GEOMETRY FOR

COMPUTER VISION

LECTURE B:
ESTIMATION THEORY

$$
\text { (C) } 2010 \text { PER-ERIK FORSSEN }
$$

LECTURE 3： Estimation Theory

数 DLT homography estimation
諩Algebraic and geometric errors
教 Maximum likelihood estimation
数RANSAC
諩Voting techniques
漛 Mean－shift clustering
恶 Papers for next week

DLT

榗Remember the homography from lecture 1 ?

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
1
\end{array}\right) \sim \mathbf{H}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right)
$$

龂 A simple way to estimate H from sets of correspondences $\left(x_{1}, x_{2}\right) \leftrightarrow\left(y_{1}, y_{2}\right)$ is to use the Direct Linear Transformation(DLT)

DLT EXAMPLE

Homograpy registration to map using tracked points

Extraction of rotation and translation from homography

Forssén, WITAS project 2000

DLT DERIVATION

业Use the cross product with y to obtain

$$
\mathbf{y} \sim \mathbf{H x} \quad \Rightarrow \quad \mathbf{0} \sim \mathbf{y} \times \mathbf{H x}
$$

DLT DERIVATION

齿Use the cross product with y to obtain

$$
\mathbf{y} \sim \mathbf{H x} \quad \Rightarrow \quad \mathbf{0} \sim \mathbf{y} \times \mathbf{H x}
$$

数 Decompose \mathbf{H} in three row vectors

$$
\mathbf{0}=\mathbf{y} \times\left(\begin{array}{ccc}
- & \mathbf{h}^{1 T} & - \\
- & \mathbf{h}^{2 T} & - \\
- & \mathbf{h}^{3 T} & -
\end{array}\right) \mathbf{x}=\mathbf{y} \times\left(\begin{array}{l}
\mathbf{h}^{1 T} \mathbf{x} \\
\mathbf{h}^{2 T} \mathbf{x} \\
\mathbf{h}^{3 T} \mathbf{x}
\end{array}\right)
$$

DLT DERIVATION

数 Rewrite cross product as matrix product

$$
\mathbf{0}=\mathbf{y} \times\left(\begin{array}{l}
\mathbf{h}^{1 T} \mathbf{x} \\
\mathbf{h}^{2 T} \mathbf{x} \\
\mathbf{h}^{3 T} \mathbf{x}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -1 & y_{2} \\
1 & 0 & -y_{1} \\
-y_{2} & y_{1} & 0
\end{array}\right)\left(\begin{array}{c}
\mathbf{h}^{1 T} \mathbf{x} \\
\mathbf{h}^{2 T} \mathbf{x} \\
\mathbf{h}^{3 T} \mathbf{x}
\end{array}\right)
$$

橉 Swap terms and factor out h-terms

$$
\mathbf{0}=\left(\begin{array}{ccc}
0 & -1 & y_{2} \\
1 & 0 & -y_{1} \\
-y_{2} & y_{1} & 0
\end{array}\right)\left(\begin{array}{l}
\mathbf{x}^{T} \mathbf{h}^{1} \\
\mathbf{x}^{T} \mathbf{h}^{2} \\
\mathbf{x}^{T} \mathbf{h}^{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -\mathbf{x}^{T} & y_{2} \mathbf{x}^{T} \\
\mathbf{x}^{T} & 0 & -y_{1} \mathbf{x}^{T} \\
-y_{2} \mathbf{x}^{T} & y_{1} \mathbf{x}^{T} & 0
\end{array}\right)\left(\begin{array}{l}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right)
$$

DLT DERIVATION

猬 Each point correspondence gives us two equations：
$\mathbf{0}=\left(\begin{array}{ccccccccc}0 & 0 & 0 & -x_{1} & -x_{2} & -1 & y_{2} x_{1} & y_{2} x_{2} & y_{2} \\ x_{1} & x_{2} & 1 & 0 & 0 & 0 & -y_{1} x_{1} & -y_{1} x_{2} & y_{1}\end{array}\right)\left(\begin{array}{l}\mathbf{h}^{1} \\ \mathbf{h}^{2} \\ \mathbf{h}^{3}\end{array}\right)$

or $\quad \mathbf{M h}=\mathbf{0}$

粦 If we have 4 points we get 8 equations，and can solve for \mathbf{H} up to scale．

䪁 For more points we can use least squares．

SVD SOLUTION

$\mathbf{M h}=\mathbf{0}$

蝶Using the Singular Value Decomposition(SVD) we can decompose \mathbf{M} into

絜By choosing $\mathbf{V}^{T} \mathbf{h}=(0 \ldots 1)^{T}$ we find the smallest residual

SVD SOLUTION

粰 By choosing $\mathbf{V}^{T} \mathbf{h}=(0 \ldots 1)^{T}$ we find the smallest residual．

楼 Thus h should be proportional to the last row of \mathbf{V} ．

蚛SVD solves the problem

$$
\mathbf{h}^{*}=\arg \min _{\mathbf{h}}\|\mathbf{M h}\| \quad \text { s.t. } \quad\|\mathbf{h}\|=1
$$

ALGEBRAIC ERROR

$\mathbf{M h}=\mathbf{0}$

政 SVD minimises the sum of squared residuals

$$
\epsilon^{2}=\sum_{k} r_{k}^{2}, \quad \text { where } \quad r_{k}=\mathbf{m}_{k} \mathbf{h}
$$

㫫 The error that we happen to minimise when we solve an over－determined system is called the algebraic error．

鏍Usually contrasted with the geometric error，i．e． what we really want to minimise．

ALGebraic Error

政Assume i．i．d．noise on the measured points

$$
\begin{aligned}
& x_{1}=\hat{x}_{1}+\epsilon_{1} \\
& x_{2}=\hat{x}_{2}+\epsilon_{2}
\end{aligned} \quad \epsilon_{k} \in \mathcal{N}(0, \sigma)
$$

粼 Recall the first residual row

$$
r_{k}=\mathbf{m}_{k} \mathbf{h}=\left(\begin{array}{lllllllll}
0 & 0 & 0 & -x_{1} & -x_{2} & -1 & y_{2} x_{1} & y_{2} x_{2} & y_{2}
\end{array}\right) \mathbf{h}
$$

䋣 In the noise free case this should be zero

$$
r_{k}=\mathbf{m}_{k} \mathbf{h}=\left(\begin{array}{lllllllll}
0 & 0 & 0 & -\hat{x}_{1} & -\hat{x}_{2} & -1 & \hat{y}_{2} \hat{x}_{1} & \hat{y}_{2} \hat{x}_{2} & \hat{y}_{2}
\end{array}\right) \mathbf{h}
$$

筫 This leaves us with
$r_{k}=\left(\begin{array}{llllllll}0 & 0 & 0 & -\epsilon_{1} & -\epsilon_{2} & -1 & \epsilon_{3} \hat{x}_{1}+\hat{y}_{2} \epsilon_{1}+\epsilon_{1} \epsilon_{3} & \epsilon_{4} \hat{x}_{2}+\hat{y}_{2} \epsilon_{2}+\epsilon_{2} \epsilon_{4}\end{array} \epsilon_{4}\right) \mathbf{h}$

ALGEBRAIC ERROR

$$
\mathbf{r}=\left(\begin{array}{ccccccccc}
0 & 0 & 0 & -\epsilon_{1} & -\epsilon_{2} & -1 & \epsilon_{3} \hat{x}_{1}+\hat{y}_{2} \epsilon_{1}+\epsilon_{1} \epsilon_{3} & \epsilon_{4} \hat{x}_{2}+\hat{y}_{2} \epsilon_{2}+\epsilon_{2} \epsilon_{4} & \epsilon_{4} \\
\epsilon_{1} & \epsilon_{2} & 1 & 0 & 0 & 0 & -\epsilon_{3} \hat{x}_{1}-\hat{y}_{1} \epsilon_{3}-\epsilon_{1} \epsilon_{3} & -\epsilon_{3} \hat{x}_{2}-\hat{y}_{1} \epsilon_{2}+\epsilon_{2} \epsilon_{3} & \epsilon_{3}
\end{array}\right) \mathbf{h}
$$

觖 Noise on columns 7 and 8 is counted more!
蝶Columns 3 and 6 are noise free!

HARTLEY NORMALISATION

䋣 Hartley normalisation gives a more even weight on all columns

$$
\hat{\mathbf{x}} \sim\left(\begin{array}{ccc}
\sqrt{2} / s & 0 & -\sqrt{2} \mu_{1} / s \\
0 & \sqrt{2} / s & -\sqrt{2} \mu_{2} / s \\
0 & 0 & 1
\end{array}\right) \mathbf{x}
$$

数 s －average distance to origin
紫 μ_{1}, μ_{2}－mean in first and second coordinate

HARTLEY NORMALISATION

政 If we have found a homography that maps normalised points
$\hat{\mathbf{y}} \sim \tilde{\mathbf{H}} \hat{\mathbf{x}} \quad$ where $\hat{\mathbf{y}}=\mathbf{N}_{y} \mathbf{y}$ and $\hat{\mathbf{x}}=\mathbf{N}_{x} \mathbf{x}$
諩 We can find the mapping for the original points as

$$
\mathbf{H}=\mathbf{N}_{y}^{-1} \tilde{\mathbf{H}} \mathbf{N}_{x}
$$

彞 Further improvements by row \＆col weighting

$$
\mathbf{M h}=0 \quad \Rightarrow \quad \mathbf{W}_{1} \mathbf{M} \mathbf{W}_{2} \mathbf{h}=0
$$

MAXIMUM LIKELIHOOD

䗒 Instead of the algebraic error, it would be better to maximise

$$
p\left(\mathbf{h} \mid\left\{\mathbf{x}_{k}, \mathbf{y}_{k}\right\}\right)
$$

MAXIMUM LIKELIHOOD

䩚 Instead of the algebraic error，it would be better to maximise

$$
p\left(\mathbf{h} \mid\left\{\mathbf{x}_{k}, \mathbf{y}_{k}\right\}\right)
$$

黄 Mathematically it is however easier to look for ah that maximises

$$
p\left(\left\{\mathbf{x}_{k}, \mathbf{y}_{k}\right\} \mid \mathbf{h}\right)
$$

粼This is called Maximum Likelihooд（ML）

MAXIMUM LIKELIHOOD

暽 The error in direct measurements is often easy to model．

縕 E．g．empirically from measurements with ground truth．

MAXIMUM LIKELIHOOD

兟The error in direct measurements is often easy to model．

絜 E．g．empirically from measurements with ground truth．

㸁 It is e．g．reasonable to model errors in pixel locations as localised and unbiased．

MAXIMUM LIKELIHOOD

粼 Assume no errors in \mathbf{y}, but errors in \mathbf{x} that are Gaussian and independent:

$$
p\left(\left\{\mathbf{x}_{k}\right\} \mid \mathbf{H},\left\{\mathbf{y}_{k}\right\}\right)=\prod_{k} \frac{1}{2 \pi \sigma^{2}} \exp \left(-d^{2}\left(\mathbf{x}_{k}, \mathbf{H y}_{k}\right) / 2 \sigma^{2}\right)
$$

鞇 $d\left(\mathbf{x}_{k}, \mathbf{H} \mathbf{y}_{k}\right)$ is the Euclidean distance in image 1 .

MAXIMUM LIKELIHOOD

粰 Assume no errors in \mathbf{y} ，but errors in \mathbf{x} that are Gaussian and independent：

$$
\begin{aligned}
p\left(\left\{\mathbf{x}_{k}\right\} \mid \mathbf{H},\left\{\mathbf{y}_{k}\right\}\right) & =\prod_{k} \frac{1}{2 \pi \sigma^{2}} \exp \left(-d^{2}\left(\mathbf{x}_{k}, \mathbf{H} \mathbf{y}_{k}\right) / 2 \sigma^{2}\right) \\
p\left(\left\{\mathbf{x}_{k}\right\} \mid \mathbf{H},\left\{\mathbf{y}_{k}\right\}\right) & =\frac{1}{2 \pi \sigma^{2}} \exp \left(-\sum_{k} d^{2}\left(\mathbf{x}_{k}, \mathbf{H} \mathbf{y}_{k}\right) / 2 \sigma^{2}\right)
\end{aligned}
$$

粼 We could instead find the \mathbf{H} that minimises：

$$
-\log p\left(\left\{\mathbf{x}_{k}\right\} \mid \mathbf{H},\left\{\mathbf{y}_{k}\right\}\right) \propto \sum_{k} d^{2}\left(\mathbf{x}_{k}, \mathbf{H} \mathbf{y}_{k}\right)
$$

MAXIMUM LIKELIHOOD

数 The cost function $J(\mathbf{H})=\sum_{k} d^{2}\left(\mathbf{x}_{k}, \mathbf{H y}_{k}\right)$
彞 is a non－linear least－squares problem．
橉 Can be solved by gradient descent，starting in an initial guess \mathbf{H}_{0} close to the correct solution．

彞 \mathbf{H}_{0} is typically found using normalised DLT．

MAXIMUM LIKELIHOOD

颣Maximum Likelihood＝Least Squares IF：
数Gaussian noise

粼 in one image（the other is error free）
粦 For errors in both images we need to optimise over both \mathbf{H} and the undistorted points $\left\{\hat{\mathbf{x}}_{k}, \hat{\mathbf{y}}_{k}\right\}$

MAXIMUM LIKELIHOOD

䡒 Reprojection error

$$
\sum_{k=1}^{K} d\left(\mathbf{x}_{k}, \hat{\mathbf{x}}_{k}\right)^{2}+d\left(\mathbf{y}_{k}, \mathbf{H}^{-1} \hat{\mathbf{x}}_{k}\right)^{2}
$$

傫 $2 \mathrm{~K}+9$ parameters．Solved with e．g． Levenberg－Marquardt．Expensive if many points．

䋤 A simple approximation is the 9 parameter symmetric tranafer error：

$$
\sum_{k=1}^{K} d\left(\mathbf{x}_{k}, \mathbf{H y}_{k}\right)^{2}+d\left(\mathbf{y}_{k}, \mathbf{H}^{-1} \mathbf{x}_{k}\right)^{2}
$$

MAXIMUM LIKELIHOOD

数 ML solutions can be derived for other parameter estimation problems as well．

並All have in common that a reprojection error，i．e． an error in the measurements，needs to be derived．

䄻ML solutions are called the gold standard in the Hartley \＆Zisserman book．

PROBLEMS WITH LINEAR METHODS

龉 Example: LS line estimation from points:

$$
\left(\begin{array}{ccc}
x_{1} & y_{1} & 1 \\
\vdots & \vdots & 1 \\
x_{K} & y_{K} & 1
\end{array}\right)\left(\begin{array}{l}
l_{1} \\
l_{2} \\
l_{3}
\end{array}\right)=0
$$

PROBLEMS WITH LINEAR METHODS

龉 Example：LS line estimation from points：

$$
\left(\begin{array}{ccc}
x_{1} & y_{1} & 1 \\
\vdots & \vdots & 1 \\
x_{K} & y_{K} & 1
\end{array}\right)\left(\begin{array}{l}
l_{1} \\
l_{2} \\
l_{3}
\end{array}\right)=0
$$

蝶 Remember errror analysis from before：
Column weighting with $1 / \sigma$ also helps here．
暽 But，there is a bigger problem．．．

THE PROBLEM WITH LS

彞What if some measurements are very wrong, i.e. they measure something else?

LS for additive uniform noise

LS after adding one outlier

A SOLUTION

諩 Random Sample Consensus（RANSAC） Fischler and Bolles 1981.

彞Hypothesize

橉Verify

緮Loop

RANSAC

蚛 Random Sample Consensus（RANSAC） Fischler and Bolles 1981.

数Hypothesize pick a few samples and estimate solution

蟮Verify test the solution，by evaluating the likelihood

彞Loop
keep doing this and store the best solution

```
(C) 2OIOFRF-ERIKFORESEN
```


RANSAC FOR A HOMOGRAPHY (FROM H\&Z)

1. Detect interest points
2. Select a set of putative correspondences
3. Randomly select 4 correspondences and compute \mathbf{H} using DLT
4. Score \mathbf{H} by counting number of inliers

$$
d_{\text {sym }}\left(\mathbf{x}_{k}, \mathbf{y}_{k} \mid \mathbf{H}\right)<t
$$

5. Repeat 3 and 4.
6. Choose \mathbf{H} with highest score.
7.Run ML on inlier set.

RANSAC

数 Same thing can be done for the fundamental matrix \mathbf{F}

RANSAC

歯 Same thing can be done for the fundamental matrix \mathbf{F}

Inliers after RANSAC

RANSAC FOR A HOMOGRAPHY（FROM H\＆九Z）

録The algorithm in the book is outdated （but its a good introduction）．

靿 Lecture 6 will cover more up－to date techniques．

諩 Two issues：
1．How many RANSAC iterations？
2．Threshold value？

NUMBER OF SAMPLES

等 w －fraction of inliers
数s－number of points in minimal sample
数 p －probability of finding an uncontaminated sample（we can never be sure！）
＊＊ N －number of samples used

$$
\left(1-w^{s}\right)^{N}=1-p
$$

粈 Solving for N gives us

$$
N=\log (1-p) / \log \left(1-w^{s}\right)
$$

NUMBER OF SAMPLES

$$
N=\log (1-p) / \log \left(1-w^{s}\right)
$$

s	$\mathrm{w}=0.95$	$\mathrm{w}=0.90$	$\mathrm{w}=0.80$	$\mathrm{w}=0.75$	$\mathrm{w}=0.70$	$\mathrm{w}=0.60$	$\mathrm{w}=0.50$
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

NUMBER OF SAMPLES

$$
N=\log (1-p) / \log \left(1-w^{s}\right)
$$

䪁In practise, we have inlier noise, and then this heuristic is wildly optimistic

THRESHOLD VALUE

䗒 Preferrably, we should not score the hypotheses based on number of inliers, but on the likelihood of the model.

䗒 From this follows that we should sum the likelihoods of the errors...

STRONG AND WEAK ROBUSTNESS

霜 Weak robustness one cluster and $<50 \%$ outliers *RANSAC * L_{1} optimisation median,LP,LmedS,...

糈Strong robustness several clusters, and outliers *voting (histograms/GHT) *mean-shift,...

VOTING TECHNIQUES

政 For some problems，we can define a grid over possible parameter values，and evaluate the likelihood at each grid location．

諩Channel Clustering（Forssén，2004）
粼Approximations：
1．Histograms
2．Hough Transform
3．Generalised Hough Transform（GHT）

VOTING TECHNIQUES

諩 Histogramming and GHT simplifies this to just letting each sample cast a vote in a cell.

蠕Similarly, the Hough transform paints a line in the grid cell space...

VOTING TECHNIQUES

* Increased number of cells, followed by lowpass filtering gives us better accuracy, and reduces the risk of missing a peak.

CHANNEL CLUSTERING

曶 Since the blurring reduces the bandwidth we can sample more sparsely, and even afford to properly evaluate the likelihood.

㸁Accurate peaks from a decoding scheme (Forssén, 2004)

MEAN-SHIFT CLUSTERING

蛷 Algorithm illustration (Cheng, 1995)
1.Start in each data point $\quad \mathbf{m}_{n}=\mathbf{x}_{n}$
2.Move to poisition of local average

$$
\mathbf{m}_{n} \leftarrow \operatorname{mean}_{\mathbf{x}_{n} \in S\left(\mathbf{m}_{n}\right)}\left(\mathbf{x}_{n}\right)
$$

3. Repeat 2 until convergence

MEAN－SHIFT CLUSTERING

龄Mean－shift is gradient ascent（with a particular step length）on the cost function

$$
f(\mathbf{m})=\frac{1}{N} \sum_{n=1}^{N} K\left(\left\|\mathbf{x}_{n}-\mathbf{m}\right\|\right)
$$

筑 If we set K to the error likelihood， mean－shift is ML

MEAN-SHIFT CLUSTERING

瞨 Example 1: (Cheng 95)
1.Pick 3002 D points in an edge image
2.Generate all (44850) pairs of points
3.Each pair gives a sample $\left(\rho_{k}, \varphi_{k}\right)$
4.Cluster in (ρ, φ) space

MEAN－SHIFT CLUSTERING

滕 Example 2：Pose Estimation（Viksten，ICRA2009）数 Extract local invariant features（e．g．SIFT or MSER）
数 Let each pair of features cast a vote on the pose of an object $\quad \mathbf{x}_{k}=\left(x_{0}, y_{0}, \alpha, s, \varphi, \theta\right.$ ，type $)$
䗒Cluster the votes using mean－shift

FOR NEXT WEEK...

龉 Papers to read:

1. Mendoca and Cippolla, A Simple Technique for Self-Calibration, CVPR99
2. Costeira and Kanade, A Multibody

Factorization Method for Independently Moving Objects, sections 1-3

FOR NEXT WEEK．．．

䈣 For those taking the course for credits：
畨 Prepare two topics for discussion on the paper．E．g．something you disagree with， or do not understand．Remember to explain bow and why！

㸁 We will leave room in the second half of the lecture for the discussion．

