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Orthogonal transformations

• From linear algebra we know that for a 
vector space V there is a special set of 
transformations A known as orthogonal 
transformations (or self-adjoint transf.)

(A x)  y = x  (A y)   for all x, y  V

ATA = A AT = I These two definitions
are equivalent (why?)
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Orthogonal transformations
• For V=R3, the set of orthogonal transformations is 

denoted O(3)
• O(3) are represented by 3  3 matrices that satisfy 

ATA = I (or AT = A-1)
• From ATA = I follows that det A = 1 (why?)
• O(3) consists of two disconnected parts in the 

space of 3  3 matrices:
– one with det A = 1
– one with det A = -1

• O(3) forms a group under matrix multiplication
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3D Rotations
• The set of O(3)  with det A = 1 are

3D rotations
• Also known as the

special orthogonal transformations
• Denoted SO(3)
• Forms a group under matrix multiplication

• The set of O(3)  with det A = -1 do not form a 
group (why?)

• This set includes mirroring operations
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Representations

• In many applications we want to determine a 
rotation:
– External camera parameters include a rotation
– E is determined by a rotation and a translation
– Find the rigid transformation between 2 point sets; it 

includes a rotation
– Bundle adjustment …

• To solve such problems, we often need to 
parameterize the set of rotations: SO(3)
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3D Rotations

• A 3D rotation R is characterized by a
– normalized vector n (2 d.o.f.)
– rotation angle  (1 d.o.f.)
–  is well-defined, e.g., using the right-hand-rule

• R rotates around the vector n with the angle 
• Note: (n, ) is equivalent to (-n, -)
• In total: 3 degrees of freedom
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Euler angles

• We can decompose any R  SO(3) into a 
product of 3 rotations around fixed axes

• For example:

R = Rotz() Rotx() Rotz()

• (, , ) are the Euler angles of R
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Euler angles

• (, , ) are unique (modulo 2, , 2)
• Non-trivial relation between (, , ) 

and (n, )
• Non-trivial to combine two rotations
• Non-trivial mapping R  (, , ) 

• Not very interesting for practical 
applications
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Vector n and angle 

• (n, ) is a convenient representation
– With |n|=1
– Explicitly describes the rotation axis and angle

• But
– Not unique unless we impose restrictions on 

(n, )
– Not trivial to combine two rotations

• How do we map R  (n, ) ?
7 May 2010 Geometry in Computer Vision 

Klas Nordberg
10

The anatomy of a 3D rotation

v’

u’



u

v

R rotates u around
the vector n

with the angle 
v = R u

u’ is rotated to v’
in the plane that
is perpendicular

to n

n

n0

n0 is the
projection of
v and u on n
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The anatomy of a 3D rotation

• v can be decomposed as v = n0 + v’

where n0 is the projection of u onto n

n0 = n nTu

and v’ is the rotation of u’ in the plane 
perpendicular to n
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The anatomy of a 3D rotation

• Let (p, q) be an ON-basis for the plane 
that is perpendicular to n

• The coordinates of u’ in this basis is
(pTu, qTu)

• The coordinates of v’ in this basis is
(pTv’, qTv’)

and 
µ
pTv0

qTv0

¶
=

µ
cosα − sinα
sinα cosα

¶ µ
pTu
qTu

¶
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The anatomy of a 3D rotation

• From this we get 

v0 =
¡
p q

¢µpTv0
qTv0

¶
=
¡
p q

¢µcosα − sinα
sinα cosα

¶ µ
pT

qT

¶
u

v0 =
¡
cosα(ppT + qqT ) + sinα[qpT − pqT ]

¢
u

v =
¡
nnT + cosα(I− nnT ) + sinα[n]×

¢
u

v =
¡
I+ (1− cosα) [n]2× + sinα[n]×

¢
u
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Rodrigues’ formula

• This gives Rodrigues’ formula for R:

• This gives us a mapping (n, )  R

• How do we map R  (n, ) ?

R = I+ (1− cosα) [n]2× + sinα[n]×
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Rodrigues’ formula (II)

From this formula follows directly:

and we get

trR = tr
¡
I+ (1− cosα) [n]2× + sinα[n]×

¢
trR = 3 + (1− cosα) (−2) + sinα 0

trR− 1
2

= cosα
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Rodrigues’ formula (II)

Rodrigues’ formula also gives

• From these last two relations we can solve 
for (n, )  (how?)

R−RT

2
= sinα[n]×
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Eigensystem of R
• Clearly: R n = n 

n is an eigenvector of R with eigenvalue 1

• Maybe less clear:

R (p + i q) = ei (p + i q)

R (p - i q) = e-i (p - i q) 

(p + i q) is an eigenvector
of R with eigenvalue ei

(p - i q) is an eigenvector
of R with eigenvalue e-i

(why?)i2 = -1
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Eigensystem of R

• The eigenvalues of R are (1, ei, e-i)
• They are the solutions to det(R - I) = 0
• The corresponding normalized

eigenvectors are

• (n, ) are given by an EVD of R

(n,
p+ i q√

2
,
p− i q√

2
)

p and q are not
uniquely defined

(why?)
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Eigensystem of R
• In summary we can write

• R = E D E*

• E is a unitary basis: E*E = I
• Can we connect this to Rodrigues’ formula?

R =

µ
n

p+ i q√
2

p− i q√
2

¶⎛⎝1 0 0
0 eiα 0
0 0 e−iα

⎞⎠µn p+ i q√
2

p− i q√
2

¶?
Complex conjugation

and transpose

7 May 2010 Geometry in Computer Vision 
Klas Nordberg

20

Matrix exponentials

• For a vector space V and a linear 
transformation T: V  V we define the 
matrix exponential of T as

• This series is absolute convergent for any T, 
with T0 = I

• eT is linear transformation: V  V

eT =
P∞

k=0
1
k!T

k = I+T+ 1
2T

2 + . . .
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Matrix exponentials

General properties:
• e0 = I
• eaT ebT = e(a + b)T (why?)
• eTT = (eT)T (why?)
• e-T = (eT)-1 (why?)
• eEDE* = E eD E* for unitary E (E*E = I) (why?)
• eD = diag(ed1,ed2, …) for D=diag(d1,d2,…)         

(why?)
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so(3)

• The set of skew-symmetric matrices is 
denoted so(3)

• [m]  so(3),   [m] = -[m]T

• e[m] = e-[m] = (e-[m])T = ((e[m])-1)T

 e[m]  SO(3)

• The matrix exponential maps
so(3)  SO(3)
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Eigensystem of [n]
• Clearly: [n] n = 0 

n is an eigenvector of [n] with eigenvalue 0

• Furthermore:

[n] (p + i q) = i (p + i q)

[n] (p - i q) = -i (p - i q)

(p + i q) is an eigenvector
of [n] with eigenvalue i

(p - i q) is an eigenvector
of [n] with eigenvalue -i

(why?)i2 = -1
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Eigensystem of [n]
• The eigenvalues of [n] are (0, i, -i)
• The corresponding normalized

eigenvectors are

• Same eigenvectors as R !
• [n] = E D’E* with D’ = diag(0, i, -i)
• Note: D = eD’

(n,
p+ i q√

2
,
p− i q√

2
)
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so(3)  SO(3)

For m = n we get:

eα[n]× = eED
0E? = E eD

0
E? = EDE? = R
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so(3)  SO(3)

Summary:
• The matrix exponential maps [n] to R
• We can represent any R as the skew-

symmetric matrix [n] which has
3 parameters

• We can represent any R as the 3-dim 
vector m=n

• If we restrict m to |m| < , this 
representation is, in principle, one-to-one
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Quaternions

• Quaternions are an extension of complex
numbers, with 4 components instead of 2

• Quaternions form an associative division 
algebra
– They can be added, subtracted, multiplied, 

and divided
– Are non-commutative

• Can represented as a 4-dim vector
• Alternatively as a scalar + a vector
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Quaternion algebra

• Using the scalar+vector notation:

q1 = (s1, v1),    q2 = (s2, v2)

q1 + q2 = (s1 + s2, v1 + v2)
q1·q2 = (s1s2–v1·v2, s1v2+s2v1+v1×v2)
q1-1 = (s1,-v1)/(s12 + |v1|2) ⇒ q1q1-1 = (1, 0)
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Unit quaternions
q=(s, v)
• |q|2 = s2+|v|2
• Unit quaternions satisfy |q|2 = 1
• Represents the unit sphere in R4, denoted S3

• Any unit quaternion can be written

q = (cos α/2, sin α/2 n) for some angle α and 
vector |n|=1  (why?)

• In this case q-1 = (cos α/2, -sin α/2 n)
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Quaternion representation of 
rotations

• Let u ∈ R3 and represent it by the quaternion
p = (0, u)

• Let q = (cos α/2, sin α/2 n) be a unit
quaternion

• Gives q-1 = (cos α/2, -sin α/2 n) 
• Consider the quaternion product qpq-1

p q−1 = (sin α
2 (n · u), cos α2u+ sin α

2 (n× u))

7 May 2010 Geometry in Computer Vision 
Klas Nordberg

31

Quaternion representation of 
rotations

• Finally, we get
qpq−1=(cos α2 , sin

α
2n) · (sin α

2 (n·u), cos α2u+ sin α
2 (n× u))

qpq−1=
¡
0, cos2 α2u+2cos

α
2 sin

α
2 (n×u)+sin2 α2nnTu+sin2 α2n×(n×u)

¢
qpq−1=

¡
0, cos2 α2u+sinα[n]×u+sin

2 α
2 (I+ [n]

2
×)u+sin

2 α
2 [n]

2
×u
¢

qpq−1=
¡
0,u+sinα[n]×u+(1−cosα)[n]2×u

¢
qpq−1=(0,Ru)
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Quaternion representation of 
rotations

Summary:
• We can represent points in R3 as 

”imaginary” quaternions p
• The rotation (α, n) is represented as the 

unit quaternion q=(cos α/2, sin α/2 n)
• These consists of the set S3

• The rotated point is computed as the 
sandwich product qpq-1
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Quaternion representation of 
rotations

• Composition of two rotations in standard
3 × 3 matrix algebra:
– 27 mult
– 18 add

• Composition of two rotations in quaternion
algebra:
– 16 mult
– 12 add
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The orthogonal Procrustes problem

• Given n known vectors ak and bk, which
orthogonal R minimizes

nX
k=1

kak −Rbkk2

7 May 2010 Geometry in Computer Vision 
Klas Nordberg

35

The orthogonal Procrustes problem

Cookbook solution:
• See

[Golub & Van Loan, Matrix Computations]
• Let A be a matrix with all ak in its columns
• Let B be a matrix with all bk in its columns
• [U S V] = svd(A BT)
• R = U VT

• Note: R is in O(3) but may not be in SO(3)!
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Estimation of absolute orientation

• Given two set of n corresponding 3D 
points ak and bk that are related by a rigid 
transformation:

ak = R bk + t

How can we determine R and t?
In particular when there is noise present?
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Estimation of absolute orientation
• Let a’ and b’ denote the centroids of the set ak and the set 

bk, respectively:

a’ = R b’ + t ⇒ t = a’ – R b’

• We need to find R such that

ak – a’ = R (bk – b’)

• R can be found using the orthogonal Procrustes method
• Once R is determined, t is given by a’ – R b’
• See [Horn, Closed-form solution of absolute orientation 

using unit Quaternions, JOSA, 1987]


