GEOMETRY FOR COMPUTER VISION

> LECTURE 6B: SAMPLE CONSENSUS STRATEGIES

LECTURE 6B: SAMPLE CONSENSUS STRATEGIES

LO-RANSAC

Preemptive RANSAC

*** DEGENSAC**

Today's paper: PROSAC

Not covered here: All the other variants MLESAC, NAPSAC etc.

RANSAC ISSUES

In lecture 3 we introduced RANSAC (Fischler&Bolles 81).

It finds a model with maximal support in the presence of outliers

** Approach: randomly generate hypotheses and score them.

Most novelties since 1981 covered in thesis by: Ondrej Chum, Two-View Geometry Estimation by Random Sample and Consensus, July 2005

RANSAC ISSUES

Two problems with the original approach:

(C) 2010 PER-ERIK FORSSÉN

RANSAC ISSUES

* Near degeneracies can be dealt with by sampling non-randomly, e.g.

DEGENSAC, for F estimation in plane dominant scenes. Chum et al., Two-view Geometry estimation unaffected by a Dominant Plane, CVPR05

Distance constraint for points used in E estimation. Hedborg et al., Fast and Accurate Structure and Motion Estimation, ISVC09 Reduces #iterations by 50% in forward motion.

(C) 2010 PER-ERIK FORSSÉN

Inlier noise means that the heuristic for number of samples to draw:

 $N = \log(1-p)/\log(1-w^s)$

is overly optimistic.

* A small modification makes the heuristic work again: Chum et al., Locally Optimized RANSAC, DAGM03

Small modification

RANSAC

loop:

- 1. Select random sample
- 2. Estimate model
- 3. Score model
- 4. If new high-score store model and score

Small modification

RANSAC

loop:

- 1. Select random sample
- 2. Estimate model
- 3. Score model
- 4. If new high-score store model and score

LO-RANSAC

loop:

- 1. Select random sample
- 2. Estimate model
- 3. Score model
- 4. If new high-score
 run local optimisation
 then store model and score

Chum tries four variants of local optimisation:

 Linear estimation from all inliers
 Iterative linear estimation with decreasing inlier threshold.
 Inner RANSAC
 Inner RANSAC with #2.

#2 and #4 worked best, and came close to the heuristically expected #samples.

The inner RANSAC step uses non-minimal sample sets. Errors for linear F estimation:

(C) 2010 PER-ERIK FORSSÉN

Solution Structure and motion estimation, ICCV03

** Total time for RANSAC is given by: $t = k(t_M + E[m_S]t_V)$

% k- #iterations t_M-model estimation time, t_V-verification time. ms - #models/iteration

Solution Structure and motion estimation, ICCV03

** Total time for RANSAC is given by: $t = k(t_M + E[m_S]t_V)$

%k- #iterations t_M-model estimation time, t_V-verification time. ms - #models/iteration

If many correspondences, ty will dominate.

Idea: Do a probabilistic verification instead.

 $t = k(t_M + E[m_S]t_V)$

In a real-time system, t is fixed, so if we reduce tv we may increase k.

Preemptive RANSAC does this by evaluating all hypotheses in parallel.

**** Preemptive RANSAC:**

Generate f(1) hypotheses in parallel.
 For n=1 to N

- 3. Evaluate f(n) hypotheses on a random correspondence
- Keep the f(n+1) best hypotheses according to accumulated score.

#f(1)=M and $f(n+1) \leq f(n)$

 f(n) - the preemption function $f(n) = |M2^{-\lfloor \frac{n}{B} \rfloor}|$ B - block size (f only changes every B steps) M - number of models # Accumulated scoring $L(m) = \sum \rho(n, m)$ n=1 Log-likelihood of sample *n* given model *m* $\rho(n,m)$

Chum, et al., Two-view Geometry Estimation Unaffected by a Dominant Plane, CVPR'05

Planar dominant scenes are also problematic

(C) 2010 PER-ERIK FORSSÉN

* Actually, the F estimation problem is even worse than it might appear, as 5 points in a plane +2 *arbitrary* correspondences gives an F compatible with the plane.

* Actually, the F estimation problem is even worse than it might appear, as 5 points in a plane +2 *arbitrary* correspondences gives an F compatible with the plane.

In le5 we saw that if all seven points are in a plane, then

$$\mathbf{x}_k^T \mathbf{F} \mathbf{y}_k = 0, \ \mathbf{x}_k = \mathbf{H} \mathbf{y}_k, \quad k = 1 \dots 7$$

and $\mathbf{F} = [\mathbf{e}]_{\times} \mathbf{H}$ for any epipole **e** (why epipole?)

* If six points are in a plane $\mathbf{x}_k^T \mathbf{F} \mathbf{y}_k = 0$, $k = 1 \dots 7$ $\mathbf{x}_k = \mathbf{H} \mathbf{y}_k$, $k = 1 \dots 6$ $\mathbf{F} = [\mathbf{e}]_{\times} \mathbf{H}$ for $\mathbf{e} \in \mathbb{R}^3$, $\mathbf{e}^T (\mathbf{H} \mathbf{x}_7 \times \mathbf{y}_7) = 0$

(C) 2010 PER-ERIK FORSSÉN

(C) 2010 PER-ERIK FORSSÉN

If *six* points are in a plane $\mathbf{x}_k^T \mathbf{F} \mathbf{y}_k = 0, \quad k = 1 \dots 7 \quad \mathbf{x}_k = \mathbf{H} \mathbf{y}_k, \quad k = 1 \dots 6$ $\mathbf{F} = [\mathbf{e}]_{\times} \mathbf{H}$ for $\mathbf{e} \in \mathbb{R}^3$, $\mathbf{e}^T (\mathbf{H} \mathbf{x}_7 \times \mathbf{y}_7) = 0$ For *five* points in the plane $\mathbf{x}_6 \times (\mathbf{H}\mathbf{y}_6)$ and $\mathbf{x}_7 \times (\mathbf{H}\mathbf{y}_7)$ define two lines that intersect in e. F will have all points consistent with H as inliers.

If *six* points are in a plane $\mathbf{x}_k^T \mathbf{F} \mathbf{y}_k = 0, \quad k = 1 \dots 7 \quad \mathbf{x}_k = \mathbf{H} \mathbf{y}_k, \quad k = 1 \dots 6$ $\mathbf{F} = [\mathbf{e}]_{\times} \mathbf{H}$ for $\mathbf{e} \in \mathbb{R}^3$, $\mathbf{e}^T (\mathbf{H} \mathbf{x}_7 \times \mathbf{y}_7) = 0$ For *five* points in the plane $\mathbf{x}_6 \times (\mathbf{H}\mathbf{y}_6)$ and $\mathbf{x}_7 \times (\mathbf{H}\mathbf{y}_7)$ define two lines that intersect in e. F will have all points consistent with H as inliers. Also used in plane+parallax algorithm (C) 2010 PER-ERIK FORSSÉN 22

$$\mathbf{H} = \mathbf{A} - \mathbf{e}_1 (\mathbf{M}^{-1} \mathbf{b})^T$$

where $\mathbf{A} = [\mathbf{e}_1]_{\times} \mathbf{F}$ $\mathbf{M} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3]^T$

and $b_k = (\mathbf{x}_k \times \mathbf{A}\mathbf{y}_k)^T (\mathbf{x}_k \times \mathbf{e}_1) ||\mathbf{x}_k \times \mathbf{e}_1||^{-2}$

(C) 2010 PER-ERIK FORSSÉN

$$\mathbf{H} = \mathbf{A} - \mathbf{e}_1 (\mathbf{M}^{-1} \mathbf{b})^T$$

where $\mathbf{A} = [\mathbf{e}_1]_{\times} \mathbf{F}$ $\mathbf{M} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3]^T$

and $b_k = (\mathbf{x}_k \times \mathbf{A}\mathbf{y}_k)^T (\mathbf{x}_k \times \mathbf{e}_1) ||\mathbf{x}_k \times \mathbf{e}_1||^{-2}$

This H is now checked for two additional inliers. If found, F is said to be H-degenerate

(C) 2010 PER-ERIK FORSSÉN

There are $\binom{7}{5} = 21$ ways to pick five points from 7.

** But, if we pick the 3 points that define H as {1, 2, 3}, {4, 5, 6}, {1, 2, 7}, {4, 5, 7}, {3, 6, 7}
** We will have covered all 21 permutations.

Thus at most five H need to be computed and tested to find out if F is H-degenerate.

DEGENSAC algorithm

- 1. Select 7 random correspondences and estimate F
- 2. IF best support this far
- 3. IF H-degeneracy
- 4. Do inner RANSAC and estimate F
 from H and 2 correspondences
 (Plane+Parallax algorithm)
 that are inconsistent with H
- IF new F has even bigger support, store F
 ELSE store H

DISCUSSION

Discussion of the paper: Ondrej Chum and Jiri Matas, Matching with PROSAC -- Progressive Sample Consensus, CVPR'05

FOR NEXT WEEK...

#Hartley&Zisserman, Appendix A4.3

% K. Shoemake, Animating Rotation with Quaternion Curves, SIGGRAPH85