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Lecture 2
Epipolar Geometry

Epipolar geometry

» Epipolar geometry is the geometry related
to how two cameras (stereo cameras)
depict the same scene

* Three or more cameras:

— Multi-view geometry

» Basic assumptions:
— Pin-hole cameras
— All images are taken from different positions
= The cameras have distinct camera centers
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Possible camera configurations

g v .4 B

units .

Two camera One camera unit that
moves from position 1 to
position 2

* Possibly with different
internal parameters

* Possibly taking their images ¢ Image are taken at
simultaneously different time points

- Non-static scene is allowed - Scene must be static
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Examples of camera motion
patterns

The camera rotates around the scene

The camera moves along
the principal axis

The camera moves “sideways”




Epipolar geometry

Two basic issues of epipolar geometry:

» The correspondence problem:

How can we know if a point in image 1 is the
same as some point in image 2?

* The reconstruction problem:

Given that two image points correspond,
which 3D point do they refer to?

Basic setup

Let C, and C, be the camera matrices of the two
cameras

Let x be the homogeneous coordinates of a 3D
point

Lety, and y, be the homogeneous coordinates
of the images of x

Let n, and n, be the homogeneous coordinates
of the camera centers

Yo~ C;X C,n,=0

Pseudo-inverse

e For an nxm matrix (n < m) A we define its
pseudo-inverse A* as

At = AT(A AT)—l

 A*is mxn and satisfy A A* = |
» Assumes A is of rank n

Reprojection line

If y, is known, what can be said about x?
We known that x lies somewhere on a 3D line

— Passes through: n,
T These two points

— Passes through: C;*y; are always
\

distinct! Reprojection line

Parametric representation of the line:

_ +
(1—t)ny +t Cl y1 ’ Here we assume t # 0

Check: /

C1|(1-t)n1+tCly1| =ty1~y1 g




Reprojection line

3D point

Ci'y,

Image of x

Virtual im lan
Camera center tualimage plane 9

Image of a line

* What is the image of this line in camera 2?

» The parametric 3D point is mapped to
y’,(t) in image 2:
PN ~ [/ N D~
yo(t) ~ Co|(1 —=1)n; +1C7 yq]

yh(t) ~ (1 —t) Cong + ¢t CoCTy1
N\

’Another point in image 2‘

’ A point in image 2 ‘

’ A parameterized line in image 2, passes through both points ‘ 10

Image of a line

This is a general result:
— The image of a 3D line is always a 2D line (why?)

Form 2D line
l, = (Czny) x (C,CiMyy)

Follows: the points y’,(t) lie on the 2D line I,
Follows: y’,(t) - I, = 0 for all t

Yy, =y’ ,(t) forsomet=1y,-1,=0

\ Yy, is the image of x 11

Conclusions

» Given thaty, in image 1 is known, we know that
y, lies on aline I, in image 2

» The line |, depends ony,
* |, is called an epipolar line
 All epipolar lines in image 2 intersect the point

e, = C,ny (why?)

. . . The image of camera
» e,, is called epipolar point

center 1 in image 2

or just epipole
* Symmetry between image 1 and image 2
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Epipolar lines and points

y, and y, correspond to the same 3D point x
y’, and y’, correspond to the same 3D point x’

Image 1

y,liesonl,andy’, lieson I,

Y, generates epipolar line |, in image 2
y’'; generates epipolar line I, in image 2

Both epipolar lines intersect at epipolar point e,,
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More conclusions
« The mapping from a pointy, to a line I2:
I, =(Cyny) X (C2C1+ Y1)

l, = [e], C,Ci"y,

The cross product operator, see previous lecture

|, is given by a “linear mapping” on y,!
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The fundamental matrix

» This mapping is called the
fundamental matrix, denoted F.

e Fis3x3

L, =Fy,

F= [e21]>< C2C1+

e

F depends only on the
camera matrices
C,and C,

(e,, depends on C; and C,)
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The epipolar constraint

 If y, and y, correspond to the same 3D
point X:

This relation must always
be satisfied for points y,

T| =
Yo I2 0 and y, if they correspond
to the same 3D point

y,' Fy,=0

N

Epipolar constraint
16




The epipolar constraint Summary so far

* The epipolar constraint is necessary for * Given that C; and C, are known, F can be
correspondence (but not sufficient!) computed
* Given that F is known, we can test if a point in
y, and y, correspond to the image 1 and a point in image 2 correspond to
same 3D point x the same 3D point
» Given a point y, in image 1, the corresponding
1 point y, lies on an epipolar line I, in image 2

 All epipolar lines in image 2 intersect with the
y,'Fy; =0 epipolar point e,,
* l,isqi by F
(why not sufficient?) 17 2 1S GVEN DY Yy 18
Symmetry Properties of F
 In the previous derivation we started with a point « From F = [e,], C201+
in image 1 that defines an epipolar line in image

2

T
=e, F=e,"[e,],CCi*=0
« Due to symmetry, we can instead start with a 21 21 Palba =1

point in image 2 and define an epipolar line in

Image l ° From Symmetry: F e12 - O / Internal constraint
F
e Follows: rank F=2and detF =0 o
|, =FTy » The epipoles define the left and right null spaces
! 2 €12 =Gy, of F, respectively

F and oF determine the same constraint if oo = 0
— F can be seen as an element of P8 = P(R?9)

F has 7 degrees of freedom (why?) 20

FT=[ep], C Cy*

19




Epipolar degeneracies

» |f the two camera centers coincide
F = [ey], C2C1+ =0 (why?)

* From previous lecture we know that in this
case

y,=Hy; where His a homography
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Epipolar degeneracies

Follows:

0= [y2]>< H yl

3 constraints on the two image coordinates!
They are linearly independent (why?)
Conclusion:

— In this case the fundamental matrix is not unique

— This is flagged by F=0 when computed from C; and C,

— F lies in a 3-dim space of possible solutions to the
epipolar constraint
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Epipolar degeneracies

e A similar situations occurs when the 3D
scene consists points in a plane

 All observations of image points y, and y,
can be writteny, =Hy,=H, H, y,

Image 2 Image 1

Yo Y1

1 \

Yo =Hy1y;

Y2 =Hyy,

Yo

Plane in the 3D scene
23

Two cases of determining F

» The calibrated case:
— F is computed from C; and C,

* The uncalibrated case:
— Given a set of N corresponding image points,
Y1k Inimage 1 and y,, in image 2, itis
possible to determine F from the constraints:

Yl Fy =0, k=1,...,N

24




The uncalibrated case Estimation of F
« No camera matrices need to be known « Lety and y’ be corresponding points in
— We estimte F from image coordinates only image 1 and image 2 (no image noise!)
* Image coordinates can only be determined
H /7/1\ /’H(.\ /f11 f1f\ f10\
up to a certain accuracy Y1 , (4 /11 J12 J13
. . y = Lw) y = kyg) F= Lf21 f22 fzs)
— lens distortion Y3 A f31 fan f33
— quantization to integer pixel coordinates [
— detection inaccuracy /
» This accuracy affects the estimation of F T';i:;an T';i:;an
25 1 : 26
Estimation of F Estimation of F
« The epipolar constraint: y'TFy =0 » The epipolar constraint: Y - F . =0
Vector representation
/T _ Y1y1 f11 fthe 3 x 3
y F y = yéyl fo1 f?JndaementaI
7 (¢
v1vifii + ’5/2?/ fo1 =+ :/3 131+ yau fa1 o s
viy2f12 + yoyafoo + y5y232 + Y = |vhya| Foee=|fa2
: I
v1¥3f13 + yoy3f23 + y3y3f3s i >
912793 o3 The mapplng from
yéy?’ f33 o';éot('): vg?\e !
27 28




Estimation of F

» Conclusion: each pair of corresponding
points y,,, Y in the two images represents
one linear & homogeneous equation in F,.

Yk : |:vec =0

Y F,..=0

vec —
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Estimation of F

 Conclusion: F .. must satisfy the linear
homogeneous equation

where A is an N x 9 matrix that contains Y, for
k=1, ..., Ninits rows

» F,.c IS aright singular vector of A, of singular
value zero

« Alt: F . is an eigenvector of ATA, of eigenvalue

Zero
30

The basic 8-point algorithm

Given N pairs of corresponding points y,, Yok

1. Form Y, from these pairs fork =1, ..., N and
then A from all Y,

2. F,e = right singular vector of A, of singular
value zero

3. Reshape F,. back to a 3 x 3 matrix F.
This F is an estimate of the fundamental matrix

[Longuet-Higgins, Nature, 1981]
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The 8-point algorithm, practice

* In practice the image coordinates will be
perturbed by noise

— Geometric distortion
— Coordinate quantization
— Estimation noise
» Corresponding image coordinates do not satisfy
the epipolar constraint exactly
"Edg w k 1gj v canhappen
— The estimated F may not satisfy the int. contr.
= Epipolar points are not well-defined
= The epipolar geometry is not well-defined

32




Enforcement of the internal

constraint

» |f det F = 0, we can enforce its internal
constraint:

— Make the smallest possible change in F to F,
(in Frobenius norm) such that det F; =0

 Ho to do this:

An SVD of F gives: F=U S VT

’detFZiGl'62'63

S is diagonal, holding the singular values 6; > ¢, > 6;>0

ci1 0 O

Set SOZ(O (o) O) and Fy=U S, VT

The smallest singular
value is set to zero

\0 0,0/

/'
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The 8-point algorithm, practice

If N=8, then F is well-defined from A F,..=0

vec
This is why it is called Assumes that we
the 8-point algorithm don’t have degeneracies

» This F satisfies the epipolar constraint for
the 8 corresponding point pairs.

* However, for N > 8 and noisy image points
A F .. = 0 does not have a well-defined
solution
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The 8-point algorithm, practice

» We can, for example, obtain a total least

squares estimate:

Get F from the F, . that is the right singular
vector of A corresponding to the smallest
singular value of A

Equivalently: find F, .. with ||F, . ||=1 that
minimizes ||A F .|

(why?)
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Hartley normalization

Distribution of singular values from A
An example based on real data

Without Hartley-normalization With Hartley-normalization

4

Small perturbations in image coordinates
are likely to cause large changes in the
singular vectors corresponding to small
singular values 36




Hartley normalization

Hartley analyzed the numerical sensitivity of
the 8-point algorithm and devised a solution:
Hartley-normalization of the image
coordinates

Transform the coordinate system of each
image independently such that
— The origin is the centroid of the image points

— The mean distance to the origin = 21/2
(why?)

[Hartley, In defense of the 8-point algorithm, PAMI, 1997] 37

Hartley normalization

Consequently:

Whenever we want estimate geometric objects
based on total least squares:

1. Transform all image point to
Hartley-normalized coordinates
(translation and scaling)

2. Estimate geometric object (e.g. F)
3. Transform the object back to standard coordinates

HZ: Hartley-normalization is not optional,

it is often required to get useful results %

The normalized 8-point algorithm

Putting all this into one single algorithm gives:

1.

N

»w

No o

Start with N > 8 corresponding points in the two
images: y;, and y, with k=1, ..., N

In each image: transform the coordinates to Hartley
normalized form: y’;, = H; ycand y',, = H, Yo
Build the Nx9 data matrix A’ from y’;, and y’,,

Find F' .. as the singular vector of smallest singular
value rélative A’

Reshape F',. to the 3x3 matrix F’
Enforce the internal constraint on F’ to get F'
Transform back to original coordinate system:

F=H,TFy,H,; (why is this correct?) .

Estimation of F:
Algebraic minimization

* When F is estimated from the normalized 8-point
algorithm:

— The initial estimate is guaranteed to minimize the
algebraic error [|A F .|| with ||F,..|| = 1

— We then enforce the internal constraint
— This, in general, increases the algebraic error

e Can we find F that satisfies its internal constraint
and minmizes the algebraic error?

* An iterative algoritm exists for doing this (HZ)
» Uses F from N8PA as initial estimate
* In general, gives a better estimate for F

40




The 7-point algorithm

* N8PA is based on using N > 8 epipolar constraints to
estimate F

* We may also use the internal constraint +
7 epipolar constraints to determine F

1. A F . =0 = A 2-dim solution space for F,

2. determine up to 3 unigue solutions for F in this
solution space using the internal constraint (how?)

A

« Only 7 point correspondences are needed to determine F 9e
» They meet the internal constraint automatically

% @& * Up to 3 possible solutions, but only 1 is correct
« All 3 solutions must be treated as correct 41

Break

42

Epipolar line transfer

In epipolar geometry we cannot map y, directly to
its corresponding point y,

« We can however map y, to an epipolar line I,, that
intersects y, (or 1 < 2)

« All points y, that are mapped to the same epipolar
line |, lie on the same epipolar line 1, (why?)

* [e;,].]; is a point on epipolar line |, (why?)
e Then FT[e,,].l, is the corresponding epipolar line 1,
(previous result!)

|, = FTleg,]ly I, = F [ey]., 43

Epipolar lines and plane

Epipolar lines

Epipolar plane

The epipolar plane
is define from either

of the two epipolar lines 44




Special cases of F

* In some practical cases the two cameras
C, and C, are, in fact, the same camera
that moves in 3D space

» Special cases of the camera motion
corresponds to special cases of F
— Pure translation
— Planar motion

» Both cases assume that internal camera
parameters are constant!
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Pure translation

» As long as the translation is # 0, the two
epipoles are well-defined
— But may be points at infinity

 In the case of pure translation

€10~ €y F has 2 d.o.f.
why?
F = [e]y = [€21]« (why?)
— Example: 00 O
“horizontal” translaton F= |0 0 -1
O1 O
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Planar motion

e The camera translation is perpendicular to
the rotation axis

camera translates N
and rotates @ Fixed camera
axis of rotation
\
\
o),

axis of rotation

Case 1: the camera moves Case 2: rotation table 47

Planar motion

» Both cases are equivalent

e The rotation axis is invariant:

— The image of a point on this axis must be the
same in the two images

— The image of the rotation axis is a line | in
both images

* F=[ep] [I]. [€x], (why?)

F has 6 d.o.f. 8




Cameras from F

Given that C, and C, are known, F can be
determined

What about the outer way around?

C, and C, can be determined but not
uniquely

With F known = e;, and e,, are known
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Canonical cameras from F
* It is straight-forward to show that
Ci=(I]0)
Cy = ( [e12]xF +eav? | derz )
satisfy F = [e,,], C2C1+

for arbitrary v e R3, A e R, A =0
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General cameras from F

However, these cameras are not unique:
Take C, and C, such that

F=[ex]. CCy"

Then C’; = C,;H and C’, = C,H also give
the same F for any 3D homography
transformation H (why?)
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Stereo rig

» A general stereo rig consists of two
cameras with
— distinct camera centers

— general orientations of the camera principal
axes (although often toward a common scene!)

Research stereo rig, Aalborg University m

Point Grey, Bumblebee stereo
cameras 52




For a general stereo rig

* In each image: the epipolar lines may not
be parallel

— Instead they intersect at the epipolar point
that is a real point
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Rectified stereo rig

* In a rectified stereo rig, the principal
directions of the cameras are parallel and
orthogonal to the baseline and the
cameras are identical

[3------
£3d------

/

The baseline 54

Rectified stereo images

» The rectified stereo rig produces images
where
— The epipolar lines are parallel
— The epipolar points are points at infinity

» More precisely:

This is a point
infinitely far away

on the horizontal
1 axis
€12 = €21 =

0
0

In a coordinate system where
first coordinate: right
second coordinate: down
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Rectified stereo images

* The corresponding fundamental matrix is

O 0 O
Fo=|0 0 -1 -
01 Sam]eagglgytm
fiisplaced
* Note that yZT FO yl =0 fOf horizontally by d

U u—+d /
Yi1=|v yo = v
1 1

\ Some point in image 1 56




Rectified stereo rig

» Although a rectified stereo rig can be
accomplished by means of accurate
measurements, cameras, and mechanics
— It is difficult and expensive to accomplish the

necessary mechanical accuracy

» At best we can set up an approximate
rectified stereo rig
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Rectified stereo rig

We know

* All cameras that have the same camera
center are equivalent =

 |f a camera rotates around its camera
center, the image transforms according to
a homography H
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Rectified images

Consequence:

« If the principal axis of a camera is not
exactly pointing in the right direction, this
can be compensated for by applying a
suitable homography H on the image
coordinates
— This makes the epipolar lines parallel
— Independent H in each image

* The result are rectified images

59

Image rectification

« How do we determine H, for image 1 and
H, for image 2 so that both images are
rectified (H,, H, are homographies)?

» Estimate F from corresponding points in
the two images
— The 8-point algorithm

 Find H;, H, such that (H,1)T F H; 1 ~ F,
f

This is the fundamental matrix after transformation of both coordinate systems 60




Image rectification

 This relation in H; and H, has multiple
solutions, some of which are unwanted
— Ex: horizontal mirroring
— Extreme geometric distortion

» Several methods for determining “good”
H, and H, from F exist, for example:
— Loop & Zhang, ICPR 1999

— Determines H; and H, based on minimization
of geometric distortion

— A similar idea is explored in HZ
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Image rectification

Example of a stereo image pair

Black lines are epipolar lines. Not parallel From Loop & Zhang

Image rectification

Example of rectification

—r =

Epipolar lines are parallel and aligned! From Loop & Zhang

Image rectification

Another example, less geometric distortion than previous one

Epipolar lines are parallel and aligned! From Loop & Zhang




Stereo image rectification,
summary

» A stereo image pair that are approximately
rectified

— the principal axes are parallel and
perpendicular to the baseline

 can be rectified by homography
transformations such that

— corresponding points are found on the same
row

« Multiple solutions to the rectification exist
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Reconstruction

Given a pair of corresponding image points y;
andy,

y1~Cyx
Yy, ~ C,y X

we know that: y,"Fy, =0

What about x? Can x be determined?

This problem is called triangulation or
reconstruction 66

Reconstruction

n;

Epipolar constraint satisfied < Reprojection lines intersect

In this case: there is a well-defined x that projects to y, and y, 67

Reconstruction

In reality, the image points y, and y, don'’t

satisfy y," F y, = 0 exactly

— Lens distortion

— Coordinate quantization

— Estimation inaccuracy

The two reprojection lines don'’t intersect
In this case: x is not well-defined
= It somehow has to be approximated

68




The mid-point method

Find the unique points x; and x, on each
reprojection line that is closest to the other
line

Draw a line between x, and X,

Set x = the mid-point between x; and X,
on this line

X, and x, are identical < y,"Fy, =0

69

The mid-point method

y, and y, approximately
satisfy the epipolar constraint

70

Linear methods

From

y1~Ci1x

y2 ~ Cox

3 linear
follows homogeneous
equations in x

0= V1 X Cl X

0= Yo X CQ X
or

3 more linear

0=[y1]xC1x A
0 — [yQ] v C2 X/ eguma(igoennse?nui )

Linear methods

Since [y,], has rank 2: one of the 3 equations is
linearly dependent to the other two:

0= [Yl] Xcl X In total: 4 linear

independent

- \
0= [yQ] XCQ X homogeneous

equations in x

This can be written

\ B is a 6 x 4 matrix

72




Linear methods

* Intheory B has rank 3 and x is well-defined

* In practice (with noise) B x = 0 cannot be solved
exactly

« Solution (for example): determine x that
minimizes

Total least squares
[IB x|| with [|x||=1 minimzation

X = The right singular vector of B with smallest
singular value

* What about Hartley-normalization?
« Homogeneous triangulation s

Linear methods

X)
1)

v)
Alternatively: we know that x = (g — (
)

B x = 0 can then be rewritten as B1 X = bg
Which is solved using standard methods
* Inhomogeneous triangulation

74

Properties of triangulation methods

 In the ideal case any triangulation method gives
the same x for any y,, y, that satisfy the epipolar
constraint, but

« If the constraint is not satisfy the results differ

* The metods have slightly different computational
complexity (SVD, iterative, etc)

» Singularities (e.g. the inhomogeneous method
fails for 3D points at infinity) (why?)
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Invariance to 3D transformations

» Does the resulting x change if we change
the 3D coordinate system?

— the mid-point method is only invariant to
translations, rotations, and scalings

— The inhomogeneous method is only invariant
to affine transformations

— The homogeneous method is invariant only to
3D homographies € SO(4)
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Optimal triangulation

» Assume that F is known (or estimated)

« Assume that y, and y, have been
perturbed by noise of isotropic distribution

* Find y’; and y’, such that

y',TFy,=0 and

d is the Euclidean distance
in the image (in pixels)

d(y,y'D)? + d(y,y'5)* is minimal

7

Optimal triangulation
Maximum Likelihood Estimation

These y’; and y’, are then Maximum Likelihood
estimates of y, and y, that also satisfy the
epipolar constraint

Once y’; and y’, are determined: use any of the
previous methods to determine x

A computational method exist for finding y’; and
Y2

— Involves solving a 6th order polynomial
— All 6 roots must be evaluated

Invariant to any 3D homography transformation

[Hartley & Sturm, Optimal Triangulation, CVIU 1997]
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The triangulation tensor

* Itis also possible to compute x as
X~KY
where Y =y,y,T reshaped to a 9-dim vector

« Kisa4x 9 matrix (or4 x 3 x 3 tensor),
the triangulation tensor
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The triangulation tensor

Low computational complexity
Invariant to 3D homography transformations

K can be estimated from 3D+2D+2D
correspondences
— No need for camera matrices

Can then be optimized relative to arbitrary error
measures (in 2D, in 3D, L,, L,)

Has a singularity on an arbitrary plane that
intersects the camera centers, the blind plane

[Nordberg, The triangulation tensor, CVIU, 2009]
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