Geometry in Computer Vision

Spring 2010 Lecture 7A Representations of 3D rotations

7 May 2010

Geometry in Computer Vision Klas Nordberg

Orthogonal transformations

• From linear algebra we know that for a vector space *V* there is a special set of transformations **A** known as *orthogonal transformations* (or *self-adjoint* transf.)

Klas Nordberg

Orthogonal transformations

- For V=R³, the set of orthogonal transformations is denoted O(3)
- O(3) are represented by 3 × 3 matrices that satisfy A^TA = I (or A^T = A⁻¹)
- From $\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{I}$ follows that det $\mathbf{A} = \pm 1$ (why?)
- O(3) consists of two *disconnected parts* in the space of 3 × 3 matrices:
 - one with det $\mathbf{A} = 1$
 - one with det A = -1
- O(3) forms a group under matrix multiplication

3D Rotations

- The set of O(3) with det **A** = 1 are *3D rotations*
- Also known as the special orthogonal transformations
- Denoted SO(3)
- Forms a group under matrix multiplication
- The set of O(3) with det A = -1 do not form a group (why?)
- This set includes mirroring operations

Representations

- In many applications we want to determine a rotation:
 - External camera parameters include a rotation
 - ${\bf E}$ is determined by a rotation and a translation
 - Find the rigid transformation between 2 point sets; it includes a rotation
 - Bundle adjustment ...
- To solve such problems, we often need to parameterize the set of rotations: SO(3)

3D Rotations

 A 3D rotation R is characterized by a - normalized vector **n** (2 d.o.f.) - rotation angle α (1 d.o.f.) $-\alpha$ is well-defined, e.g., using the right-hand-rule • **R** rotates around the vector **n** with the angle α • Note: (**n**, α) is equivalent to (-**n**, - α) In total: 3 degrees of freedom 6 7 May 2010 Geometry in Computer Vision Klas Nordberg Euler angles • $(\alpha_1, \alpha_2, \alpha_3)$ are unique (modulo $2\pi, \pi, 2\pi$) • Non-trivial relation between $(\alpha_1, \alpha_2, \alpha_3)$ and (\mathbf{n}, α) Non-trivial to combine two rotations • Non-trivial mapping $\mathbf{R} \rightarrow (\alpha_1, \alpha_2, \alpha_3)$ Not very interesting for practical applications

7 May 2010

8

Euler angles

Geometry in Computer Vision

Klas Nordberg

- We can decompose any R ∈ SO(3) into a product of 3 rotations around *fixed axes*
- For example:
 - $\mathbf{R} = \operatorname{Rot}_{z}(\alpha_{1}) \operatorname{Rot}_{x}(\alpha_{2}) \operatorname{Rot}_{z}(\alpha_{3})$
- ($\alpha_1,\,\alpha_2,\,\alpha_3)$ are the Euler angles of R

7 May 2010

7 May 2010

7

Vector \boldsymbol{n} and angle α

- (**n**, α) is a convenient representation
 - With $|\mathbf{n}|=1$
 - Explicitly describes the rotation axis and angle
- But
 - Not unique unless we impose restrictions on (\mathbf{n}, α)
 - Not trivial to combine two rotations
- How do we map $\mathbf{R} \leftrightarrow (\mathbf{n}, \alpha)$?

7 May 2010

Geometry in Computer Vision Klas Nordberg

The anatomy of a 3D rotation

• **v** can be decomposed as $\mathbf{v} = \mathbf{n}_0 + \mathbf{v}'$

where \mathbf{n}_0 is the projection of \mathbf{u} onto \mathbf{n}

 $\mathbf{n}_0 = \mathbf{n} \ \mathbf{n}^{\mathsf{T}} \mathbf{u}$

and ${\bf v}'$ is the rotation of ${\bf u}'$ in the plane perpendicular to ${\bf n}$

Geometry in Computer Vision

Klas Nordberg

11

9

The anatomy of a 3D rotation

The anatomy of a 3D rotation

- Let (p, q) be an ON-basis for the plane that is perpendicular to n
- The coordinates of u' in this basis is (p^Tu, q^Tu)
- The coordinates of v' in this basis is (p^Tv', q^Tv')

(p q

and

$$\begin{pmatrix} T \mathbf{v}' \\ T \mathbf{v}' \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \mathbf{p}^T \mathbf{u} \\ \mathbf{q}^T \mathbf{u} \end{pmatrix}$$

The anatomy of a 3D rotation

• From this we get

$$\mathbf{v}' = (\mathbf{p} \quad \mathbf{q}) \begin{pmatrix} \mathbf{p}^T \mathbf{v}' \\ \mathbf{q}^T \mathbf{v}' \end{pmatrix} = (\mathbf{p} \quad \mathbf{q}) \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \mathbf{p}^T \\ \mathbf{q}^T \end{pmatrix} \mathbf{u}$$
$$\mathbf{v}' = (\cos \alpha (\mathbf{p}\mathbf{p}^T + \mathbf{q}\mathbf{q}^T) + \sin \alpha [\mathbf{q}\mathbf{p}^T - \mathbf{p}\mathbf{q}^T]) \mathbf{u}$$
$$\mathbf{v} = (\mathbf{n}\mathbf{n}^T + \cos \alpha (\mathbf{I} - \mathbf{n}\mathbf{n}^T) + \sin \alpha [\mathbf{n}]_{\times}) \mathbf{u}$$

$$\mathbf{v} = \left(\mathbf{I} + (1 - \cos \alpha) \left[\mathbf{n}\right]_{\times}^{2} + \sin \alpha [\mathbf{n}]_{\times}\right) \mathbf{u}$$

7 May 2010

Geometry in Computer Vision Klas Nordberg

Rodrigues' formula

• This gives *Rodrigues' formula* for **R**:

$$\mathbf{R} = \mathbf{I} + (1 - \cos \alpha) \ [\mathbf{n}]_{\times}^2 + \sin \alpha [\mathbf{n}]_{\times}$$

- This gives us a mapping $(\mathbf{n}, \alpha) \rightarrow \mathbf{R}$
- How do we map $\mathbf{R} \rightarrow (\mathbf{n}, \alpha)$?

Rodrigues' formula also gives

for (\mathbf{n}, α) (how?)

7 May 2010	
------------	--

Geometry in Computer Vision Klas Nordberg

Rodrigues' formula (II)

 $\frac{\mathbf{R} - \mathbf{R}^T}{2} = \sin \alpha [\mathbf{n}]_{\times}$

• From these last two relations we can solve

14

Rodrigues' formula (II)

From this formula follows directly:

$$\operatorname{tr} \mathbf{R} = \operatorname{tr} \left(\mathbf{I} + (1 - \cos \alpha) \, [\mathbf{n}]_{\times}^2 + \sin \alpha [\mathbf{n}]_{\times} \right)$$

$$\operatorname{tr} \mathbf{R} = 3 + (1 - \cos \alpha) (-2) + \sin \alpha \, 0$$

and we get

$$\frac{\operatorname{tr} \mathbf{R} - 1}{2} = \cos \alpha$$

7 May 2010

15

Eigensystem of **R** Eigensystem of R • Clearly: **R n** = **n** \Rightarrow • The eigenvalues of **R** are $(1, e^{i\alpha}, e^{-i\alpha})$ **n** is an eigenvector of **R** with eigenvalue 1 • They are the solutions to det(**R** - λ **I**) = 0 The corresponding normalized • Maybe less clear: eigenvectors are (**p** + i **q**) is an eigenvector **p** and **q** are not of **R** with eigenvalue $e^{i\alpha}$ $(\mathbf{n}, \frac{\mathbf{p}+i\,\mathbf{q}}{\sqrt{2}}, \frac{\mathbf{p}-i\,\mathbf{q}}{\sqrt{2}})$ uniquely defined $\mathbf{R} (\mathbf{p} + \mathbf{i} \mathbf{q}) = e^{\mathbf{i}\alpha} (\mathbf{p} + \mathbf{i} \mathbf{q})$ (why?) (**p** - i **q**) is an eigenvector of **R** with eigenvalue $e^{-i\alpha}$ • (n, α) are given by an EVD of R $\mathbf{R} (\mathbf{p} - \mathbf{i} \mathbf{q}) = e^{-\mathbf{i}\alpha} (\mathbf{p} - \mathbf{i} \mathbf{q})$ (why?) $i^2 = -1$ 17 7 May 2010 Geometry in Computer Vision 7 May 2010 Geometry in Computer Vision 18 Klas Nordberg Klas Nordberg Eigensystem of **R** Matrix exponentials In summary we can write • For a vector space V and a linear Complex conjugation and transpose transformation **T**: $V \rightarrow V$ we define the matrix exponential of T as $\mathbf{R} = \begin{pmatrix} \mathbf{n} & \frac{\mathbf{p} + i \, \mathbf{q}}{\sqrt{2}} & \frac{\mathbf{p} - i \, \mathbf{q}}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & e^{i\alpha} & 0\\ 0 & 0 & e^{-i\alpha} \end{pmatrix} \begin{pmatrix} \mathbf{n} & \frac{\mathbf{p} + i \, \mathbf{q}}{\sqrt{2}} & \frac{\mathbf{p} - i \, \mathbf{q}}{\sqrt{2}} \end{pmatrix}^{\star}$ $e^{\mathbf{T}} = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{T}^k = \mathbf{I} + \mathbf{T} + \frac{1}{2} \mathbf{T}^2 + \dots$ • $\mathbf{R} = \mathbf{F} \mathbf{D} \mathbf{F}$ • This series is absolute convergent for any **T**, • E is a unitary basis: E^{*}E = I with $\mathbf{T}^0 = \mathbf{I}$ Can we connect this to Rodrigues' formula? • e^{T} is linear transformation: $V \rightarrow V$ 19 7 May 2010 20 7 May 2010 Geometry in Computer Vision Geometry in Computer Vision Klas Nordberg Klas Nordberg

Matrix exponentials

General properties:

• $e^0 = I$

7 May 2010

- $e^{aT} e^{bT} = e^{(a+b)T} (why?)$
- $e^{T^T} = (e^T)^T (why?)$
- $e^{-T} = (e^{T})^{-1}$ (why?)
- $e^{EDE^*} = E e^{D} E^*$ for unitary $E (E^*E = I)$ (why?)

Geometry in Computer Vision

Klas Nordberg

• $e^{\mathbf{D}} = \text{diag}(e^{d_1}, e^{d_2}, \ldots)$ for $\mathbf{D} = \text{diag}(d_1, d_2, \ldots)$ (why?)

so(3)

- The set of skew-symmetric matrices is denoted so(3)
- $[\mathbf{m}]_{\times} \in so(3), \Rightarrow [\mathbf{m}]_{\times} = -[\mathbf{m}]_{\times}^{\mathsf{T}}$
- $e^{[m]_{\times}} = e^{-[m]_{\times}^{T}} = (e^{-[m]_{\times}})^{T} = ((e^{[m]_{\times}})^{-1})^{T}$ $\Rightarrow e^{[m]_{\times}} \in SO(3)$
- The matrix exponential maps so(3) → SO(3)

7 May 2010

21

Geometry in Computer Vision Klas Nordberg

Eigensystem of α [**n**]_×

- Clearly: α[n]_× n = 0 ⇒
 n is an eigenvector of α[n]_× with eigenvalue 0
- Furthermore:

	$(\mathbf{p} + \mathbf{q})$ is an eigenvector
	of $\alpha[\mathbf{n}]_{\times}$ with eigenvalue i α
$\alpha[\mathbf{n}]_{\times} (\mathbf{p} + \mathrm{i} \mathbf{q}) = \mathrm{i}\alpha (\mathbf{p} + \mathrm{i} \mathbf{q})$	
	(p - i q) is an eigenvector
$\alpha[\mathbf{n}]_{\times} (\mathbf{p} - i \mathbf{q}) = -i \alpha (\mathbf{p} - i \mathbf{q})$	of $\alpha[\mathbf{n}]_{\times}$ with eigenvalue -i α
$i^2 = -1$	(why?)
7 May 2010 Geometry in Compute Klas Nordberg	r Vision 23

Eigensystem of $\alpha[\mathbf{n}]_{\times}$

- The eigenvalues of α [**n**]_× are (0, i α , -i α)
- The corresponding *normalized* eigenvectors are

$$(\mathbf{n}, \frac{\mathbf{p}+i\,\mathbf{q}}{\sqrt{2}}, \frac{\mathbf{p}-i\,\mathbf{q}}{\sqrt{2}})$$

- Same eigenvectors as R !
- $\alpha[\mathbf{n}]_{\times} = \mathbf{E} \mathbf{D}'\mathbf{E}^*$ with $\mathbf{D}' = \text{diag}(0, i\alpha, -i\alpha)$
- Note: **D** = e^{**D**'}

$so(3) \rightarrow SO(3)$	$so(3) \rightarrow SO(3)$		
For $\mathbf{m} = \alpha \mathbf{n}$ we get:	Summary: • The matrix exponential maps $\alpha[\mathbf{n}]$ to R		
$e^{\alpha[\mathbf{n}]_{\times}} = e^{\mathbf{E}\mathbf{D}'\mathbf{E}^{\star}} = \mathbf{E} e^{\mathbf{D}'} \mathbf{E}^{\star} = \mathbf{E} \mathbf{D} \mathbf{E}^{\star} = \mathbf{R}$	 The matrix exponential maps α[n]_× to κ We can represent any R as the skew- symmetric matrix α[n]_× which has 3 parameters 		
	 We can represent any R as the 3-dim vector m=αn 		
	 If we restrict m to m < π, this representation is, in principle, one-to-one 		
7 May 2010 Geometry in Computer Vision 25 Klas Nordberg	7 May 2010 Geometry in Computer Vision 26 Klas Nordberg		
Quaternions	Quaternion algebra		
 Quaternions are an extension of complex numbers, with 4 components instead of 2 	 Using the scalar+vector notation: 		
 Quaternions form an associative division algebra 	$q_1 = (s_1, v_1), q_2 = (s_2, v_2)$		
 They can be added, subtracted, multiplied, and divided Are non-commutative Can represented as a 4-dim vector Alternatively as a scalar + a vector 	$\begin{aligned} q_1 + q_2 &= (s_1 + s_2, \mathbf{v}_1 + \mathbf{v}_2) \\ q_1 \cdot q_2 &= (s_1 s_2 - \mathbf{v}_1 \cdot \mathbf{v}_2, s_1 \mathbf{v}_2 + s_2 \mathbf{v}_1 + \mathbf{v}_1 \times \mathbf{v}_2) \\ q_1^{-1} &= (s_1, -\mathbf{v}_1) / (s_1^2 + \mathbf{v}_1 ^2) \Rightarrow q_1 q_1^{-1} = (1, 0) \end{aligned}$		
7 May 2010 Geometry in Computer Vision 27 Klas Nordberg	7 May 2010 Geometry in Computer Vision 28 Klas Nordberg		

Unit quaternions

q=(s, v)

- $|q|^2 = s^2 + |v|^2$
- Unit quaternions satisfy $|q|^2 = 1$
- Represents the unit sphere in R⁴, denoted S³
- Any unit guaternion can be written

q = (cos $\alpha/2$, sin $\alpha/2$ n) for some angle α and vector |n|=1 (why?)

• In this case $q^{-1} = (\cos \alpha/2, -\sin \alpha/2 \mathbf{n})$

29 7 May 2010 Geometry in Computer Vision 7 May 2010 Geometry in Computer Vision Klas Nordberg

Quaternion representation of rotations

• Finally, we get

 $qpq^{-1} = (\cos \frac{\alpha}{2}, \sin \frac{\alpha}{2}\mathbf{n}) \cdot (\sin \frac{\alpha}{2}(\mathbf{n} \cdot \mathbf{u}), \cos \frac{\alpha}{2}\mathbf{u} + \sin \frac{\alpha}{2}(\mathbf{n} \times \mathbf{u}))$ $qpq^{-1} = (0, \cos^2 \frac{\alpha}{2} \mathbf{u} + 2\cos \frac{\alpha}{2} \sin \frac{\alpha}{2} (\mathbf{n} \times \mathbf{u}) + \sin^2 \frac{\alpha}{2} \mathbf{n} \mathbf{n}^T \mathbf{u} + \sin^2 \frac{\alpha}{2} \mathbf{n} \times (\mathbf{n} \times \mathbf{u}))$ $qpq^{-1} = (0, \cos^2 \frac{\alpha}{2} \mathbf{u} + \sin \alpha [\mathbf{n}]_{\times} \mathbf{u} + \sin^2 \frac{\alpha}{2} (\mathbf{I} + [\mathbf{n}]_{\times}^2) \mathbf{u} + \sin^2 \frac{\alpha}{2} [\mathbf{n}]_{\times}^2 \mathbf{u})$

 $qpq^{-1} = (0, \mathbf{u} + \sin \alpha [\mathbf{n}]_{\times} \mathbf{u} + (1 - \cos \alpha) [\mathbf{n}]_{\times}^2 \mathbf{u})$

 $qpq^{-1} = (0, \mathbf{Ru})$

rotations

Quaternion representation of

- Let $\mathbf{u} \in \mathsf{R}^3$ and represent it by the quaternion p = (0, u)
- Let $q = (\cos \alpha/2, \sin \alpha/2 \mathbf{n})$ be a unit quaternion
- Gives $q^{-1} = (\cos \alpha/2, -\sin \alpha/2 \mathbf{n})$
- Consider the quaternion product gpg⁻¹

$$p q^{-1} = (\sin \frac{\alpha}{2} (\mathbf{n} \cdot \mathbf{u}), \cos \frac{\alpha}{2} \mathbf{u} + \sin \frac{\alpha}{2} (\mathbf{n} \times \mathbf{u}))$$

Klas Nordberg

30

Quaternion representation of rotations

Summary:

- We can represent points in R³ as "imaginary" quaternions p
- The rotation (α , **n**) is represented as the unit quaternion q=(cos $\alpha/2$, sin $\alpha/2$ **n**)
- These consists of the set S³
- The rotated point is computed as the sandwich product qpq⁻¹

7 May 2010

Quaternion representation of rotations

- Composition of two rotations in standard 3 × 3 matrix algebra:
 - 27 mult
 - 18 add
- Composition of two rotations in quaternion algebra:
 - 16 mult
 - 12 add

7 May 2010	Geometry in Computer Vision Klas Nordberg	33	7 May 2010	Geometry in Computer Vision Klas Nordberg	34

The orthogonal Procrustes problem

Cookbook solution:

- See [Golub & Van Loan, *Matrix Computations*]
- Let **A** be a matrix with all \mathbf{a}_k in its columns
- Let ${\boldsymbol{B}}$ be a matrix with all ${\boldsymbol{b}}_k$ in its columns
- $[\mathbf{U} \mathbf{S} \mathbf{V}] = \text{svd}(\mathbf{A} \mathbf{B}^{\mathsf{T}})$
- $\mathbf{R} = \mathbf{U} \ \mathbf{V}^{\mathsf{T}}$
- Note: **R** is in O(3) but may not be in SO(3)!

Estimation of absolute orientation

The orthogonal Procrustes problem

• Given *n* known vectors \mathbf{a}_k and \mathbf{b}_k , which

 $\sum \|\mathbf{a}_k - \mathbf{R} \mathbf{b}_k\|^2$

orthogonal R minimizes

Given two set of *n* corresponding 3D points **a**_k and **b**_k that are related by a rigid transformation:

 $\mathbf{a}_{k} = \mathbf{R} \mathbf{b}_{k} + \mathbf{t}$

How can we determine **R** and **t**? In particular when there is noise present?

7 May 2010

Estimation of absolute orientation

- Let **a**' and **b**' denote the centroids of the set \mathbf{a}_k and the set \mathbf{b}_k , respectively:

 $\mathbf{a}' = \mathbf{R} \ \mathbf{b}' + \mathbf{t} \ \Rightarrow \mathbf{t} = \mathbf{a}' - \mathbf{R} \ \mathbf{b}'$

• We need to find **R** such that

 $\mathbf{a}_{k} - \mathbf{a}' = \mathbf{R} (\mathbf{b}_{k} - \mathbf{b}')$

- R can be found using the orthogonal Procrustes method
- Once **R** is determined, **t** is given by **a**' **R b**'
- See [Horn, Closed-form solution of absolute orientation using unit Quaternions, JOSA, 1987]

7 May 2010	Geometry in Computer Vision	37
	Klas Nordberg	