epipoles define the left and right null spaces 

of F, respectively
• F and αF determine the same constraint if α ≠ 0

– F can be seen as an element of P8 = P(R9)
• F has 7 degrees of freedom (why?)

Internal constraint
on F
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Epipolar degeneracies

• If the two camera centers coincide

F = [e21]× C
2
C1

+ = 0            (why?)

• From previous lecture we know that in this 
case

y2 = H y1 ,      where H is a homography
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Epipolar degeneracies
• Follows:

0 = [y2]× H y1

• 3 constraints on the two image coordinates!
• They are linearly independent (why?)
• Conclusion:

– In this case the fundamental matrix is not unique
– This is flagged by F=0 when computed from C1 and C2
– F lies in a 3-dim space of possible solutions to the 

epipolar constraint
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Epipolar degeneracies

• A similar situations occurs when the 3D 
scene consists points in a plane

• All observations of image points y1 and y2
can be written y2 = H y1 = H2 H1 y1

Image 1Image 2

Plane in the 3D scene

y1y2

y0

y0 = H1y1

y2 = H2y0
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Two cases of determining F

• The calibrated case:
– F is computed from C1 and C2

• The uncalibrated case:
– Given a set of N corresponding image points, 

y1k in image 1 and y2k in image 2, it is 
possible to determine F from the constraints:

y2k
T F y1k = 0,   k = 1, …, N
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The uncalibrated case

• No camera matrices need to be known
– We estimte F from image coordinates only

• Image coordinates can only be determined 
up to a certain accuracy
– lens distortion
– quantization to integer pixel coordinates
– detection inaccuracy

• This accuracy affects the estimation of F
26

Estimation of F

• Let y and y’ be corresponding points in 
image 1 and image 2 (no image noise!)

This can
be y1

This can
be y2
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Estimation of F

• The epipolar constraint: y’T F y = 0
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Estimation of F

• The epipolar constraint: Y · Fvec = 0

Vector representation
of the 3 × 3
fundamental

matrix

The mapping from
F to Fvec is

one-to-one !
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Estimation of F

• Conclusion: each pair of corresponding 
points y1k, y2k in the two images represents 
one linear & homogeneous equation in Fvec

Yk · Fvec = 0

Yk
T Fvec = 0
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• Conclusion: Fvec must satisfy the linear 
homogeneous equation

A Fvec = 0         ⇒ ATA Fvec = 0

where A is an N × 9 matrix that contains Yk
T for 

k = 1, …, N in its rows

• Fvec is a right singular vector of A, of singular 
value zero

• Alt: Fvec is an eigenvector of ATA, of eigenvalue 
zero

Estimation of F
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The basic 8-point algorithm
Given N pairs of corresponding points y1k, y2k

1. Form Yk from these pairs for k = 1, …, N and 
then A from all Yk

2. Fvec = right singular vector of A, of singular 
value zero

3. Reshape Fvec back to a 3 × 3 matrix F.
This F is an estimate of the fundamental matrix

[Longuet-Higgins, Nature, 1981]
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The 8-point algorithm, practice
• In practice the image coordinates will be 

perturbed by noise
– Geometric distortion
– Coordinate quantization
– Estimation noise

• Corresponding image coordinates do not satisfy 
the epipolar constraint exactly

• B a d  t h i n g s can happen
– The estimated F may not satisfy the int. contr.

⇒ Epipolar points are not well-defined
⇒ The epipolar geometry is not well-defined
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Enforcement of the internal 
constraint

• If det F ≠ 0, we can enforce its internal 
constraint:
– Make the smallest possible change in F to F0

(in Frobenius norm) such that det F0 = 0
• Ho to do this:

An SVD of F gives: F = U S VT

S is diagonal, holding the singular values σ1 ≥ σ2 ≥ σ3 > 0

Set                                       and F0 = U S0 VT

det F = ± σ1 ⋅ σ2 ⋅ σ3

The smallest singular
value is set to zero
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The 8-point algorithm, practice

If N=8, then F is well-defined from A Fvec = 0

• This F satisfies the epipolar constraint for 
the 8 corresponding point pairs.

• However, for N > 8 and noisy image points 
A Fvec = 0 does not have a well-defined 
solution

This is why it is called
the 8-point algorithm

Assumes that we
don’t have degeneracies

35

The 8-point algorithm, practice

• We can, for example, obtain a total least 
squares estimate:

Get F from the Fvec that is the right singular 
vector of A corresponding to the smallest
singular value of A

Equivalently: find Fvec with ||Fvec ||=1 that 
minimizes ||A Fvec||

(why?)
36

Hartley normalization
Distribution of singular values from A
An example based on real data

Without Hartley-normalization With Hartley-normalization

Small perturbations in image coordinates 
are likely to cause large changes in the 
singular vectors corresponding to small 
singular values
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Hartley normalization

• Hartley analyzed the numerical sensitivity of 
the 8-point algorithm and devised a solution:
Hartley-normalization of the image 
coordinates

• Transform the coordinate system of each 
image independently such that
– The origin is the centroid of the image points
– The mean distance to the origin = 21/2

(why?)
[Hartley, In defense of the 8-point algorithm, PAMI, 1997] 38

Hartley normalization

Consequently:
Whenever we want estimate geometric objects 
based on total least squares:

1. Transform all image point to
Hartley-normalized coordinates
(translation and scaling)

2. Estimate geometric object (e.g. F)
3. Transform the object back to standard coordinates

HZ: Hartley-normalization is not optional,
it is often required to get useful results
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The normalized 8-point algorithm

Putting all this into one single algorithm gives:

1. Start with N ≥ 8 corresponding points in the two 
images: y1k and y2k with k = 1, …, N

2. In each image: transform the coordinates to Hartley 
normalized form: y’1k = H1 y1k and y’2k = H2 y2k 

3. Build the N×9 data matrix A’ from y’1k and y’2k
4. Find F’vec as the singular vector of smallest singular 

value relative A’
5. Reshape F’vec to the 3×3 matrix F’
6. Enforce the internal constraint on F’ to get F’0
7. Transform back to original coordinate system:

F = H2T F’0 H1 (why is this correct?)
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Estimation of F:
Algebraic minimization

• When F is estimated from the normalized 8-point 
algorithm:
– The initial estimate is guaranteed to minimize the 

algebraic error ||A Fvec|| with ||Fvec|| = 1
– We then enforce the internal constraint
– This, in general, increases the algebraic error

• Can we find F that satisfies its internal constraint 
and minmizes the algebraic error?

• An iterative algoritm exists for doing this (HZ)
• Uses F from N8PA as initial estimate
• In general, gives a better estimate for F
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The 7-point algorithm
• N8PA is based on using N ≥ 8 epipolar constraints to 

estimate F
• We may also use the internal constraint +

7 epipolar constraints to determine F

1. A Fvec = 0 ⇒ A 2-dim solution space for Fvec

2. determine up to 3 unique solutions for F in this 
solution space using the internal constraint (how?)

• Only 7 point correspondences are needed to determine F
• They meet the internal constraint automatically

• Up to 3 possible solutions, but only 1 is correct
• All 3 solutions must be treated as correct 42

Break
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Epipolar line transfer

• In epipolar geometry we cannot map y1 directly to 
its corresponding point y2

• We can however map y1 to an epipolar line l2, that 
intersects y2 (or 1 ↔ 2)

• All points y1 that are mapped to the same epipolar 
line l2 lie on the same epipolar line l1 (why?)

• [e12]×l1 is a point on epipolar line l1 (why?)
• Then FT[e12]×l1 is the corresponding epipolar line l2

(previous result!)

l2 = FT[e12]×l1 l1 = F [e21]×l2 44

Epipolar lines and plane

Epipolar lines
Epipolar plane

The epipolar plane
is define from either
of the two epipolar lines
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Special cases of F
• In some practical cases the two cameras 

C1 and C2 are, in fact, the same camera 
that moves in 3D space

• Special cases of the camera motion 
corresponds to special cases of F
– Pure translation
– Planar motion

• Both cases assume that internal camera 
parameters are constant!
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Pure translation

• As long as the translation is ≠ 0, the two 
epipoles are well-defined
– But may be points at infinity

• In the case of pure translation
e12 ∼ e21
F = [e12]x = [e21]x

– Example:
“horizontal” translation

(why?) F has 2 d.o.f.
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Planar motion

• The camera translation is perpendicular to 
the rotation axis

Case 1: the camera moves

axis of rotation
axis of rotation

Case 2: rotation table

Fixed camera
camera translates
and rotates
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Planar motion

• Both cases are equivalent
• The rotation axis is invariant:

– The image of a point on this axis must be the 
same in the two images

– The image of the rotation axis is a line l in 
both images

• F = [e12]× [l]× [e21]× (why?)

F has 6 d.o.f.
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Cameras from F

• Given that C1 and C2 are known, F can be 
determined

• What about the outer way around?
• C1 and C2 can be determined but not 

uniquely

• With F known ⇒ e12 and e21 are known
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Canonical cameras from F

• It is straight-forward to show that

satisfy F = [e21]× C
2
C1

+

for arbitrary v ∈ R3, λ ∈ R, λ ≠ 0

C1 = I 0

C2 = [e12]×F+ e12vT λe12
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General cameras from F

• However, these cameras are not unique:
• Take C1 and C2 such that

F = [e21]× C
2
C1

+

• Then C’1 = C1H and C’2 = C2H also give 
the same F for any 3D homography 
transformation H (why?)
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Stereo rig

• A general stereo rig consists of two 
cameras with
– distinct camera centers
– general orientations of the camera principal 

axes (although often toward a common scene!)

Point Grey, Bumblebee stereo 
cameras

Research stereo rig, Aalborg University
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For a general stereo rig

• In each image: the epipolar lines may not 
be parallel
– Instead they intersect at the epipolar point 

that is a real point

54

Rectified stereo rig

• In a rectified stereo rig, the principal 
directions of the cameras are parallel and 
orthogonal to the baseline and the 
cameras are identical

The baseline
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Rectified stereo images

• The rectified stereo rig produces images 
where
– The epipolar lines are parallel
– The epipolar points are points at infinity

• More precisely:
This is a point

infinitely far away
on the horizontal

axis

In a coordinate system where
first coordinate: right

second coordinate: down 56

Rectified stereo images

• The corresponding fundamental matrix is

• Note that y2
T F0 y1 = 0 for

Some point in image 1

Same point in
image 2,

displaced
horizontally by d
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Rectified stereo rig

• Although a rectified stereo rig can be 
accomplished by means of accurate 
measurements, cameras, and mechanics
– It is difficult and expensive to accomplish the 

necessary mechanical accuracy
• At best we can set up an approximate 

rectified stereo rig
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Rectified stereo rig

We know
• All cameras that have the same camera 

center are equivalent ⇒
• If a camera rotates around its camera 

center, the image transforms according to 
a homography H
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Rectified images

Consequence:
• If the principal axis of a camera is not 

exactly pointing in the right direction, this 
can be compensated for by applying a 
suitable homography H on the image 
coordinates
– This makes the epipolar lines parallel
– Independent H in each image

• The result are rectified images
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Image rectification

• How do we determine H1 for image 1 and 
H2 for image 2 so that both images are 
rectified (H1, H2 are homographies)?

• Estimate F from corresponding points in 
the two images
– The 8-point algorithm

• Find H1, H2 such that (H2
-1)T F H1

-1 ∼ F0

This is the fundamental matrix after transformation of both coordinate systems
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Image rectification

• This relation in H1 and H2 has multiple 
solutions, some of which are unwanted
– Ex: horizontal mirroring
– Extreme geometric distortion

• Several methods for determining “good”
H1 and H2 from F exist, for example:
– Loop & Zhang, ICPR 1999
– Determines H1 and H2 based on minimization 

of geometric distortion
– A similar idea is explored in HZ
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Image rectification
Example of a stereo image pair

From Loop & ZhangBlack lines are epipolar lines.  Not parallel
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Image rectification
Example of rectification

Epipolar lines are parallel and aligned! From Loop & Zhang
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Image rectification
Another example, less geometric distortion than previous one

Epipolar lines are parallel and aligned! From Loop & Zhang
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Stereo image rectification, 
summary

• A stereo image pair that are approximately 
rectified
– the principal axes are parallel and 

perpendicular to the baseline
• can be rectified by homography 

transformations such that
– corresponding points are found on the same 

row
• Multiple solutions to the rectification exist
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• Given a pair of corresponding image points y1
and y2

y1 ∼ C1 x
y2 ∼ C2 x

we know that:  y2
T F y1 = 0

• What about x?  Can x be determined?
• This problem is called triangulation or 

reconstruction

Reconstruction
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Reconstruction

n1

n2

y1 y2

x

Epipolar constraint satisfied ⇔ Reprojection lines intersect

In this case: there is a well-defined x that projects to y1 and y2
68

Reconstruction

• In reality, the image points y1 and y2 don’t 
satisfy y2

T F y1 = 0 exactly
– Lens distortion
– Coordinate quantization
– Estimation inaccuracy

• The two reprojection lines don’t intersect
In this case: x is not well-defined
⇒ It somehow has to be approximated 
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The mid-point method

• Find the unique points x1 and x2 on each 
reprojection line that is closest to the other 
line

• Draw a line between x1 and x2

• Set x = the mid-point between x1 and x2
on this line

• x1 and x2 are identical  ⇔ y2
T F y1 = 0
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The mid-point method

n1

n2

y1 y2

x
x1

x2

y1 and y2 approximately
satisfy the epipolar constraint
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Linear methods

From

follows

or

3 linear
homogeneous
equations in x

3 more linear
homogeneous
equations in x
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Linear methods

Since [y1]× has rank 2: one of the 3 equations is 
linearly dependent to the other two:

This can be written

B x = 0

In total: 4 linear
independent

homogeneous
equations in x

B is a 6 × 4 matrix
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Linear methods
• In theory B has rank 3 and x is well-defined
• In practice (with noise) B x = 0 cannot be solved 

exactly
• Solution (for example): determine x that 

minimizes

||B x||        with ||x||=1

• x = The right singular vector of B with smallest 
singular value

• What about Hartley-normalization?
• Homogeneous triangulation

Total least squares
minimzation
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Linear methods

Alternatively: we know that

B x = 0 can then be rewritten as
Which is solved using standard methods
• Inhomogeneous triangulation
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Properties of triangulation methods

• In the ideal case any triangulation method gives 
the same x for any y1, y2 that satisfy the epipolar 
constraint, but

• If the constraint is not satisfy the results differ
• The metods have slightly different computational 

complexity (SVD, iterative, etc)
• Singularities (e.g. the inhomogeneous method 

fails for 3D points at infinity) (why?)
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Invariance to 3D transformations

• Does the resulting x change if we change 
the 3D coordinate system?
– the mid-point method is only invariant to 

translations, rotations, and scalings
– The inhomogeneous method is only invariant 

to affine transformations
– The homogeneous method is invariant only to 

3D homographies ∈ SO(4) 
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Optimal triangulation

• Assume that F is known (or estimated)
• Assume that y1 and y2 have been 

perturbed by noise of isotropic distribution
• Find y’1 and y’2 such that

y’2T F y’1 = 0   and

d(y1,y’1)2 + d(y2,y’2)2 is minimal

d is the Euclidean distance
in the image (in pixels)
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Optimal triangulation
Maximum Likelihood Estimation

• These y’1 and y’2 are then Maximum Likelihood 
estimates of y1 and y2 that also satisfy the 
epipolar constraint

• Once y’1 and y’2 are determined: use any of the 
previous methods to determine x

• A computational method exist for finding y’1 and 
y’2
– Involves solving a 6th order polynomial
– All 6 roots must be evaluated

• Invariant to any 3D homography transformation

• [Hartley & Sturm, Optimal Triangulation, CVIU 1997]
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The triangulation tensor

• It is also possible to compute x as

x ∼ K Y

where Y = y1y2T reshaped to a 9-dim vector

• K is a 4× 9 matrix (or 4 × 3 × 3 tensor),
the triangulation tensor
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The triangulation tensor
• Low computational complexity
• Invariant to 3D homography transformations
• K can be estimated from 3D+2D+2D 

correspondences
– No need for camera matrices

• Can then be optimized relative to arbitrary error 
measures (in 2D, in 3D, L1, L2)

• Has a singularity on an arbitrary plane that 
intersects the camera centers, the blind plane

• [Nordberg, The triangulation tensor, CVIU, 2009]


