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Lecture 3: 
Estimation theory

DLT homography estimation

Algebraic and geometric errors 

Maximum likelihood estimation

RANSAC

Voting techniques

Mean-shift clustering

Papers for next week
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DLT

Remember the homography from lecture 1?

A simple way to estimate H from sets of 
correspondences
is to use the Direct Linear Transformation(DLT)




y1

y2

1



 ∼ H




x1

x2

1





(x1, x2)↔ (y1, y2)
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DLT example

Homograpy registration to 
map using tracked points

Extraction of rotation and 
translation from homography

Forssén, WITAS project 2000
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DLT derivation

Use the cross product with y to obtain

y ∼ Hx ⇒ 0 ∼ y ×Hx
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DLT derivation

Use the cross product with y to obtain

Decompose H in three row vectors

y ∼ Hx ⇒ 0 ∼ y ×Hx

0 = y ×




— h1T —
— h2T —
— h3T —



x = y ×




h1T x
h2T x
h3T x




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DLT derivation

Rewrite cross product as matrix product

Swap terms and factor out h-terms

0 = y ×




h1T x
h2T x
h3T x



 =




0 −1 y2

1 0 −y1

−y2 y1 0








h1T x
h2T x
h3T x





0 =




0 −1 y2

1 0 −y1

−y2 y1 0








xT h1

xT h2

xT h3



 =




0 −xT y2xT

xT 0 −y1xT

−y2xT y1xT 0








h1

h2

h3




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DLT derivation

Each point correspondence gives us two 
equations:

If we have 4 points we get 8 equations, and 
can solve for H up to scale.

For more points we can use least squares.

or Mh = 0

8

0 =
�

0 0 0 −x1 −x2 −1 y2x1 y2x2 y2

x1 x2 1 0 0 0 −y1x1 −y1x2 y1

� 


h1

h2

h3




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SVD solution

Using the Singular Value Decomposition(SVD) 
we can decompose M into

By choosing                                 we find the 
smallest residual      

Mh = 0

U





σ1 0
σ2

. . .
0 σN




VT h = 0

VT h = (0 . . . 1)T
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SVD solution

By choosing                                 we find the 
smallest residual.

Thus h should be proportional to the
last row of V.

SVD solves the problem   

VT h = (0 . . . 1)T

h∗ = arg min
h

||Mh|| s.t. ||h|| = 1
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Algebraic Error

SVD minimises the sum of squared residuals

The error that we happen to minimise when 
we solve an over-determined system is called 
the algebraic error.

Usually contrasted with the geometric error, i.e. 
what we really want to minimise.

Mh = 0

�2 =
�

k

r2
k , where rk = mkh
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Algebraic Error
Assume i.i.d. noise on the measured points

Recall the first residual row

In the noise free case this should be zero

This leaves us with

x1 = x̂1 + �1

x2 = x̂2 + �2
�k ∈ N (0, σ)

12

rk = mkh =
�
0 0 0 −x1 −x2 −1 y2x1 y2x2 y2

�
h

rk = mkh =
�
0 0 0 −x̂1 −x̂2 −1 ŷ2x̂1 ŷ2x̂2 ŷ2

�
h

rk =
�
0 0 0 −�1 −�2 −1 �3x̂1 + ŷ2�1 + �1�3 �4x̂2 + ŷ2�2 + �2�4 �4

�
h
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Algebraic Error

Noise on columns 7 and 8 is counted more!

Columns 3 and 6 are noise free!
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r =
�

0 0 0 −�1 −�2 −1 �3x̂1 + ŷ2�1 + �1�3 �4x̂2 + ŷ2�2 + �2�4 �4
�1 �2 1 0 0 0 −�3x̂1 − ŷ1�3 − �1�3 −�3x̂2 − ŷ1�2 + �2�3 �3

�
h
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Hartley normalisation

Hartley normalisation gives a more even 
weight on all columns

s - average distance to origin

            - mean in first and second coordinate 

14

x̂ ∼





√
2/s 0 −

√
2µ1/s

0
√

2/s −
√

2µ2/s
0 0 1



x

µ1, µ2
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Hartley normalisation

If we have found a homography that maps 
normalised points

We can find the mapping for the original 
points as

Further improvements by row&col weighting

ŷ ∼ H̃x̂ where ŷ = Nyy and x̂ = Nxx

H = N
−1
y H̃Nx Why?

Mh = 0 ⇒ W1MW2h = 0
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Maximum Likelihood

Instead of the algebraic error, it would be 
better to maximise

p (h| {xk,yk})
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Maximum Likelihood

Instead of the algebraic error, it would be 
better to maximise

Mathematically it is however easier to look 
for a h that maximises

This is called Maximum Likelihood(ML)

p (h| {xk,yk})

p ({xk,yk}|h)
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Maximum Likelihood

The error in direct measurements is often 
easy to model.

E.g. empirically from measurements with 
ground truth.
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Maximum Likelihood

The error in direct measurements is often 
easy to model.

E.g. empirically from measurements with 
ground truth.

It is e.g. reasonable to model errors in pixel 
locations as localised and unbiased.
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Maximum Likelihood

Assume no errors in y, but errors in x that are 
Gaussian and independent:

                    is the Euclidean distance in
image 1.

p ({xk} |H, {yk}) =
�

k

1
2πσ2

exp
�
−d2 (xk,Hyk) /2σ2

�

20
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Maximum Likelihood

Assume no errors in y, but errors in x that are 
Gaussian and independent:

We could instead find the H that minimises:

− log p ({xk} |H, {yk}) ∝
�

k

d2 (xk,Hyk)

p ({xk} |H, {yk}) =
�

k

1
2πσ2

exp
�
−d2 (xk,Hyk) /2σ2

�

p ({xk} |H, {yk}) =
1

2πσ2
exp

�
−

�

k

d2 (xk,Hyk) /2σ2

�
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Maximum Likelihood

The cost function

 is a non-linear least-squares problem.

Can be solved by gradient descent, starting in 
an initial guess H0 close to the correct 
solution.

H0 is typically found using normalised DLT.

J(H) =
�

k

d2(xk,Hyk)
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Maximum Likelihood

Maximum Likelihood = Least Squares IF:

Gaussian noise

i.i.d
in one image (the other is error free)

For errors in both images we need to optimise 
over both H and the undistorted points {x̂k, ŷk}

23
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Maximum Likelihood
Reprojection error

2K+9 parameters. Solved with e.g. 
Levenberg-Marquardt. Expensive if many 
points.

A simple approximation is the 9 parameter 
symmetric transfer error:

K�

k=1

d(xk, x̂k)2 + d(yk,H−1
x̂k)2

K�

k=1

d(xk,Hyk)2 + d(yk,H−1
xk)2
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Maximum Likelihood

ML solutions can be derived for other 
parameter estimation problems as well.

All have in common that a reprojection error, i.e. 
an error in the measurements, needs to be 
derived.

ML solutions are called the gold standard in the 
Hartley&Zisserman book.

25



( c )  2 0 1 0  P e r - E r i k  F o r s s é n

Problems with 
linear methods

Example: LS line estimation from points:



x1 y1 1
...

... 1
xK yK 1








l1
l2
l3



 = 0
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Problems with 
linear methods

Example: LS line estimation from points:

Remember errror analysis from before: 
Column weighting with        also helps here.

But, there is a bigger problem...




x1 y1 1
...

... 1
xK yK 1








l1
l2
l3



 = 0

1/σ
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The problem with LS

What if some measurements are very wrong, 
i.e. they measure something else?

0 0.5 1 1.5
0

0.5

1

1.5

0 0.5 1 1.5
0

0.5

1

1.5

LS for additive
uniform noise

LS after adding
one outlier
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A solution

Random Sample Consensus (RANSAC)
Fischler and Bolles 1981.

Hypothesize
 

Verify
 

Loop
 

29
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Ransac

Random Sample Consensus (RANSAC)
Fischler and Bolles 1981.

Hypothesize
pick a few samples and estimate solution

Verify
test the solution, by evaluating the likelihood

Loop
keep doing this and store the best solution

30
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Ransac for a 
homography (from H&Z)

1. Detect interest points

2. Select a set of putative correspondences

3. Randomly select 4 correspondences and 
 compute H using DLT

4. Score H by counting number of inliers

5. Repeat 3 and 4.

6. Choose H with highest score.

7.Run ML on inlier set.

dsym(xk,yk|H) < t
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Ransac

Same thing can be done for the fundamental 
matrix F

Putative correspondences
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Ransac

Same thing can be done for the fundamental 
matrix F

Inliers after RANSAC

33



( c )  2 0 1 0  P e r - E r i k  F o r s s é n

Ransac for a 
homography (from H&Z)

The algorithm in the book is outdated
(but its a good introduction).

Lecture 6 will cover more up-to date 
techniques.

Two issues:

1.How many RANSAC iterations?

2.Threshold value?

34
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Number of samples

w - fraction of inliers
s  - number of points in minimal sample
p - probability of finding an uncontaminated
     sample (we can never be sure!)
N - number of samples used

Solving for N gives us

(1− ws)N = 1− p

N = log(1− p)/ log(1− ws)

35



( c )  2 0 1 0  P e r - E r i k  F o r s s é n

Number of samples

s w=0.95 w=0.90 w=0.80 w=0.75 w=0.70 w=0.60 w=0.50

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

N = log(1− p)/ log(1− ws)
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Number of samples

In practise, we have inlier noise, and then
this heuristic is wildly optimistic

N = log(1− p)/ log(1− ws)
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Threshold value

Preferrably, we should not score the 
hypotheses based on number of inliers, but on 
the likelihood of the model.

From this follows that we should sum the 
likelihoods of the errors...

38
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Strong and weak 
robustness

Weak robustness
one cluster and <50% outliers
*RANSAC
*L1 optimisation
       median,LP,LmedS,...

Strong robustness
several clusters, and outliers
*voting (histograms/GHT)
*mean-shift,...

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1
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Voting techniques

For some problems, we can define a grid over 
possible parameter values, and evaluate the 
likelihood at each grid location.

Channel Clustering (Forssén, 2004)

Approximations:

1.Histograms

2.Hough Transform

3.Generalised Hough Transform (GHT)

40
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Voting techniques

Histogramming and GHT simplifies this to 
just letting each sample cast a vote in a cell.

Similarly, the Hough transform paints a line 
in the grid cell space...

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

⇒ ⇒
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Voting techniques

Increased number of cells, followed by low-
pass filtering gives us better accuracy, and 
reduces the risk of missing a peak.

⇒ ⇒
0 0.5 1

0

0.2

0.4

0.6

0.8

1
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Channel Clustering

Since the blurring reduces the bandwidth we 
can sample more sparsely, and even afford to 
properly evaluate the likelihood.

Accurate peaks  from a decoding scheme
(Forssén, 2004)

⇒ ⇒
0 0.5 1

0

0.2

0.4

0.6

0.8

1
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Mean-shift Clustering
Algorithm illustration (Cheng, 1995)

1.Start in each data point
2.Move to poisition of local average

3.Repeat 2 until convergence

mn = xn

mn ← meanxn∈S(mn)(xn)

−10 −5 0 5 10
−10

−5

0

5

10

−10 −5 0 5 10
−10

−5

0

5

10

⇒
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Mean-shift Clustering

Mean-shift is gradient ascent (with a 
particular step length) on the cost function

If we set K to the error likelihood,
mean-shift is ML

f(m) =
1
N

N�

n=1

K(||xn −m||)
K(x)

f(x)
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Mean-shift Clustering
Example 1: (Cheng 95)

1.Pick 300 2D points in an edge image

2.Generate all (44 850) pairs of points

3.Each pair gives a sample

4.Cluster in            space

(ρk, ϕk)

(ρ, ϕ)

−10 −5 0 5 10
−10

−5

0

5

10

−10 −5 0 5 10
−10

−5

0

5

10

⇒
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Mean-shift Clustering

Example 2: Pose Estimation (Viksten, ICRA2009)
Extract local invariant features (e.g. SIFT
or MSER)
Let each pair of features cast a vote on the
pose of an object
Cluster the votes using mean-shift

xk = (x0, y0, α, s, ϕ, θ, type)

⇒
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For Next week...

Papers to read:

1.Mendoca and Cippolla, A Simple Technique 
for Self-Calibration, CVPR99

2.Costeira and Kanade, A Multibody 
Factorization Method for Independently Moving 
Objects, sections 1-3
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For Next week...

For those taking the course for credits:

Prepare two topics for discussion on the 
paper. E.g. something you disagree with, 
or do not understand. Remember to 
explain how and why!

We will leave room in the second half of the 
lecture for the discussion.
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