Canonical 3D coordinates

Geometry in Computer Vision

Spring 2010
Lecture 6A
6-point geometry

Canonical 3D coordinates

- We apply another 3D homography transformations on these new coordinates

$$
\mathbf{H}_{1}=\left(\begin{array}{llll}
x_{11} & x_{12} & x_{13} & x_{14} \\
x_{21} & x_{22} & x_{23} & x_{24} \\
x_{31} & x_{32} & x_{33} & x_{34} \\
x_{41} & x_{42} & x_{43} & x_{44}
\end{array}\right)^{-1}
$$

to get new 3D coordinates:

$$
\left(\begin{array}{llllll}
\overline{\mathbf{x}}_{1} & \overline{\mathbf{x}}_{2} & \overline{\mathbf{x}}_{3} & \overline{\mathbf{x}}_{4} & \overline{\mathbf{x}}_{5} & \overline{\mathbf{x}}_{6}
\end{array}\right)=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \bar{x}_{15} & \bar{x}_{16} \\
0 & 1 & 0 & 0 & \bar{x}_{25} & \bar{x}_{26} \\
0 & 0 & 1 & 0 & \bar{x}_{35} & \bar{x}_{36} \\
0 & 0 & 0 & 1 & \bar{x}_{45} & \bar{x}_{46}
\end{array}\right)
$$

to get canonical 3D coordinates:
$\left(\begin{array}{llllll}\hat{\mathbf{x}}_{1} & \hat{\mathbf{x}}_{2} & \hat{\mathbf{x}}_{3} & \hat{\mathbf{x}}_{4} & \hat{\mathbf{x}}_{5} & \hat{\mathbf{x}}_{6}\end{array}\right)=\left(\begin{array}{cccccc}\hat{x}_{11} & 0 & 0 & 0 & 1 & \hat{x}_{16} \\ 0 & \hat{x}_{22} & 0 & 0 & 1 & \hat{x}_{26} \\ 0 & 0 & \hat{x}_{33} & 0 & 1 & \hat{x}_{36} \\ 0 & 0 & 0 & \hat{x}_{44} & 1 & \hat{x}_{46}\end{array}\right)$

Canonical 3D coordinates

- Since we are dealing with homogeneous coordinates, we can write
$\left(\begin{array}{llllll}\hat{\mathbf{x}}_{1} & \hat{\mathbf{x}}_{2} & \hat{\mathbf{x}}_{3} & \hat{\mathbf{x}}_{4} & \hat{\mathbf{x}}_{5} & \hat{\mathbf{x}}_{6}\end{array}\right)=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 1 & X \\ 0 & 1 & 0 & 0 & 1 & Y \\ 0 & 0 & 1 & 0 & 1 & Z \\ 0 & 0 & 0 & 1 & 1 & T\end{array}\right)$
- Summary: there exists a 3D homography transformation $\left(\mathrm{H}_{2} \mathrm{H}_{1}\right)$ such that the resulting 3D coordinates are as above (always?)
- Note: $\mathbf{H}_{2} \mathbf{H}_{1}$ is data dependent
- We here interpret $\mathbf{H}_{2} \mathbf{H}_{1}$ as transforming coordinates rather than moving points
30 April 2010

Canonical 2D coordinates

- Project the 6 3D points to a 2D image
$\left(\begin{array}{llllll}\mathbf{y}_{1} & \mathbf{y}_{2} & \mathbf{y}_{3} & \mathbf{y}_{4} & \mathbf{y}_{5} & \mathbf{y}_{6}\end{array}\right)=\left(\begin{array}{llllll}y_{11} & y_{12} & y_{13} & y_{14} & y_{15} & y_{16} \\ y_{21} & y_{22} & y_{23} & y_{24} & y_{25} & y_{26} \\ y_{31} & y_{32} & y_{33} & y_{34} & y_{35} & y_{36}\end{array}\right)$
- We can do the corresponding coordinate transformation for the 2D coordinates
- We get canonical 2D coordinates:

30 April 2010

The camera mapping

- Using the last relation for $k=1,2,3,4$ gives

$$
\hat{\mathbf{C}}=\left(\begin{array}{cccc}
\hat{c}_{11} & 0 & 0 & 1 \\
0 & \hat{c}_{22} & 0 & 1 \\
0 & 0 & \hat{c}_{33} & 1
\end{array}\right)
$$

- From $k=5$ and $k=6$ we get

$$
\left(\begin{array}{c}
u_{5} \\
v_{5} \\
w_{5}
\end{array}\right) \sim\left(\begin{array}{c}
\hat{c}_{11}+1 \\
\hat{c}_{22}+1 \\
\hat{c}_{33}+1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{c}
u_{6} \\
v_{6} \\
w_{6}
\end{array}\right) \sim\left(\begin{array}{c}
X \hat{c}_{11}+T \\
Y \hat{c}_{22}+T \\
Z \hat{c}_{33}+T
\end{array}\right)
$$

4 equations \& 3 unkowns

- The last relation consists of 4 independent equations (why?)
- The last relation includes 3 variables that are unrelated to 3D and 2D coordinates:

$$
\hat{c}_{11}, \quad \hat{c}_{22}, \quad \hat{c}_{33}
$$

Quan's constraint (II)

- Quan notes that

```
i
```

\Rightarrow the constraint can be written as

$$
i_{1} \hat{I}_{1}+i_{2} \hat{I}_{2}+i_{3} \hat{I}_{3}+i_{4} \hat{I}_{4}+i_{5} \hat{I}_{5}=0
$$

$$
\hat{I}_{1}=X Y-Z T
$$

$$
\hat{I}_{2}=X Z-Z T
$$

$$
\hat{I}_{3}=X T-Z T
$$

This form of the

$$
\hat{I}_{4}=Y Z-Z T
$$ constraint is not

$$
\hat{I}_{5}=Y T-Z T
$$ mentioned in Quan's paper!

Quan's constraint (I)

- Solving for these "free" variables gives a constraint on the 3D and 2D coordinates:

```
i}\mp@subsup{i}{1}{}\mp@subsup{I}{1}{}+\mp@subsup{i}{2}{}\mp@subsup{I}{2}{}+\mp@subsup{i}{3}{}\mp@subsup{I}{3}{}+\mp@subsup{i}{4}{}\mp@subsup{I}{4}{}+\mp@subsup{i}{5}{}\mp@subsup{I}{5}{}+\mp@subsup{i}{6}{}\mp@subsup{I}{6}{}=
```

with

30 April 2010
Geometry in Computer Vision Klas Nordberg

Invariants

- Let's look closer at the scalars (X, Y, Z, T)
- They depend on the original 6 3D points
- They are, however, invariant to any 3D homography transformation of these points
- If $\mathbf{H}_{2} \mathbf{H}_{1}$ transforms ($\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \mathbf{x}_{4} \mathbf{x}_{5} \mathbf{x}_{6}$) to a canonical form \Rightarrow gives a certain (X, Y, Z, T)
- Then $\mathbf{H}_{2} \mathbf{H}_{1} \mathbf{H}^{-1}$ transforms
($\mathrm{Hx}_{1} \mathrm{Hx}_{2} \mathrm{Hx}_{3} \mathrm{Hx}_{4} \mathrm{Hx}_{5} \mathrm{Hx}_{6}$) to the same canonical form \Rightarrow gives same (X, Y, Z, T)

Configurations

- Two sets of 6 3D points \mathbf{x}_{k} and \mathbf{x}_{k}^{\prime} represent the same configuration if there is a 3D homography \mathbf{H} that transforms one set to the other

$$
\begin{gathered}
\mathbf{x}_{k}^{\prime} \sim \mathbf{H} \mathbf{x}_{k} \\
k=1, \ldots, 6
\end{gathered}
$$

Relative 3D invariants

- The scalars I_{k} (or \hat{I}_{k}) are functions of (X, Y, Z, T)
\Rightarrow they, too, are invariant to any homography transformations of the 3D space
- I_{k} (or \hat{I}_{k}) are relative $3 D$ invariants

Relative 2D invariants

- In a similar way: $\left(u_{5}, v_{5}, w_{5}\right)$ and $\left(u_{6}, v_{6}, w_{6}\right)$ are invariant to any homography transformation of the image space
- Each triplet form a projective element (why?)
- The scalars i_{k} are invariant to any 2D homography transformation
- The scalars i_{k} form 2D relative invariants

Rigid transformations

- In practice we are interested in rigid transformations (rotation + translation) of 3D space
- This is a subset of the 3D homography transformations
- \mathbf{s} is invariant to rigid transformations

Relative 3D invariants

- We can form a 5-dimensional vector \mathbf{z} :

- z is a relative 2 D invariant: it is invariant to any homography transformation of the image space.
- \mathbf{z} is a projective element

30 April 2010
Geometry in Computer Vision

Quan's constraint (III)

- Let \mathbf{s} be computed from a particular configuration of 6 3D points
- Let \mathbf{z} be computed from the projection of the 6 points onto the image
- Quan's constraint: s $\cdot \mathbf{z}=0$
- Make a rigid transformation of the 3D space
- \mathbf{s} is invariant to this transformation
- z may or may not change
- However, s $\cdot \mathbf{z}=0$ before and after the transformation

Quan's constraint (III)

For a given 3D configuration

- Any projection of the points into the image generates a relative 2D invariant \mathbf{z} (a 5D vector)
- When the 3D points transform rigidly, z changes
- For a particular configuration, however, \mathbf{z} is restricted to a 4D space
- This 4D space is orthogonal to s, the relative 3D invariant generated by the configuration
- Quan's constraint allows us to test if an observation of 6 image points is consistent with a certain configuration
- Compare to the epipolar constraint
- The points must be ordered in a specific way!

Internal constraint

- s has 4 d.o.f. as a general projective element
- However, s depends on (X, Y, Z, T) with 3 d.o.f.
\Rightarrow The elements of \mathbf{s} must satisfy an internal constraint:

$$
\hat{I}_{1} \hat{I}_{2} \hat{I}_{5}-\hat{I}_{1} \hat{I}_{3} \hat{I}_{4}+\hat{I}_{2} \hat{I}_{3} \hat{I}_{4}-\hat{I}_{2} \hat{I}_{3} \hat{I}_{5}-\hat{I}_{2} \hat{I}_{4} \hat{I}_{5}+\hat{I}_{3} \hat{I}_{4} \hat{I}_{5}=0
$$

6 points and 6 lines

- Quan's matching constraint can be expressed in terms of incidence relations between points and lines
- [Carlsson, Duality of Reconstruction and Positioning from Projective Views, WRVS, 1995]
- [Nordberg, Single-view matching constraints, ISVC, 2007]
- [Nordberg \& Zografos, Multibody motion classification using the geometry of 6 points in 2D images, ICPR 2010]

6 points and 6 lines

- The computations from the image points to z are up to now implicit
- If we make them explicit, it turns out that

6 points and 6 lines

- This means that we can rewrite \mathbf{z}, e.g., as

$$
\mathbf{z}=\left(\begin{array}{l}
D_{354}\left(\mathbf{y}_{2} \times \mathbf{y}_{6}\right)^{T} \\
D_{254}\left(\mathbf{y}_{3} \times \mathbf{y}_{6}\right)^{T} \\
D_{253}\left(\mathbf{y}_{4} \times \mathbf{y}_{6}\right)^{T} \\
D_{263}\left(\mathbf{y}_{4} \times \mathbf{y}_{5}\right)^{T} \\
D_{246}\left(\mathbf{y}_{3} \times \mathbf{y}_{5}\right)^{T}
\end{array}\right) \mathbf{y}_{1}
$$

6 points and 6 lines

- It makes sense to interpret I_{1} as the dual homogeneous coordinates of a line
- I_{1} depends on points y_{2}, \ldots, y_{6} and \mathbf{s}
- Quan's constraint: point \mathbf{y}_{1} must intersect line \mathbf{I}_{1}
- We can do the similar computations for the other points to get, in total, 6 lines
- Each point \mathbf{y}_{k} must intersect its corresponding line I_{k}
- Compare to epipolar lines

6 points and 6 lines

In the ideal case the 6 lines intersect at a single point

Applications

Motion segmentation:

- Basic idea:
- Pick 6 points in the image
- We can estimate s from 3 (or more) observations of these points
- If they are on the same object
(moving with the same rigid transformation):
- The matching error between \mathbf{s} and \mathbf{z} should be small over many observations
- If they are on different objects
- The matching error between \mathbf{s} and \mathbf{z} should be large over many observations (not necessarily?)
- [Nordberg \& Zografos, Long title, ICPR 2010]

Why lines?

- In the practical situation, s • z may give a "large" value even for "good" correspondence. It is an algebraic error
- By describing the constraint in terms of a point-line incidence relation, we can quantify the constraint in terms of a geometric error, e.g.

$$
\varepsilon_{G E O}=\sum_{k=1}^{6} d\left(\mathbf{y}_{k}, \mathbf{l}_{k}\right)^{2}
$$

30 April 2010

Issues not covered here

- Degeneracies for s
- s can be linearly estimated even for degenerate cases

