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NA

* DLT homography estimation

A

¢ Algebraic and geometric errors

A

s Maximum likelihood estimation

5 RANSAC
K71\

NA

* Voting techniques

S

¢ Mean-shift clustering

A

 Papers for next week



5¢ Remember the homography from lecture 17

Y1 L1
y2 | ~H | z2
1 1

Al

A simple way to estimate H from sets of
correspondences (T1,%2) < (y1,Y2)
is to use the Direct Lunear Transformation(DLT)



DLT EXAMPLE

Homograpy registration to Extraction of rotation and

map using tracked points translation from homography

Forssén, WITAS project 2000

(AN AT €) o, €0 Db oy pao ot D Dabd [ (€ e D €Y 3 S SO B b 4



DLT DERIVATION

Al

¢ Use the cross product with y to obtain

veoecblx s — () 0y e Elix

F AV 2F s €)% 5, €) PERpR-=2R11 FGOGREEEERN



A

s Use the cross product with y to obtain

el o o) oy e Bl

A

¢ Decompose H 1n three row vectors

s e e h'!x
g wvocl o he = v
e o h3!'x



A
N\

0

2
KN\

Rewrite cross product as matrix product

hifx 0 -1 hifx
= alhe | — 1 U sl h!'x
h3'x —Ys U1 0 h3'x

Swap terms and factor out h-terms

0 -1 x!'ht 0 e

1 U, e he o= x? 0 —y1xt
T

—Ya Y1 0 x1'h3 —yQXT Y1X 0
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N\

Bl

A
ZI\J

A
73

FEach point correspondence gives us two
equations:

hl
0 0 0 o N o i —1 YaI1 Y22 Y2 h2
T e e e 0 Oa st lrdiw s ~Unb st

or Mh=20

If we have 4 points we get 8 equations, and
can solve for H up to scale.

For more points we can use least squares.



Mh =20

* Using the Stngular Value Decomposition(SVD)

we can decompose M into
01 0
U | Vih=0

0 ON

* By choosing Vinh = (0 .- 1)T we find the

smallest residual



By choosing N h — (0

smallest residual.

1)T we hnd the

¢ Thus h should be proportional to the

last row of V.

S
K|

¢«SVD solves the problem

e argm&nHMhH st b =i

10



Mh =20

% SVD minimises the sum of squared residuals

€2 = Zri ,  Wwhere 7rp.=mgh
k
¢ The error that we happen to minimise when
we solve an over-determined system 1s called
the algebraic error.

R

¢ Usually contrasted with the geometric error, 1.e.
what we really want to minimise.

= T F=od=1 1 , . | | 11



Al

5% Assume 1.1.d. noise on the measured points
L1 = .C%l =EzCof
e € N(0,0)
Lo = ZEQ SECD)

2% Recall the first residual row

rk:mkh:(() 0O O Tyt [ | e, —1 Ya2Xq Yo X9 yg)h

Al

3¢ In the noise free case this should be zero

rk:mkh:(() 0 O —5%1 —ZIA?Q —1 ggfl @2[2’2 @Q)h

Al

3% This leaves us with

TkZ(O 0 0 —e1 —€3 —1 €321+ Yo€1 + €1€3 €409 + Yo€a + €264 64)h

- £ [= T | | - G I= 23 O | 1D



et Sl e et o Wl BRSNS 3  p O o e el B oy e e Y e b = 1 2 h
gl =eo ]l 0 0 0 —e3Z1 — Y163 — €163 —€3T2 — Y1€2 + €2€3 €3

A

5¢ Noise on columns 7 and 8 1s counted more!

A

2%¢ Columns 3 and 6 are noise free!



2
N\

A
7y

A
N\

Hartley normalisation gives a more even
weight on all columns

PR R VO
X ~ 0 \/§/S —\/§,LL2/S X
0 0 1

s - average distance to origin

11, b2 - mean 1n frst and second coordinate

14



normalised points
y ~ Hx where y— IN v amd s N

A
|

* We can find the mapping for the original

Zl

points as

Nl

Mh=0 = W;MWh=0



MAXIMUM LIKELIHOOD

¢ Instead of the algebraic error, it would be
better to maximise

p (h| {xk,y%})

(T oAV BT €Y [5. € )0 DI o pad ot hG: Cabd [ MR D ey D3 S S B f

16



¢ Instead of the algebraic error, it would be
better to maximise

p (h| {xx,yr})

A

¢ Mathematically 1t 1s however easier to look
for a h that maximises

P ({Xk; yr ;| h)
¢ Thas 1s called Maxvmum Likelihood(IM 1)

17
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.
N\

The error in direct measurements is often
easy to model.

E.g. empiricaﬂy from measurements with
ground truth.

18



A

2¢ The error 1n direct measurements 1s often
easy to model.

A

S E.g. empiricaﬂy from measurements with
ground truth.

A

2¢ It 1s e.g. reasonable to model errors in pixel
locations as localised and unbiased.

A p(e)

AL

P'Er [— = | | - G I S E

19



Al

¢ Assume no errors 1n y, but errors in x that are
Gaussian and independent:

p (i} [HL {y4)) = [ 5-gexp (~d* (xi Hys) /20?)
k

% d(xr, Hyx) 1s the Euclhidean distance 1n
image 1.



Al

¢ Assume no errors 1n y, but errors in x that are
Gaussian and independent:

p (i} [HL {y4)) = [ 5-gexp (~d* (xi Hys) /20?)
k

1 : 5
p({xx} [H, {y}) = 5—exp ( zk: d? (xi, Hyy) /20 )
2 We could instead find the H that minimises:

—logp ({xe} [H, {yx}) x 3 d (x4, Hys)
k



2 The cost function J(H) = Z d*(xy, Hyy,)

k
A

¢ 1s a non-linear least-squares problem.

A

¢ Can be solved by gradient descent, starting in
an mitial guess Hy close to the correct
solution.

* Ho 1s typically found using normalised DLT.



¢ Maximum Likelihood = Least Squares IF:

s¢ Gausslan noise

\\',/ [ ] [ )
A%z
2 l.l.d

N/

“¢1n one 1mage (the other 1s error free)

NA

¢ For errors in both images we need to optimise
over both H and the undistorted points {Xx, ¥}



A
7/

A

=

¢ Reprojection error

K
> d(xp, %) + d(ye, H %)
k=1
% 2K+9 parameters. Solved with e.g.
Levenberg-Marquardt. Expensive if many

points.

N2

¢ A simple approximation is the 9 parameter
symmelric trandfer error:

K
Z d(xi, Hyr)? + d(yr, H 'x)°
k=1



s ML solutions can be derived for other

parameter estimation problems as well.

A

2 All have i1n common that a reprojection error, 1.e.
an error 1n the measurements, needs to be
derived.

¢ ML solutions are called the gold standard in the
Hartley&Zisserman book.



PROBLEMS WITH
LINEAR METHODS

¢ Example: LS line estimation from points:

it el [
s e ke
rx yx 1) \I3

oA P50, €0 [i €Y% e 0 o [0 gos D0 pbd [ Qo 1o, O [0 iy 90 555 )

26



Al

* Example: LS line estimation from points:
e g [

LU | &

Al

2¢ Remember errror analysis from before:

Column weighting with 1/0 also helps here.

Al

¢ But, there 1s a bigger problem...

V7



s What if some measurements are Very wrong,

1.e. they measure something else?
1.5 : : 1.5

O.Sb.

0 0;5 1 1.5 OO 0;5 1 1.5
LS for additive LS after adding
uniform noise one outlier



A
N\

.
N\

A
7§

A
Z\J

Random Sample Consensus (RANSAC)
Fischler and Bolles 198]1.

Hypothesize

Verily

Loop

23



* Random Sample Consensus (RANSAC)
Fischler and Bolles 1981.

Al

* Hypothesize

pick a few samples and estimate solution

A
7/

A

=

¢ Veritly
test the solution, by evaluating the likelihood

A\
7/

A

=

¢ Loop
keep doing this and store the best solution

I- £ T [= I | | = [ 30



1. Detect interest points
2. Select a set of putative correspondences

3. Randomly select 4 correspondences and

compute H using DLT

4. Score H by counting number of wiliers
dsym (XK, i |H) <t

5. Repeat 3 and 4.

6. Choose H with highest score.

7.Run ML on mlier set.

(> ¢ ) | -

31



A
Iy

RANSAC

Same thing can be done for the fundamental
matrix F

Putative correspondences

O Y23 25 O [ €% P o pho o B0 s [ Qs e €0 34 Sp S 550 ) |

32



A
Iy

RANSAC

Same thing can be done for the fundamental

matrix F

i) 2GS G = E a6 I L EN

33



 The algorithm 1n the book 1s outdated
(but 1ts a good introduction).

Al

2% Lecture 6 will cover more up-to date
techniques.

Al

5¢ Two 1ssues:

l.How many RANSAC iterations?
2. Threshold value?

34



Al

S¢w - fraction of inliers
¢s - number of points in minimal sample

A

“¢p - probability of finding an uncontaminated
sample (we can never be sure!)
N2

¢ N - number of samples used

L w? =

-

A

¢ Solving for N gives us

N = log(1 — p)/log(1 — w?*)

35



NUMBER OF SAMPLES

N = log(1 — p)/log(1 — w?)

S w=0.95 |w=0.90 | w=0.80 | w=0.75 | w=0.70 [ w=0.60 | w=0.50
% 2 5 o 6 £ Jial | %

3] 3 4 % 9 ]l 19 99

A4 3 5 9 13 7% 34 £d

5 4 6 12 17 26 STk 146

6 4 7 16 24 67 i 293

7 4 3 20 33 54 163 588

8 5 9 26 44 78 272 IBEZ7%

(G) 266G FEE-ERIl FGEEEFEIN 36



N = log(1 — p)/log(1 — w*)

¢ In practise, we have inlier noise, and then
this heuristic 1s wildly optimistic

37



Al

% Preterrably, we should not score the
hypotheses based on number of inliers, but on

the likelihood of the model.

> From this follows that we should sum the
likelihoods of the errors...

A p(e)

Tk

=




1

3 Weak robustness

one cluster and <60% outliers | - . .
*RANSAC N

'*'Ll optimisation 0.2f - - -

median, LP,LmedS,... 0

0 . 0:5 1
model parameter space
1
“* Strong robustness o S
several clusters, and outliers I T VI

*voting (histograms/GHT) al .

*mean-shitt,... 02 ‘s
| .
0 0.5 1




* For some problems, we can define a grid over
possible parameter values, and evaluate the
likelihood at each grid location.

¢ Channel Clustering (Forssén, 2004)

fa=—

Al

“¢ Approximations:

1.Histograms
2.Hough Transform

3.Generalised Hough Transtorm (GHT)

E I- SR I Foir E | 40



1
0.8 FEo - 0.8 *j’}
0.6, o Fe e 0.6~ ®
02f ..o TER 0.2 =¥
0 : 0
0 0.5 1 0 0.5 1

-
g |

* Histogramming and GHT simplifies this to

just letting each sample cast a vote 1n a cell.

¢ Stmilarly, the Hough transform paints a line
in the grid cell space...



0.8f -

0.6 .

0.2

2
KN\

Increased number of cells, followed by low-
pass hiltering gives us better accuracy, and
reduces the risk of missing a peak.

0.4f «,

42



0.8t -

0.6 .

0.2t

¢ Since the blurring reduces the bandwidth we
can sample more sparsely, and even afford to

properly evaluate the likelihood.

¢ Accurate peaks from a decoding scheme

(Forssén, 2004)

0.4} «.
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¢ Algorithm 1llustration (Cheng, 1995)

1.Start in each data point m,, =x,
2.Move to poisition of local average
m,, < Mealy_ cS(m,)(Xn)

3.Repeat 2 until convergence

10

10

ﬁ oo, © ﬁ ¢
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¢ Mean-shitt 1s gradient ascent (with a
particular step length) on the cost function

L K(X)

)
¢ It we set K to the error likelihood,
mean-shift 1is ML _/\/\>

fm) = = 3 K(|lx, — ml)

A f(x




 Example 1: (Cheng 95)

1.Pick 300 2D points in an edge image
2.Generate all (44 850) pairs of points
3.Each pair gives a sample (0, k)
4.Cluster in (p, ©) space

B T 5 '
Of « @ 5 e é of =
T S 5|

& . ‘ ‘
_10' ° ° ) . _10.
-10 -5 0 5 10 -10




MEAN-SHIFT CLUSTERING

 Example 2: Pose Estimation (Viksten, ICRA2009)

A

¢ Extract local invarant features (e.g. SIFT

or MSER)

A

s et each pair of features cast a vote on the
pose of an object  x; = (0,40, 5, 9,0, type)

A

¢ Cluster the votes using mean-shift

A AT €)n fh €0 BT o b b O Fava [ (e B O 34 S S B L 47



¢ Papers to read:

1.Mendoca and Cippolla, A Simple Technigue
for Self-Calibration, CVPR99

2.Costeira and Kanade, A Multibody
Factorization Method for Independently Moving
Obyects, sections 1-3

48



Al

% For those taking the course for credits:

-
— -

“ Prepare two topics for discussion on the
paper. E.g. something you disagree with,
or do not understand. Remember to
explain how and why!

3% We will leave room 1n the second half of the
lecture for the discussion.

49



