
30 April 2010 Geometry in Computer Vision
Klas Nordberg

1

Geometry in Computer Vision

Spring 2010
Lecture 6A

6-point geometry

30 April 2010 Geometry in Computer Vision
Klas Nordberg

2

Canonical 3D coordinates

• A set of 6 3D points (in homogeneous
coordinates):

¡
x1 x2 x3 x4 x5 x6

¢
=

⎛⎜⎜⎝
x11 x12 x13 x14 x15 x16
x21 x22 x23 x24 x25 x26
x31 x32 x33 x34 x35 x36
x41 x42 x43 x44 x45 x46

⎞⎟⎟⎠

30 April 2010 Geometry in Computer Vision
Klas Nordberg

3

Canonical 3D coordinates

• We apply the 3D homography
transformation

to get new 3D coordinates:

H1 =

⎛⎜⎜⎝
x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44

⎞⎟⎟⎠
−1

¡
x̄1 x̄2 x̄3 x̄4 x̄5 x̄6

¢
=

⎛⎜⎜⎝
1 0 0 0 x̄15 x̄16
0 1 0 0 x̄25 x̄26
0 0 1 0 x̄35 x̄36
0 0 0 1 x̄45 x̄46

⎞⎟⎟⎠
30 April 2010 Geometry in Computer Vision

Klas Nordberg
4

Canonical 3D coordinates

• We apply another 3D homography
transformations on these new coordinates

to get canonical 3D coordinates:

H2 =

⎛⎜⎜⎝
x̄15 0 0 0
0 x̄25 0 0
0 0 x̄35 0
0 0 0 x̄45

⎞⎟⎟⎠
−1

¡
x̂1 x̂2 x̂3 x̂4 x̂5 x̂6

¢
=

⎛⎜⎜⎝
x̂11 0 0 0 1 x̂16
0 x̂22 0 0 1 x̂26
0 0 x̂33 0 1 x̂36
0 0 0 x̂44 1 x̂46

⎞⎟⎟⎠

30 April 2010 Geometry in Computer Vision
Klas Nordberg

5

• Since we are dealing with homogeneous
coordinates, we can write

• Summary: there exists a 3D homography
transformation (H2H1) such that the resulting
3D coordinates are as above (always?)

• Note: H2H1 is data dependent
• We here interpret H2H1 as transforming

coordinates rather than moving points

Canonical 3D coordinates

¡
x̂1 x̂2 x̂3 x̂4 x̂5 x̂6

¢
=

⎛⎜⎜⎝
1 0 0 0 1 X
0 1 0 0 1 Y
0 0 1 0 1 Z
0 0 0 1 1 T

⎞⎟⎟⎠

30 April 2010 Geometry in Computer Vision
Klas Nordberg

6

Canonical 2D coordinates

• Project the 6 3D points to a 2D image

• We can do the corresponding coordinate
transformation for the 2D coordinates

• We get canonical 2D coordinates:
¡
ŷ1 ŷ2 ŷ3 ŷ4 ŷ5 ŷ6

¢
=

⎛⎝1 0 0 1 u5 u6
0 1 0 1 v5 v6
0 0 1 1 w5 w6

⎞⎠

¡
y1 y2 y3 y4 y5 y6

¢
=

⎛⎝y11 y12 y13 y14 y15 y16
y21 y22 y23 y24 y25 y26
y31 y32 y33 y34 y35 y36

⎞⎠

30 April 2010 Geometry in Computer Vision
Klas Nordberg

7

The camera mapping

• After transformations of the 3D and 2D
spaces, we have a camera matrix

such that

Ĉ =

⎛⎝ĉ11 ĉ12 ĉ13 ĉ14
ĉ21 ĉ22 ĉ23 ĉ24
ĉ31 ĉ32 ĉ33 ĉ34

⎞⎠

ŷk ∼ Ĉ x̂k, k = 1, . . . , 6

30 April 2010 Geometry in Computer Vision
Klas Nordberg

8

The camera mapping

• Using the last relation for k=1, 2, 3, 4 gives

• From k=5 and k=6 we get

Ĉ =

⎛⎝ĉ11 0 0 1
0 ĉ22 0 1
0 0 ĉ33 1

⎞⎠

⎛⎝u5v5
w5

⎞⎠ ∼

⎛⎝ĉ11 + 1ĉ22 + 1
ĉ33 + 1

⎞⎠ and

⎛⎝u6v6
w6

⎞⎠ ∼

⎛⎝Xĉ11 + TY ĉ22 + T
Zĉ33 + T

⎞⎠

30 April 2010 Geometry in Computer Vision
Klas Nordberg

9

4 equations & 3 unkowns

• The last relation consists of 4 independent
equations (why?)

• The last relation includes 3 variables that
are unrelated to 3D and 2D coordinates:

ĉ11, ĉ22, ĉ33

30 April 2010 Geometry in Computer Vision
Klas Nordberg

10

Quan’s constraint (I)

• Solving for these “free” variables gives a
constraint on the 3D and 2D coordinates:

with

i1I1 + i2I2 + i3I3 + i4I4 + i5I5 + i6I6 = 0

i1 = w6(u5 − v5)
i2 = v6(w5 − u5)
i3 = u5(v6 − w6)
i4 = u6(v5 − w5)
i5 = v5(w6 − u6)
i6 = w5(u6 − v6)

I1 = XY
I2 = XZ
I3 = XT
I4 = Y Z
I5 = Y T
I6 = ZT

30 April 2010 Geometry in Computer Vision
Klas Nordberg

11

Quan’s constraint (II)

• Quan notes that

⇒ the constraint can be written as
i1 + i2 + i3 + i4 + i5 + i6 = 0

i1Î1 + i2Î2 + i3Î3 + i4Î4 + i5Î5 = 0

Î1 = XY − ZT
Î2 = XZ − ZT
Î3 = XT − ZT
Î4 = Y Z − ZT
Î5 = Y T − ZT

This form of the
constraint is not

mentioned in
Quan’s paper!

30 April 2010 Geometry in Computer Vision
Klas Nordberg

12

Invariants

• Let’s look closer at the scalars (X,Y,Z,T)
• They depend on the original 6 3D points
• They are, however, invariant to any 3D

homography transformation of these points
– If H2H1 transforms (x1 x2 x3 x4 x5 x6) to a

canonical form ⇒ gives a certain (X,Y,Z,T)
– Then H2H1H

-1 transforms
(Hx1 Hx2 Hx3 Hx4 Hx5 Hx6) to the same
canonical form ⇒ gives same (X,Y,Z,T)

30 April 2010 Geometry in Computer Vision
Klas Nordberg

13

Configurations

• Two sets of 6 3D points xk and x’k
represent the same configuration if there is
a 3D homography H that transforms one
set to the other

x’k ∼ H xk

k = 1, …, 6

30 April 2010 Geometry in Computer Vision
Klas Nordberg

14

Configurations

• The 4 scalars (X,Y,Z,T) form a projective
element (why?)

• Consequently, they have 3 d.o.f.
• A unique configuration of 6 3D points are

represented by a unique projective
element (X,Y,Z,T)

• ⇒ The set of unique configurations have
3 degrees of freedom

30 April 2010 Geometry in Computer Vision
Klas Nordberg

15

Relative 3D invariants

• The scalars Ik (or) are functions of
(X,Y,Z,T)

⇒ they, too, are invariant to any homography
transformations of the 3D space

• Ik (or) are relative 3D invariants

Îk

Îk

30 April 2010 Geometry in Computer Vision
Klas Nordberg

16

Relative 3D invariants

• We can form a 5-dimensional vector s:

• s is a relative 3D invariant: it is invariant to any
homography transformation of the 3D space.

• s is a projective element

s =

⎛⎜⎜⎜⎜⎜⎝
Î1
Î2
Î3
Î4
Î5

⎞⎟⎟⎟⎟⎟⎠

30 April 2010 Geometry in Computer Vision
Klas Nordberg

17

Relative 2D invariants

• In a similar way: (u5,v5,w5) and (u6,v6,w6)
are invariant to any homography
transformation of the image space

• Each triplet form a projective element
(why?)

• The scalars ik are invariant to any 2D
homography transformation

• The scalars ik form 2D relative invariants

30 April 2010 Geometry in Computer Vision
Klas Nordberg

18

Relative 3D invariants

• We can form a 5-dimensional vector z:

• z is a relative 2D invariant: it is invariant to any
homography transformation of the image space.

• z is a projective element

z =

⎛⎜⎜⎜⎜⎝
i1
i2
i3
i4
i5

⎞⎟⎟⎟⎟⎠

30 April 2010 Geometry in Computer Vision
Klas Nordberg

19

Rigid transformations

• In practice we are interested in rigid
transformations (rotation + translation) of
3D space

• This is a subset of the 3D homography
transformations

• s is invariant to rigid transformations

30 April 2010 Geometry in Computer Vision
Klas Nordberg

20

Quan’s constraint (III)

• Let s be computed from a particular
configuration of 6 3D points

• Let z be computed from the projection of the 6
points onto the image

• Quan’s constraint: s ⋅ z = 0
• Make a rigid transformation of the 3D space

– s is invariant to this transformation
– z may or may not change
– However, s ⋅ z = 0 before and after the transformation

30 April 2010 Geometry in Computer Vision
Klas Nordberg

21

Quan’s constraint (III)
For a given 3D configuration
• Any projection of the points into the image generates a

relative 2D invariant z (a 5D vector)
• When the 3D points transform rigidly,

z changes
• For a particular configuration, however, z is restricted to

a 4D space
• This 4D space is orthogonal to s, the relative 3D

invariant generated by the configuration
• Quan’s constraint allows us to test if an observation of 6

image points is consistent with a certain configuration
– Compare to the epipolar constraint
– The points must be ordered in a specific way!

30 April 2010 Geometry in Computer Vision
Klas Nordberg

22

Internal constraint

• s has 4 d.o.f. as a general projective
element

• However, s depends on (X,Y,Z,T) with
3 d.o.f.
⇒ The elements of s must satisfy an
internal constraint:

Î1Î2Î5 − Î1Î3Î4 + Î2Î3Î4 − Î2Î3Î5 − Î2Î4Î5 + Î3Î4Î5 = 0

30 April 2010 Geometry in Computer Vision
Klas Nordberg

23

Estimation of s
• s can be computed from a 3D configuration
• Alternatively:

– Take 4 observations of z from the same configuration
– Determine s from s ⋅ zk = 0, k = 1, …, 4 (how?)
– This s may not satisfy the int. const. in the case of noisy data

• Alternatively:
– Take 3 observations of z from the same configuration
– Determine s from s ⋅ zk = 0, k = 1, …, 3 plus the int. constr. (how?)
– This s is guaranteed to satisfy the int. constr.
– Multiple solutions! (why?)
– This is the method presented in Quan’s paper

• What about Hartley-normalization?

30 April 2010 Geometry in Computer Vision
Klas Nordberg

24

6 points and 6 lines
• Quan’s matching constraint can be expressed in

terms of incidence relations between points and
lines

• [Carlsson, Duality of Reconstruction and
Positioning from Projective Views, WRVS, 1995]

• [Nordberg, Single-view matching constraints,
ISVC, 2007]

• [Nordberg & Zografos, Multibody motion
classification using the geometry of 6 points in
2D images, ICPR 2010]

30 April 2010 Geometry in Computer Vision
Klas Nordberg

25

6 points and 6 lines

• The computations from the image points to
z are up to now implicit

• If we make them explicit, it turns out that

z =

⎛⎜⎜⎜⎜⎝
D126D354
D136D254
D146D253
D145D263
D135D246

⎞⎟⎟⎟⎟⎠ Dijk = (yi × yj) · yk = det (yi yj yk)

Important message:
Each index occurs exactly once in

each element of z

30 April 2010 Geometry in Computer Vision
Klas Nordberg

26

6 points and 6 lines

• This means that we can rewrite z, e.g., as

z =

⎛⎜⎜⎜⎜⎝
D354(y2 × y6)T
D254(y3 × y6)T
D253(y4 × y6)T
D263(y4 × y5)T
D246(y3 × y5)T

⎞⎟⎟⎟⎟⎠ y1

30 April 2010 Geometry in Computer Vision
Klas Nordberg

27

6 points and 6 lines

• Quan’s constraint s ⋅ z = 0 then becomes

l1 · y1 = 0

l1 =Î1D354(y2 × y6)T + Î2D254(y3 × y6)T + Î3D253(y4 × y6)T+

+ Î4D263(y4 × y5)T + Î5D246(y3 × y5)T

30 April 2010 Geometry in Computer Vision
Klas Nordberg

28

6 points and 6 lines

• It makes sense to interpret l1 as the dual
homogeneous coordinates of a line

• l1 depends on points y2, …, y6 and s
• Quan’s constraint: point y1 must intersect line l1
• We can do the similar computations for the other

points to get, in total, 6 lines
• Each point yk must intersect its corresponding

line lk
• Compare to epipolar lines

30 April 2010 Geometry in Computer Vision
Klas Nordberg

29

6 points and 6 lines

In the ideal case the 6
lines intersect at a single
point

30 April 2010 Geometry in Computer Vision
Klas Nordberg

30

Why lines?

• In the practical situation, s ⋅ z may give a
“large” value even for “good”
correspondence. It is an algebraic error

• By describing the constraint in terms of a
point-line incidence relation, we can
quantify the constraint in terms of a
geometric error, e.g.

εGEO =

6X
k=1

d(yk, lk)
2

30 April 2010 Geometry in Computer Vision
Klas Nordberg

31

Applications
Motion segmentation:
• Basic idea:

– Pick 6 points in the image
– We can estimate s from 3 (or more) observations of

these points
– If they are on the same object

(moving with the same rigid transformation):
• The matching error between s and z should be small over

many observations
– If they are on different objects

• The matching error between s and z should be large over
many observations (not necessarily?)

• [Nordberg & Zografos, Long title, ICPR 2010]
30 April 2010 Geometry in Computer Vision

Klas Nordberg
32

Issues not covered here

• Degeneracies for s
• s can be linearly estimated even for

degenerate cases

