Orthogonal transformations

Geometry in Computer Vision

Spring 2010
Lecture 7A
Representations of 3D rotations

- From linear algebra we know that for a vector space V there is a special set of transformations A known as orthogonal transformations (or self-adjoint transf.)
$(A x) \cdot y=x \cdot(A y) \quad$ for all $x, y \in V$

$$
\mathbf{A}^{\top} \mathbf{A}=\mathbf{A} \mathbf{A}^{\top}=\mathbf{I}
$$

These two definitions are equivalent (why?)
7 May 2010
Geometry in Computer Vision Klas Nordberg

Orthogonal transformations

- For $V=\mathrm{R}^{3}$, the set of orthogonal transformations is denoted $\mathrm{O}(3)$
- $\mathrm{O}(3)$ are represented by 3×3 matrices that satisfy $A^{\top} \mathbf{A}=I\left(\right.$ or $\left.A^{\top}=A^{-1}\right)$
- From $\mathbf{A}^{\top} \mathbf{A}=\mathbf{I}$ follows that $\operatorname{det} \mathbf{A}= \pm 1$ (why?)
- O(3) consists of two disconnected parts in the space of 3×3 matrices:
- one with $\operatorname{det} \mathbf{A}=1$
- one with $\operatorname{det} \mathbf{A}=-1$
- O(3) forms a group under matrix multiplication

3D Rotations

- The set of $O(3)$ with $\operatorname{det} A=1$ are 3D rotations
- Also known as the special orthogonal transformations
- Denoted SO(3)
- Forms a group under matrix multiplication
- The set of $\mathrm{O}(3)$ with $\operatorname{det} \mathbf{A}=-1$ do not form a group (why?)
- This set includes mirroring operations

7 May 2010

Representations

- In many applications we want to determine a rotation:
- External camera parameters include a rotation
$-E$ is determined by a rotation and a translation
- Find the rigid transformation between 2 point sets; it includes a rotation
- Bundle adjustment ...
- To solve such problems, we often need to parameterize the set of rotations: $\mathrm{SO}(3)$

3D Rotations

- A 3D rotation \mathbf{R} is characterized by a
- normalized vector \mathbf{n} (2 d.o.f.)
- rotation angle α (1 d.o.f.)
- α is well-defined, e.g., using the right-hand-rule
- \mathbf{R} rotates around the vector \mathbf{n} with the angle α
- Note: (\mathbf{n}, α) is equivalent to ($-\mathbf{n},-\alpha$)
- In total: 3 degrees of freedom

Euler angles

- We can decompose any $\mathbf{R} \in S O(3)$ into a product of 3 rotations around fixed axes
- For example:
$\mathbf{R}=\operatorname{Rot}_{z}\left(\alpha_{1}\right) \operatorname{Rot}_{\mathrm{x}}\left(\alpha_{2}\right) \operatorname{Rot}_{\mathrm{z}}\left(\alpha_{3}\right)$
- $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ are the Euler angles of \mathbf{R}

Vector \mathbf{n} and angle α

- (\mathbf{n}, α) is a convenient representation
- With |n|=1
- Explicitly describes the rotation axis and angle
- But
- Not unique unless we impose restrictions on (n, α)
- Not trivial to combine two rotations
- How do we map $\mathbf{R} \leftrightarrow(\mathbf{n}, \alpha)$?

The anatomy of a 3D rotation

The anatomy of a 3D rotation

- Let (\mathbf{p}, \mathbf{q}) be an ON-basis for the plane that is perpendicular to \mathbf{n}
- The coordinates of \mathbf{u}^{\prime} in this basis is ($\mathbf{p}^{\top} \mathbf{u}, \mathbf{q}^{\top} \mathbf{u}$)
- The coordinates of v^{\prime} in this basis is ($\mathbf{p}^{\top} \mathbf{v}^{\prime}, \mathbf{q}^{\top} \mathbf{v}^{\prime}$)
and $\quad\binom{\mathbf{p}^{T} \mathbf{v}^{\prime}}{\mathbf{q}^{T} \mathbf{v}^{\prime}}=\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)\binom{\mathbf{p}^{T} \mathbf{u}}{\mathbf{q}^{T} \mathbf{u}}$

The anatomy of a 3D rotation

- From this we get

$$
\begin{aligned}
& \mathbf{v}^{\prime}=\left(\begin{array}{ll}
\mathbf{p} & \mathbf{q}
\end{array}\right)\binom{\mathbf{p}^{T} \mathbf{v}^{\prime}}{\mathbf{q}^{T} \mathbf{v}^{\prime}}=\left(\begin{array}{ll}
\mathbf{p} & \mathbf{q}
\end{array}\right)\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\binom{\mathbf{p}^{T}}{\mathbf{q}^{T}} \mathbf{u} \\
& \mathbf{v}^{\prime}=\left(\cos \alpha\left(\mathbf{p p}^{T}+\mathbf{q} \mathbf{q}^{T}\right)+\sin \alpha\left[\mathbf{\mathbf { p } ^ { T } - \mathbf { p } \mathbf { q } ^ { T }]) \mathbf { u }}\right.\right. \\
& \mathbf{v}=\left(\mathbf{n} \mathbf{n}^{T}+\cos \alpha\left(\mathbf{I}-\mathbf{n} \mathbf{n}^{T}\right)+\sin \alpha[\mathbf{n}]_{\times}\right) \mathbf{u} \\
& \mathbf{v}=\left(\mathbf{I}+(1-\cos \alpha)[\mathbf{n}]_{\times}^{2}+\sin \alpha[\mathbf{n}]_{\times}\right) \mathbf{u}
\end{aligned}
$$

Rodrigues' formula

- This gives Rodrigues' formula for \mathbf{R} :

$$
\mathbf{R}=\mathbf{I}+(1-\cos \alpha)[\mathbf{n}]_{\times}^{2}+\sin \alpha[\mathbf{n}]_{\times}
$$

- This gives us a mapping (n, α) $\rightarrow \mathbf{R}$
- How do we map $\mathbf{R} \rightarrow(\mathbf{n}, \alpha)$?

Rodrigues' formula (II)

Rodrigues' formula also gives

$$
\frac{\mathbf{R}-\mathbf{R}^{T}}{2}=\sin \alpha[\mathbf{n}]_{\times}
$$

- From these last two relations we can solve for (\mathbf{n}, α) (how?)

Eigensystem of \mathbf{R}

- Clearly: $\mathbf{R} \mathbf{n}=\mathbf{n} \Rightarrow$
\mathbf{n} is an eigenvector of \mathbf{R} with eigenvalue 1
- Maybe less clear:
$\mathbf{R}(\mathbf{p}+i q)=e^{i \alpha}(p+i q)$
$\mathbf{R}(\mathbf{p}-\mathrm{i} \mathbf{q})=\mathrm{e}^{-\mathrm{i} \alpha}(\mathbf{p}-\mathrm{i} \mathbf{q})$

$$
i^{2}=-1
$$

$(\mathbf{p}+\mathrm{i} \mathbf{q})$ is an eigenvector of \mathbf{R} with eigenvalue $\mathrm{e}^{\mathrm{i} \mathrm{\alpha}}$
($\mathbf{p}-\mathrm{i} \mathbf{q}$) is an eigenvector of \mathbf{R} with eigenvalue $\mathrm{e}^{-\mathrm{i} \alpha}$
(why?)

Eigensystem of \mathbf{R}

- In summary we can write

Complex conjugation and transpose

$$
\mathbf{R}=\left(\begin{array}{lll}
\mathbf{n} & \frac{\mathbf{p}+i \mathbf{q}}{\sqrt{2}} & \frac{\mathbf{p}-i \mathbf{q}}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha} & 0 \\
0 & 0 & e^{-i \alpha}
\end{array}\right)\left(\begin{array}{lll}
\mathbf{n} & \frac{\mathbf{p}+i \mathbf{q}}{\sqrt{2}} & \frac{\mathbf{p}-i \mathbf{q}}{\sqrt{2}}
\end{array}\right)^{\star}
$$

- R = E D E*
- E is a unitary basis: $E^{*} E=I$
- Can we connect this to Rodrigues' formula?

Eigensystem of \mathbf{R}

- The eigenvalues of \mathbf{R} are ($1, \mathrm{e}^{\mathrm{i} \alpha}, \mathrm{e}^{-\mathrm{i} \alpha}$)
- They are the solutions to $\operatorname{det}(\mathbf{R}-\lambda \mathbf{I})=0$
- The corresponding normalized eigenvectors are

$$
\left(\mathbf{n}, \frac{\mathbf{p}+i \mathbf{q}}{\sqrt{2}}, \frac{\mathbf{p}-i \mathbf{q}}{\sqrt{2}}\right)
$$

- (\mathbf{n}, α) are given by an EVD of \mathbf{R}

Matrix exponentials

- For a vector space V and a linear transformation $\mathrm{T}: V \rightarrow V$ we define the matrix exponential of \mathbf{T} as
$e^{\mathbf{T}}=\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{T}^{k}=\mathbf{I}+\mathbf{T}+\frac{1}{2} \mathbf{T}^{2}+\ldots$
- This series is absolute convergent for any \mathbf{T}, with $\mathbf{T}^{0}=\mathbf{I}$
- $\mathrm{e}^{\boldsymbol{\top}}$ is linear transformation: $V \rightarrow V$

Matrix exponentials

General properties:

- $\mathrm{e}^{0}=\mathbf{I}$
- $e^{a T} e^{b T}=e^{(a+b) T}$ (why?)
- $e^{T^{\top}}=\left(e^{\top}\right)^{\top}$ (why?)
- $e^{-T}=\left(e^{T}\right)^{-1}$ (why?)
- $e^{E D E^{*}}=E e^{D} E^{*}$ for unitary $E\left(E^{*} E=I\right)(w h y ?)$

(why?)

so(3)

- The set of skew-symmetric matrices is denoted so(3)
- $[\mathrm{m}]_{\times} \in \operatorname{so}(3), \Rightarrow[\mathrm{m}]_{\times}=-[\mathrm{m}]_{\times}{ }^{\top}$
 $\Rightarrow \mathrm{e}^{[\mathrm{m}]_{\times}} \in \mathrm{SO}(3)$
- The matrix exponential maps $\mathrm{so}(3) \rightarrow \mathrm{SO}(3)$
7 May 2010
Geometry in Computer Vision Klas Nordberg

Eigensystem of $\alpha[\mathbf{n}]_{\times}$

- The eigenvalues of $\alpha[\mathbf{n}]_{\times}$are ($0, \mathrm{i} \alpha,-\mathrm{i} \alpha$)
- The corresponding normalized eigenvectors are

$$
\left(\mathbf{n}, \frac{\mathbf{p}+i \mathbf{q}}{\sqrt{2}}, \frac{\mathbf{p}-i \mathbf{q}}{\sqrt{2}}\right)
$$

- Same eigenvectors as \mathbf{R} !
- $\alpha[\mathbf{n}]_{\times}=E$ D'E ${ }^{*}$ with $\mathbf{D}^{\prime}=\operatorname{diag}(0, \mathrm{i} \alpha,-\mathrm{i} \alpha)$
- Note: D = $\mathrm{e}^{\mathrm{D}^{\prime}}$
$(p+i q)$ is an eigenvector of $\alpha[n]_{\times}$with eigenvalue i α
$(\mathbf{p}-\mathrm{i} \mathbf{q})$ is an eigenvector of $\alpha[\mathbf{n}]_{\times}$with eigenvalue $-i \alpha$

$$
\mathrm{so}(3) \rightarrow \mathrm{SO}(3)
$$

For $\mathbf{m}=\alpha \mathbf{n}$ we get:

$$
e^{\alpha[\mathbf{n}]_{\times}}=e^{\mathbf{E D}^{\prime} \mathbf{E}^{\star}}=\mathbf{E} e^{\mathbf{D}^{\prime}} \mathbf{E}^{\star}=\mathbf{E} \mathbf{D} \mathbf{E}^{\star}=\mathbf{R}
$$

$$
\mathrm{so}(3) \rightarrow \mathrm{SO}(3)
$$

Summary:

- The matrix exponential maps $\alpha[\mathbf{n}]_{\times}$to \mathbf{R}
- We can represent any \mathbf{R} as the skewsymmetric matrix $\alpha[\mathbf{n}]_{\times}$which has 3 parameters
- We can represent any \mathbf{R} as the 3 -dim vector $\mathbf{m}=\alpha \mathbf{n}$
- If we restrict \mathbf{m} to $|\mathbf{m}|<\pi$, this representation is, in principle, one-to-one

7 May 2010
Geometry in Computer Vision Klas Nordberg

Quaternions

- Quaternions are an extension of complex numbers, with 4 components instead of 2
- Quaternions form an associative division algebra
- They can be added, subtracted, multiplied, and divided
- Are non-commutative
- Can represented as a 4-dim vector
- Alternatively as a scalar + a vector

Quaternion algebra

- Using the scalar+vector notation:

$$
\begin{aligned}
& \mathrm{q}_{1}=\left(\mathrm{s}_{1}, \mathbf{v}_{1}\right), \quad \mathrm{q}_{2}=\left(\mathrm{s}_{2}, \mathbf{v}_{2}\right) \\
& \mathrm{q}_{1}+\mathrm{q}_{2}=\left(\mathrm{s}_{1}+\mathrm{s}_{2}, \mathbf{v}_{1}+\mathbf{v}_{2}\right) \\
& \mathrm{q}_{1} \cdot \mathrm{q}_{2}=\left(\mathrm{s}_{1} \mathrm{~s}_{2}-\mathbf{v}_{1} \cdot \mathbf{v}_{2}, \mathrm{~s}_{1} \mathbf{v}_{2}+\mathrm{s}_{2} \mathbf{v}_{1}+\mathrm{v}_{1} \times \mathrm{v}_{2}\right) \\
& \mathrm{q}_{1}-1=\left(\mathrm{s}_{1},-\mathbf{v}_{1}\right) /\left(\mathrm{s}_{1}{ }^{2}+\left|\mathbf{v}_{1}\right|^{2}\right) \Rightarrow \mathrm{q}_{1} \mathrm{q}_{1}{ }^{-1}=(\mathbf{1}, \mathbf{0})
\end{aligned}
$$

Unit quaternions

$\mathrm{q}=(\mathrm{s}, \mathrm{v})$

- $|q|^{2}=s^{2}+|v|^{2}$
- Unit quaternions satisfy $|q|^{2}=1$
- Represents the unit sphere in R^{4}, denoted S^{3}
- Any unit quaternion can be written
$q=(\cos \alpha / 2, \sin \alpha / 2 \mathbf{n})$ for some angle α and
vector $|n|=1$ (why?)
- In this case $\mathrm{q}^{-1}=(\cos \alpha / 2,-\sin \alpha / 2 \mathbf{n})$

Quaternion representation of rotations

- Let $\mathbf{u} \in \mathrm{R}^{3}$ and represent it by the quaternion $p=(0, \mathbf{u})$
- Let $\mathrm{q}=(\cos \alpha / 2, \sin \alpha / 2 \mathbf{n})$ be a unit quaternion
- Gives $q^{-1}=(\cos \alpha / 2,-\sin \alpha / 2 \mathbf{n})$
- Consider the quaternion product qpq^{-1}

$$
p q^{-1}=\left(\sin \frac{\alpha}{2}(\mathbf{n} \cdot \mathbf{u}), \cos \frac{\alpha}{2} \mathbf{u}+\sin \frac{\alpha}{2}(\mathbf{n} \times \mathbf{u})\right)
$$

Quaternion representation of rotations

- Finally, we get

$$
\begin{aligned}
q p q^{-1} & =\left(\cos \frac{\alpha}{2}, \sin \frac{\alpha}{2} \mathbf{n}\right) \cdot\left(\sin \frac{\alpha}{2}(\mathbf{n} \cdot \mathbf{u}), \cos \frac{\alpha}{2} \mathbf{u}+\sin \frac{\alpha}{2}(\mathbf{n} \times \mathbf{u})\right) \\
q p q^{-1} & =\left(0, \cos ^{2} \frac{\alpha}{2} \mathbf{u}+2 \cos \frac{\alpha}{2} \sin \frac{\alpha}{2}(\mathbf{n} \times \mathbf{u})+\sin ^{2} \frac{\alpha}{2} \mathbf{n} \mathbf{n}^{T} \mathbf{u}+\sin ^{2} \frac{\alpha}{2} \mathbf{n} \times(\mathbf{n} \times \mathbf{u})\right) \\
q p q^{-1} & =\left(0, \cos ^{2} \frac{\alpha}{2} \mathbf{u}+\sin \alpha[\mathbf{n}]_{\times} \mathbf{u}+\sin ^{2} \frac{\alpha}{2}\left(\mathbf{I}+[\mathbf{n}]_{\times}^{2}\right) \mathbf{u}+\sin ^{2} \frac{\alpha}{2}[\mathbf{n}]_{\times}^{2} \mathbf{u}\right) \\
q p q^{-1} & =\left(0, \mathbf{u}+\sin \alpha[\mathbf{n}]_{\times} \mathbf{u}+(1-\cos \alpha)[\mathbf{n}]_{\times}^{2} \mathbf{u}\right) \\
q p q^{-1} & =(0, \mathbf{R u})
\end{aligned}
$$

Quaternion representation of rotations

Summary:

- We can represent points in R^{3} as "imaginary" quaternions p
- The rotation (α, \mathbf{n}) is represented as the unit quaternion $\mathrm{q}=(\cos \alpha / 2, \sin \alpha / 2 \mathbf{n})$
- These consists of the set S^{3}
- The rotated point is computed as the sandwich product qpq^{-1}

Quaternion representation of rotations

- Composition of two rotations in standard 3×3 matrix algebra:
-27 mult
- 18 add
- Composition of two rotations in quaternion algebra:
- 16 mult
- 12 add

Given n known vectors \mathbf{a}_{k} and \mathbf{b}_{k}, which orthogonal \mathbf{R} minimizes

$$
\sum_{k=1}^{n}\left\|\mathbf{a}_{k}-\mathbf{R} \mathbf{b}_{k}\right\|^{2}
$$

Estimation of absolute orientation

- Given two set of n corresponding 3D points \mathbf{a}_{k} and \mathbf{b}_{k} that are related by a rigid transformation:
$\mathbf{a}_{\mathrm{k}}=\mathbf{R} \mathbf{b}_{\mathrm{k}}+\mathbf{t}$

How can we determine \mathbf{R} and \mathbf{t} ?
In particular when there is noise present?

Estimation of absolute orientation

- Let \mathbf{a}^{\prime} and \mathbf{b}^{\prime} denote the centroids of the set \mathbf{a}_{k} and the set \mathbf{b}_{k}, respectively:
$\mathbf{a}^{\prime}=\mathbf{R} \mathbf{b}^{\prime}+\mathbf{t} \Rightarrow \mathbf{t}=\mathbf{a}^{\mathbf{\prime}}-\mathbf{R} \mathbf{b}^{\prime}$
- We need to find \mathbf{R} such that
$\mathbf{a}_{\mathrm{k}}-\mathbf{a}^{\prime}=\mathbf{R}\left(\mathbf{b}_{\mathrm{k}}-\mathbf{b}^{\prime}\right)$
- \mathbf{R} can be found using the orthogonal Procrustes method
- Once \mathbf{R} is determined, \mathbf{t} is given by $\mathbf{a}^{\prime}-\mathbf{R} \mathbf{b}^{\prime}$
- See [Horn, Closed-form solution of absolute orientation using unit Quaternions, JOSA, 1987]

