Geometry in Computer Vision

Spring 2010
Lecture 7A
Representations of 3D rotations
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Orthogonal transformations

* From linear algebra we know that for a
vector space V there is a special set of
transformations A known as orthogonal
transformations (or self-adjoint transf.)

(AX)-y=x-(Ay) forallx,y eV

N\

ATA=AAT=|—

These two definitions
are equivalent (why?)
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Orthogonal transformations

» For V=R3, the set of orthogonal transformations is
denoted O(3)

* O(3) are represented by 3 x 3 matrices that satisfy
ATA =1 (or AT=A1)
* From ATA = follows that det A = +1 (why?)

* O(3) consists of two disconnected parts in the
space of 3 x 3 matrices:
—one withdetA=1
— one with det A =-1

* O(3) forms a group under matrix multiplication
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3D Rotations

e The set of O(3) with det A =1 are
3D rotations

» Also known as the
special orthogonal transformations

* Denoted SO(3)
* Forms a group under matrix multiplication

* The set of O(3) with det A =-1 do not form a
group (why?)
» This set includes mirroring operations
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Representations

* In many applications we want to determine a
rotation:
— External camera parameters include a rotation
— E is determined by a rotation and a translation

— Find the rigid transformation between 2 point sets; it
includes a rotation

— Bundle adjustment ...

* To solve such problems, we often need to
parameterize the set of rotations: SO(3)
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3D Rotations

A 3D rotation R is characterized by a

— normalized vector n (2 d.o.f.)

— rotation angle a (1 d.o.f.)

— o is well-defined, e.qg., using the right-hand-rule

R rotates around the vector n with the angle a
Note: (n, o) is equivalent to (-n, -a)
In total: 3 degrees of freedom
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Euler angles

» We can decompose any R € SO(3) into a
product of 3 rotations around fixed axes

» For example:
R = Rot,(a,) Rot,(a,) Rot, ()

* (a4, o, a;) are the Euler angles of R
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Euler angles

(o, o, a;) are unigue (modulo 2m, &, 2m)

Non-trivial relation between (a,, o, a;)
and (n, o)

Non-trivial to combine two rotations
Non-trivial mapping R — (o, a,, o)

Not very interesting for practical
applications
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Vector n and angle o

* (n, ) is a convenient representation
— With |n|=1
— Explicitly describes the rotation axis and angle
e But
— Not unique unless we impose restrictions on
(n, a)
— Not trivial to combine two rotations

s Howdowe mapR < (n, a) ?
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The anatomy of a 3D rotation

R rotates u around
v=Ru n the vector n
with the angle a

u’ is rotated to v’

N is the in the plane that
projection of is perpendicular
v and u on n ton
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The anatomy of a 3D rotation

» v can be decomposed asv = ny + V'’
where n, is the projection of u onto n
No=nn'u

and v’ is the rotation of u’ in the plane
perpendicular to n
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The anatomy of a 3D rotation

* Let (p, q) be an ON-basis for the plane
that is perpendicular to n

» The coordinates of u’ in this basis is
(p'u, q'u)

* The coordinates of v’ in this basis is
(pv', q™V’)

plv"\ [cosa —sina plu
and qlv’ sina cosa q’u
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The anatomy of a 3D rotation

* From this we get
v'=(p q) (g;:,’:) = q) (Z?jz _Czisnaa> (gi) u
v' = (cosa(pp” +qq”) +sinalgp” — pq’]) u
v = (nn” + cosa(I — nn”) + sinaln], ) u
v=(I+(1-cosa)n]% +sinan],)u
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Rodrigues’ formula

* This gives Rodrigues’ formula for R:

R =1+ (1-cosa)n]? +sinaln]y
* This gives us a mapping (n, o) > R
s Howdowe map R — (n, a) ?
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Rodrigues’ formula (1)
From this formula follows directly:
trR =tr (I+ (1—cosa)[n]3 +sinaln]y)
trR=3+ (1 —-cosa)(—2)+sinal

and we get R — 1

= Ccos &
2

7 May 2010 Geometry in Computer Vision 15
Klas Nordberg

Rodrigues’ formula (1)

Rodrigues’ formula also gives

R - RT

5 = sin a[n]«

 From these last two relations we can solve
for (n, o) (how?)
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Eigensystem of R

e Clearly: Rn=n =
n is an eigenvector of R with eigenvalue 1

* Maybe less clear: — .
(p +1iq) is an eigenvector

: _ _ of R with eigenvalue e
R(p+ig)=e“(p+iq)
(p-iqg)isan eigenvect(_)r
R(p-ig)=ei(p-iq) of R with eigenvalue e

m— (why?)

7 May 2010 Geometry in Computer Vision 17
Klas Nordberg

Eigensystem of R

The eigenvalues of R are (1, e'*, e'®)
They are the solutions to det(R - Al) =0

The corresponding normalized
eigenvectors are

p and g are not

(n p+iq p—t q) uniquely defined

NG (why?)
(n, a) are given by an EVD of R
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Eigensystem of R

In summary we can write Complex conjugation

and transpose

Py
I
m
O
m

E is a unitary basis: E'E = |
Can we connect this to Rodrigues’ formula?
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Matrix exponentials

» For a vector space V and a linear
transformation T: V — V we define the
matrix exponential of T as

et =30 o TF =TI+ T+ T2+ ...

» This series is absolute convergent for any T,
with TO = |
e e'is linear transformation: V — V
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Matrix exponentials

General properties:

o e0=|

° eaT ebT — e(a +b)T (Why?)

.« eT' = (e (why?)

« el =(el)* (why?)

- eEDE = E P E* for unitary E (E'E = I) (why?)

« eP =diag(e’,e%, ...) for D=diag(d,,d,,...)
(Why?)
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s0(3)

The set of skew-symmetric matrices is
denoted so(3)

[m], € so(3), = [m], =-[m],T

elmh = gmh’ = (e1mh)T = ((elmh)1)T
— elmx ¢ SO(3)

The matrix exponential maps
so(3) —» SO(3)
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Eigensystem of a[n],

e Clearly: a[n], n=0=
n is an eigenvector of a[n], with eigenvalue 0

e Furthermore:
(p +iq) is an eigenvector

of a[n], with eigenvalue ia

aln], (p+iqg)=ia(p +iq) - |
(p - i q) is an eigenvector

a[n]. (p - i q) = -ia (p - i q) |°F @In]. with eigenvalue -io

— (why?)
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Eigensystem of a[n],

The eigenvalues of a[n], are (0, ia, -ia)

The corresponding normalized
eigenvectors are

(n pPt+iq p—¢ q)
V2T V2
Same eigenvectors as R !
a[n], = E D’E" with D’ = diag(0, ia, -io)
Note: D = eP
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s0(3) —» SO(3)

For m = an we get:

elnlx = ED'E' — ED'E*=EDE*=R
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s0(3) —» SO(3)

Summary:
* The matrix exponential maps a[n], to R

» We can represent any R as the skew-
symmetric matrix a[n], which has
3 parameters

» We can represent any R as the 3-dim
vector m=an

* If we restrict m to |m| < m, this
representation is, in principle, one-to-one
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Quaternions

» Quaternions are an extension of complex
numbers, with 4 components instead of 2

* Quaternions form an associative division
algebra

— They can be added, subtracted, multiplied,
and divided

— Are non-commutative
» Can represented as a 4-dim vector
 Alternatively as a scalar + a vector
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Quaternion algebra

» Using the scalar+vector notation:
d; = (S Ve), Oz =(Sp V)

0y + 0, =(S1 +S, vy +V,)
d1-0y = (S1857V1-Va, S{V,+S,V 4V, X V)

0st = (S1,-vy)/(s2 + |v4?) = 0,0,2 = (1, 0)
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Unit quaternions

q=(s, V)

g2 = s {v?

« Unit quaternions satisfy |g[2 =1

» Represents the unit sphere in R4, denoted S3

Any unit quaternion can be written

g = (cos a/2, sin a/2 n) for some angle « and
vector |n|=1 (why?)

In this case g1 = (cos a/2, -sin a/2 n)
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Quaternion representation of
rotations

Let u € R® and represent it by the quaternion
p=(0, u)

Let q = (cos a/2, sin a/2 n) be a unit
guaternion

Gives g = (cos a/2, -sin a/2 n)
Consider the quaternion product gpq*

pq ! = (sin S(n-u),cos§u+sing(n x u))
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Quaternion representation of
rotations

 Finally, we get

o

gpg~ ' =(cos §,sin §n) - (sin §(n-u),cos Fu + sin §(n x u))

1

qpq 2

qpq*

qpq ' = (0, u-+sin a[n] u+(1—cos ) [nj3 u)

qpq~*=(0,Ru)
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(0, cos?Zu+sin a[n] x u+sin® £ (I+ [n]2 Ju+sin®<[n]

=(0, cos?2u+2cos< sin% (nx u) +sin’¢nn’ u+sin’<n x(nxu)

%)
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Quaternion representation of
rotations

Summary:

« We can represent points in R3 as
"Imaginary” quaternions p

* The rotation («, n) is represented as the
unit quaternion g=(cos a/2, sin a/2 n)

» These consists of the set S3

» The rotated point is computed as the
sandwich product qpq*?

7 May 2010 Geometry in Computer Vision 32
Klas Nordberg




Quaternion representation of
rotations

» Composition of two rotations in standard
3 x 3 matrix algebra:
— 27 mult
—18 add

« Composition of two rotations in quaternion
algebra:
— 16 mult
— 12 add
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The orthogonal Procrustes problem

« Given n known vectors a, and b,, which
orthogonal R minimizes

> llar — Rby||?
k=1
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The orthogonal Procrustes problem

Cookbook solution:

* See
[Golub & Van Loan, Matrix Computations]

» Let A be a matrix with all a, in its columns
Let B be a matrix with all b, in its columns
[USV]=svd(ABT)

R=UVT

Note: R is in O(3) but may not be in SO(3)!
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Estimation of absolute orientation

» Given two set of n corresponding 3D
points a, and b, that are related by a rigid
transformation:

a=Rb, +t

How can we determine R and t?
In particular when there is noise present?
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Estimation of absolute orientation

« Leta’ and b’ denote the centroids of the set a, and the set
b,, respectively:

a=Rb+t =>t=a'-RDb’
 We need to find R such that
a—a=R(b,-Db)

* R can be found using the orthogonal Procrustes method
* Once R is determined, t is given by a’ — R b’

» See [Horn, Closed-form solution of absolute orientation
using unit Quaternions, JOSA, 1987]
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