GEOMETRY FOR

COMPUTER VISION

$$
\begin{gathered}
\text { LEECTURE GB: } \\
\text { SAMPME CONSSNNSUS } \\
\text { STRRATEGMES }
\end{gathered}
$$

$$
\text { (C) } 2010 \text { PER-ERIK FORSSEN }
$$

LECTURE 6B：SAMPLE CONSENSUS STRATEGIES

縉 LO－RANSAC
龉 Preemptive RANSAC
数 DEGENSAC
颣Today＇s paper：PROSAC
数 Not covered here：All the other variants MLESAC，NAPSAC etc．

RANSAC ISSUES

龂 In lecture 3 we introduced RANSAC （Fischler\＆Bolles 81）．

数 It finds a model with maximal support in the presence of outliers

数Approach：randomly generate hypotheses and score them．

蝶Most novelties since 1981 covered in thesis by： Ondrej Chum，Two－View Geometry Estimation by Random Sample and Consensus，July 2005

RANSAC ISSUES

数Two problems with the original approach:

(b)

Near degeneracies

RANSAC ISSUES

蝶 Near degeneracies can be dealt with by sampling non－randomly，e．g．

彞 DEGENSAC，for \mathbf{F} estimation in plane dominant scenes．Chum et al．，Two－view Geometry estimation unaffected by a Dominant Plane，CVPR05

暽 Distance constraint for points used in E estimation． Hedborg et al．，Fast and Accurate Structure and Motion Estimation，ISVC09
Reduces \＃iterations by 50% in forward motion．

LO-RANSAC

䗉 Inlier noise means that the heuristic for number of samples to draw:

$$
N=\log (1-p) / \log \left(1-w^{s}\right)
$$

is overly optimistic.
敖 A small modification makes the heuristic work again: Chum et al., Locally Optimized RANSAC, DAGM03

LO-RANSAC

䇣Small modification

RANSAC

loop:

1. Select random sample
2. Estimate model
3. Score model
4. If new high-score store model and score

LO-RANSAC

䇣Small modification

RANSAC

loop:

1. Select random sample
2. Estimate model
3. Score model
4. If new high-score store model and score

LO-RANSAC

loop:

1. Select random sample
2. Estimate model
3. Score model
4. If new high-score run local optimisation then store model and score

LO-RANSAC

諩Chum tries four variants of local optimisation:

\author{

1. Linear estimation from all inliers
 2. Iterative linear estimation with decreasing inlier threshold.
 3. Inner RANSAC
 4. Inner RANSAC with \#2.
}

諩 \#2 and \#4 worked best, and came close to the heuristically expected \#samples.

LO-RANSAC

粼The inner RANSAC step uses non-minimal sample sets. Errors for linear F estimation:

PREEMPTIVE RANSAC

齿 David Nister，Preemptive RANSAC for live structure and motion estimation，ICCV03

粦 Total time for RANSAC is given by：

$$
t=k\left(t_{M}+E\left[m_{S}\right] t_{V}\right)
$$

蝟k－\＃iterations t_{M}－model estimation time， tv－verification time．ms－\＃models／iteration

PREEMPTIVE RANSAC

諩 David Nister，Preemptive RANSAC for live structure and motion estimation，ICCV03

粼 Total time for RANSAC is given by：

$$
t=k\left(t_{M}+E\left[m_{S}\right] t_{V}\right)
$$

龉k－\＃iterations t_{M}－model estimation time， t_{V}－verification time． ms_{S}－\＃models／iteration

傫 If many correspondences，tv will dominate．

PREEMPTIVE RANSAC

䗱 Idea：Do a probabilistic verification instead．

$$
t=k\left(t_{M}+E\left[m_{S}\right] t_{V}\right)
$$

蜘In a real－time system，t is fixed，so if we reduce tv we may increase k ．

觖 Preemptive RANSAC does this by evaluating all hypotheses in parallel．

PREEMPTIVE RANSAC

傫Preemptive RANSAC:

1. Generate $f(1)$ hypotheses in parallel.
2. For $\mathrm{n}=1$ to N
3. Evaluate $f(n)$ hypotheses on a random correspondence
4. Keep the $f(n+1)$ best hypotheses according to accumulated score.

䩚 $\mathrm{f}(1)=\mathrm{M}$ and $f(n+1) \leq f(n)$

PREEMPTIVE RANSAC

歯 $\mathrm{f}(\mathrm{n})$－the preemption function

$$
f(n)=\left\lfloor M 2^{-\left\lfloor\frac{n}{B}\right\rfloor}\right\rfloor
$$

靿 B －block size（ f only changes every B steps）
齿 M －number of models
筄Accumulated scoring $L(m)=\sum_{n=1}^{N} \rho(n, m)$
蝶 Log－likelihood of sample n given model m

$$
\rho(n, m)
$$

DEGENSAC

龉Chum，et al．，Two－view Geometry Estimation Unaffected by a Dominant Plane，CVPR＇05

傫Planar dominant scenes are also problematic

DEGENSAC

求Actually, the \mathbf{F} estimation problem is even worse than it might appear, as 5 points in a plane +2 arbitrary correspondences gives an \mathbf{F} compatible with the plane.

DEGENSAC

颣 Actually, the \mathbf{F} estimation problem is even worse than it might appear, as 5 points in a plane +2 arbitrary correspondences gives an \mathbf{F} compatible with the plane.

粼 In le 5 we saw that if all seven points are in a plane, then

$$
\mathbf{x}_{k}^{T} \mathbf{F} \mathbf{y}_{k}=0, \mathbf{x}_{k}=\mathbf{H} \mathbf{y}_{k}, \quad k=1 \ldots 7
$$

and $\mathbf{F}=[\mathbf{e}]_{\times} \mathbf{H}$ for any epipole \mathbf{e} (why epipole?)

DEGENSAC

数 If oix points are in a plane $\mathbf{x}_{k}^{T} \mathbf{F} \mathbf{y}_{k}=0, \quad k=1 \ldots 7 \quad \mathbf{x}_{k}=\mathbf{H y}_{k}, \quad k=1 \ldots 6$ $\mathbf{F}=[\mathbf{e}]_{\times} \mathbf{H}$ for $\mathbf{e} \in \mathbb{R}^{3}, \mathbf{e}^{T}\left(\mathbf{H} \mathbf{x}_{7} \times \mathbf{y}_{7}\right)=0$

DEGENSAC

数 If oix points are in a plane $\mathbf{x}_{k}^{T} \mathbf{F} \mathbf{y}_{k}=0, \quad k=1 \ldots 7 \quad \mathbf{x}_{k}=\mathbf{H y}_{k}, \quad k=1 \ldots 6$ $\mathbf{F}=[\mathbf{e}]_{\times} \mathbf{H}$ for $\mathbf{e} \in \mathbb{R}^{3}, \mathbf{e}^{T}\left(\mathbf{H} \mathbf{x}_{7} \times \mathbf{y}_{7}\right)=0$ world plane

DEGENSAC

㨋 If oix points are in a plane
$\mathbf{x}_{k}^{T} \mathbf{F} \mathbf{y}_{k}=0, \quad k=1 \ldots 7 \quad \mathbf{x}_{k}=\mathbf{H y}_{k}, \quad k=1 \ldots 6$
$\mathbf{F}=[\mathbf{e}]_{\times} \mathbf{H}$ for $\mathbf{e} \in \mathbb{R}^{3}, \mathbf{e}^{T}\left(\mathbf{H} \mathbf{x}_{7} \times \mathbf{y}_{7}\right)=0$
橉For five points in the plane

$$
\mathbf{x}_{6} \times\left(\mathbf{H y}_{6}\right) \quad \text { and } \quad \mathbf{x}_{7} \times\left(\mathbf{H y}_{7}\right)
$$

define two lines that intersect in $\mathbf{e} . \mathbf{F}$ will have all points consistent with \mathbf{H} as inliers.

DEGENSAC

滕 If oix points are in a plane
$\mathbf{x}_{k}^{T} \mathbf{F} \mathbf{y}_{k}=0, \quad k=1 \ldots 7 \quad \mathbf{x}_{k}=\mathbf{H y}_{k}, \quad k=1 \ldots 6$
$\mathbf{F}=[\mathbf{e}]_{\times} \mathbf{H}$ for $\mathbf{e} \in \mathbb{R}^{3}, \mathbf{e}^{T}\left(\mathbf{H} \mathbf{x}_{7} \times \mathbf{y}_{7}\right)=0$
䗲 For five points in the plane

$$
\mathbf{x}_{6} \times\left(\mathbf{H y}_{6}\right) \quad \text { and } \quad \mathbf{x}_{7} \times\left(\mathbf{H y}_{7}\right)
$$

define two lines that intersect in $\mathbf{e} . \mathbf{F}$ will have all points consistent with \mathbf{H} as inliers．

数Also used in plane＋parallax algorithm

DEGENSAC

龉 From \mathbf{F} and $\left\{\mathbf{x}_{k} \leftrightarrow \mathbf{y}_{k}\right\}_{k=1}^{3}$ we can compute a homography

$$
\mathbf{H}=\mathbf{A}-\mathbf{e}_{1}\left(\mathbf{M}^{-1} \mathbf{b}\right)^{T}
$$

where $\quad \mathbf{A}=\left[\begin{array}{lll}\mathbf{e}_{1}\end{array}\right]_{\times} \mathbf{F} \quad \mathbf{M}=\left[\begin{array}{lll}\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3}\end{array}\right]^{T}$
and $\quad b_{k}=\left(\mathbf{x}_{k} \times \mathbf{A} \mathbf{y}_{k}\right)^{T}\left(\mathbf{x}_{k} \times \mathbf{e}_{1}\right)\left\|\mathbf{x}_{k} \times \mathbf{e}_{1}\right\|^{-2}$

DEGENSAC

粼 From \mathbf{F} and $\left\{\mathbf{x}_{k} \leftrightarrow \mathbf{y}_{k}\right\}_{k=1}^{3}$ we can compute a homography

$$
\mathbf{H}=\mathbf{A}-\mathbf{e}_{1}\left(\mathbf{M}^{-1} \mathbf{b}\right)^{T}
$$

where $\quad \mathbf{A}=\left[\begin{array}{lll}\mathbf{e}_{1}\end{array}\right]_{\times} \mathbf{F} \quad \mathbf{M}=\left[\begin{array}{lll}\mathrm{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3}\end{array}\right]^{T}$
and $\quad b_{k}=\left(\mathbf{x}_{k} \times \mathbf{A} \mathbf{y}_{k}\right)^{T}\left(\mathbf{x}_{k} \times \mathbf{e}_{1}\right)\left\|\mathbf{x}_{k} \times \mathbf{e}_{1}\right\|^{-2}$
靿This \mathbf{H} is now checked for two additional inliers. If found, \mathbf{F} is said to be \mathbf{H}-degenerate

DEGENSAC

對 There are $\binom{7}{5}=21$ ways to pick five points
from 7 ．
椪 But，if we pick the 3 points that define \mathbf{H} as

$$
\{1,2,3\},\{4,5,6\},\{1,2,7\},\{4,5,7\},\{3,6,7\}
$$

粈 We will have covered all 21 permutations．
颣Thus at most five \mathbf{H} need to be computed and tested to find out if \mathbf{F} is \mathbf{H}－degenerate．

DEGENSAC

蝶 DEGENSAC algorithm

1. Select 7 random correspondences and estimate \mathbf{F}
2. IF best support this far
3. IF H-degeneracy
4. Do inner RANSAC and estimate \mathbf{F} from \mathbf{H} and 2 correspondences (Plane+Parallax algorithm) that are inconsistent with \mathbf{H}
5. IF new \mathbf{F} has even bigger support, store \mathbf{F}
6. ELSE store \mathbf{H}

DISCUSSION

䗉 Discussion of the paper:
Ondrej Chum and Jiri Matas, Matching with PROSAC -- Progressive Sample Consensus, CVPR'05

FOR NEXT WEEK...

粼Hartley \& Zisserman, Appendix A4.3
齿K. Shoemake, Animating Rotation with Quaternion Curved, SIGGRAPH85

